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Model Checking

The development of techniques (notably model checking) for the
computer-aided verification of computing systems has been a truly
successful application of logic to computer science.

2007 ACM Turing Award (Clarke, Emerson and Sifakis) “for their rôle in
developing model checking into a highly effective verification technology,
widely adopted in hardware and software industries”.

What is Model Checking?

Problem: Given a system Sys (e.g. an OS) and a correctness property
Spec (e.g. deadlock freedom), does Sys satisfy Spec?

The model checking approach:

1 Find an abstract model M of the system Sys.

2 Describe the property Spec as a formula ϕ of a (decidable) logic.

3 Exhaustively check if ϕ is violated by M .
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Verification of Higher-Order Programs

In the past two decades, there have been significant advances in the theory
and engineering of scalable software model checkers (especially for
first-order imperative programs such as C). E.g. SLAM, BLAST, CMBC.

- These techniques are much less useful for higher-order programs.
- Yet higher-order features (e.g. lambdas, streams) are already standard in
today’s leading languages: Java8, C++11, C#5.0, Python, Scala, etc.

Verifying higher-order functional programs: 2 standard approaches

1 Type-based program analysis. E.g. type-and-effect, qualifier, linear
- sound, scalable but often imprecise

2 Theorem proving and dependent types. E.g. Coq, Agda
- accurate, typically requires human intervention; does not scale well

We present an approach to verifying higher-order programs via
higher-order model checking.
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Tutorial Outline

Higher-Order Model Checking is the model checking of infinite structures,
such as trees, that are defined by recursion schemes (equivalently
λY-calculus) and related families of higher-order generators.

This tutorial has four parts:

1 Introduction (Ong)

2 Applications to Program Verification (Kobayashi)

3 Type Systems and Algorithms for Higher-Order Model Checking
(Kobayashi)

4 Advanced Topics (Ong)
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Simple Types (Church JSL 1940)

Types A ::= o | (A→ B)

o is the type of trees.

Order of a type: measures “nestedness” on LHS of →.

order(o) := 0
order(A→ B) := max(order(A) + 1, order(B))

Examples

1 N→ N and N→ (N→ N) both have order 1;

2 (N→ N)→ N has order 2.

Notation e : A means “expression e has type A”.
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Higher-Order Recursion Schemes (HORS)

(Park 68, de Roever 72, Nivat 72, Nivat-Courcelle 78, Damm 82, . . . )

HORS are grammars for trees (and tree languages).

Order-n recursion schemes over Σ = programs of the order-n fragment of
λ→Y-calculus (i.e. simply-typed λ-calculus + Y + order-1 Σ-symbols).

Concretely, a HORS is a finite set of simply-typed (higher-order) functions,
defined by mutual recursion over Σ, with a distinguished start function S
of ground type.

Example (order 1). Σ = { f : o→ (o→ o), g : o→ o, a : o }.

G :

{
S → F a

F x → (f x) (F (g x))
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Example (order 1)

Σ = { f : o→ (o→ o), g : o→ o, a : o }.

G :

{
S → F a

F x → (f x) (F (g x))

f

a f

g f

a g f

g
...

a

S → F a
→ (f a) (F (g a))
→ (f a) (f (g a) (F (g (g a))))
→ · · ·

The tree generated, [[G ]], is the abstract syntax
tree underlying (f a) (f (g a) (f (g (g a))(· · · ))).

Many equivalent ways of defining [[G ]] (as
least fixpoint, least solution, initial algebra, etc.).
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A Basic Verification Problem in Higher-Order Computation

f
|| ""

a f
|| ""

g
��

f
|| ""

a g

��
f

g
��

...

a

E.g. Consider properties of nodes of [[G ]]:

ϕ = “Infinitely many f -nodes are reachable”.

ψ = “Only finitely many g-nodes are reachable”.

Every node of the tree satisfies ϕ ∨ ψ.

Monadic second-order logic (MSO) is an expressive
logic that can describe correctness properties such as ϕ ∨ ψ.

MSO Model-Checking Problem for Trees generated by HORS

INSTANCE: An order-n recursion scheme G, and an MSO formula ϕ

QUESTION: Does the Σ-labelled tree [[G ]] satisfy ϕ?

QUESTION: Is the above problem decidable?
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Decidability and Complexity of MSO Model Checking of HORS

Theorem (O. LICS06)

For n ≥ 0, the alternating parity tree automaton (APT) model-checking
problem for order-n recursion schemes is n-EXPTIME complete. Hence
the MSO model checking problem is decidable.

Proofs of Decidability of HOMC / Models of Higher-Order Computation

1 Game semantics (O. LICS06)

2 Collapsible pushdown automata (Hague, Murawski, O. & Serre
LICS08)

3 Intersection types (Kobayashi & O. LICS09)

4 Krivine machine (Salvati & Walukiewicz ICALP11)
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Outline of Part 4

1 Higher-Order Pushdown Automata: A Model of Higher-order
Computation

Properties of the Maslov(= Higher-order Pushdown) Hierarchy of
Word Languages
Computing Downwards Closure of Higher-order Pushdown Languages

2 Model Checking Higher-type Böhm Trees
Challenge of Compositional Higher-order Model Checking
Automata-Logic-Games Correspondence for Higher-type Computation

3 Some Open Problems
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Higher-order pushdown automata (HOPDA) [Maslov 74]

Order-2 pushdown automata
A 1-stack is an ordinary stack. A 2-stack (resp. (n+ 1)-stack) is a stack of
1-stacks (resp. n-stack).

Operations on 2-stacks: si ranges over 1-stacks.

push2 : [s1 · · · si−1 [γ1 · · · γn]︸ ︷︷ ︸
si

] 7→ [s1 · · · si−1 si si]

pop2 : [s1 · · · si−1 [γ1 · · · γn]] 7→ [s1 · · · si−1]

push1 γ : [s1 · · · si−1 [γ1 · · · γn]] 7→ [s1 · · · si−1 [γ1 · · · γn γ]]

pop1 : [s1 · · · si−1 [γ1 · · · γn γn+1]] 7→ [s1 · · · si−1 [γ1 · · · γn]]

Idea extends to all finite orders: an order-n PDA has an order-n stack, and
has pushi and popi for each 1 ≤ i ≤ n.
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Example: L := { an bn cn : n ≥ 0 } is recognisable by an order-2 PDA

L is not context free—thanks to the “uvwxy Lemma”.

Idea: Use top 1-stack to process an bn, and height of 2-stack to “remember”
n.

q1 [[]]
a // q1 [[][z]]

a // q1 [[][z][z z]]

b
��

q2 [[][z][z]]

b
��

q3 [[]] q3 [[][z]]c
oo q2 [[][z][]]c

oo

q1
z

b→ pop1z

//

− a→ push2 ; push1z

��
q2

⊥ c→ pop2

//

z
b→ pop1

��
q3

z
c→ pop2

��

‘read a’ ‘read b’ ‘read c’
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Some properties of the Maslov Hierarchy (Maslov 74, 76)

1 HOPDA define an infinite hierarchy of word languages.

2 Orders 0, 1 and 2 languages are regular, context free, and indexed
(Aho 68); higher-order languages are not well understood.

3 For each n ≥ 0, the order-n languages form an abstract family of
languages (closed under +, ·, (−)∗, intersection with regular
languages, homomorphism and inverse homo.)

4 The acceptance problem of alternating order-k PDA is k-EXPTIME
complete. (Engelfriet ’81)

5 The emptiness problem of nondeterministic order-k PDA is
(k − 1)-EXPTIME complete. (Engelfriet ’81)

A recent breakthrough

Theorem (Inaba + Maneth FSTTCS08)

All languages of the Maslov Hierarchy are context-sensitive. So Maslov
Hierarchy refines Chomsky Hierarchy.
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Maslov – a robust hierarchy of word languages

Theorem (Equi-expressivity)

For each n ≥ 0, the three formalisms

1 order-n pushdown automata (Maslov 76)

2 order-n safe recursion schemes (Damm 82, Damm + Goerdt 86)

3 order-n indexed grammars (Maslov 76)

generate the same class of word languages.
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Computing downwards closure of higher-order pushdown languages

Downward closure of L, ↓(L), is the set of all subwords of words in L.
E.g. SubWords(a b c) = { a b c, b c, a c, a b, a, b, c, ε }

Theorem (Haines 1969) For all L ⊆ Σ∗, ↓(L) is regular.

Unfortunately downward closures are not computable, in general.

Algorithms only exist for a few language classes; e.g. context-free, Petri
net, indexed (Zetzsche ICALP15).

Regular representations of downward closures are very useful:
- Regular languages are well behaved under many transformations.
- Many systems permit synchronisation with a regular language.

Example: In message-passing concurrency, complex environments can be
abstracted by the downward closure of the messages it sends (or processes
it spawns).
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net, indexed (Zetzsche ICALP15).

Regular representations of downward closures are very useful:
- Regular languages are well behaved under many transformations.
- Many systems permit synchronisation with a regular language.

Example: In message-passing concurrency, complex environments can be
abstracted by the downward closure of the messages it sends (or processes
it spawns).
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Theorem (Hague, Kochems & O. POPL16)

The downward closure of every order-n pushdown language is computable.

(Zetzsche 2015) If C is a full trio and has decidable Diagonal(C), then it has
computable downward closures.

Fix Σ = { a1, · · · , an }. Diagonal(C): Given L ∈ C, does it hold that

∀k ≥ 0 .∃wk ∈ L .
(
#a1

(wk) ≥ k ∧ · · · ∧#an
(wk) ≥ k

)
?

Several Consequences

1 Reachability for parameterised concurrent systems of HOPDA
communicating asynchronously via a shared global register (La Torre
et al. 2015)

2 Finiteness of a language defined by a HOPDA, and

3 Downward closure of the Parikh image of a HOPDA.
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Hierarchy of trees generated by HORS

For n ≥ 0, let RecSchTreen be the class of Σ-labelled trees generated by
order-n recursion schemes.

Some Properties
1 Hierarchy Theorem (Damm 1982) for 〈RecSchTreen | n ∈ ω 〉
2 The hierarchy is highly expressive: order-0 are the regular trees,

order-1 are the algebraic trees (Courcelle 1995); order-2 are the
hyperalgebraic trees (Knapik et al. 2001).

3 Machine characterization: order-n trees are exactly those generated
by order-n collapsible pushdown automata (HMOS LiCS 2008)

4 MSO theories are decidable (to date, the “largest” known such
hierarchy of trees).
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Compositional Higher-Order Model Checking? ... Several Obstacles

1 Like standard model checking, higher-order model checking is mostly
a whole program analysis. This can seem surprising: higher order is
supposed to aid modular structuring of programs!

2 Hitherto HOMC is about computation trees of ground-type functional
programs.
Aim: model check the computation trees of higher-type functional
programs (= Böhm trees i.e. trees with binders).

3 Need a denotational model to support compositional model checking,
which should be strategy aware (i.e. modelling Böhm trees, and
witnesses of correctness properties of Böhm trees), and organisable
into a cartesian closed category of parity games.

4 Unfortunately the elegant theorems of “Rabin’s Heaven” fail in the
world of Böhm trees.
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Theorems of “Rabin’s Heaven” do not hold for Böhm trees

Let Γ = a : o, b : o→ ((o→ o)→ o)→ o and

Γ ` Y (λf.λyo.λxo→o.b (x y) (f (x y))) a︸ ︷︷ ︸
M

: (o→ o)→ o.

λx1

b

x1

33

λx2

a b

x2

33

λx3

x1

GG

b

a x3

33

λx4

x2

GG

.

x1

NN

a

BT(M)
- uses infinitely many variable names,
and each variable occurs infinitely often.

- has an undecidable MSO theory!
(Clairambault & Murawski FSTTCS’13)
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An expressive yet decidable logic for higher-type Böhm trees?

Böhm trees: concrete repr. of higher-order functions on infinite trees.

Take tree property P := “There are only
finitely many occurrences of bound variables
in each branch.”

Questions: Automata-Logic-Games
Correspondence for Higher-Type Trees

1 Is there an expressive logic L that can
describe properties such as P?

2 Is there a class of automata
equi-expressive with L?

3 What kind of games characterise the
acceptance problem?

4 Is L decidable for definable Böhm
trees?

λx1

b

x1

66

λx2

a b

x2

55

λx3

x1

HH

b

a x3

66

λx4

x2

II

...

x1

MM

a
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Böhm trees: concrete repr. of higher-order functions on infinite trees.

Take tree property P := “There are only
finitely many occurrences of bound variables
in each branch.”

Questions: Automata-Logic-Games
Correspondence for Higher-Type Trees

1 Is there an expressive logic L that can
describe properties such as P?

2 Is there a class of automata
equi-expressive with L?

3 What kind of games characterise the
acceptance problem?

4 Is L decidable for definable Böhm
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Higher-type Automata-Logic-Games Correspondence

Σ-labelled trees Higher-type Böhm trees

Alternating Parity Tree
Automata

Alternating Dependency Tree Automata

- has rules that read λ-binders
- generalise Stirling’s ADTA to ω-regular
winning condition

Mu-calculus
Higher-type Mu-Calculus

ϕ ::= P | ¬ϕ | ϕ ∨ ψ
| να.ϕ | [i]ϕ - ϕ ::= vx | �x.ψ | · · ·

- vx detects variables; �x.- detects λ-
binding

Parity Game
Type-Checking Game |= u : α

Further, checking these properties against λ→Y-definable Böhm trees is
decidable. (Tsukada & O. LICS14)
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Challenge of Compositional Higher-order Model Checking
Automata-Logic-Games Correspondence for Higher-type Computation

3 Some Open Problems

Kobayashi, Ong Higher-Order Model Checking 18 Jan 16, POPL16 Tutorial 24 / 25



Some Open Problems in Theory of HOMC

1 Equivalence of Recursion Schemes asks whether two given recursion
schemes generate the same tree. (Recursively equivalent to Böhm
Tree Equivalence of λY-terms.)
Is the problem decidable?

2 The Nondeterministic Safety Conjecture: there is a word language
recognisable by a nondeterministic n-CPDA, but not by any
nondeterministic HOPDA.
False for n = 2; open for n ≥ 3.

3 Are Unsafe Word Languages Context Sensitive?.
Answer is Yes for order up to 3 (Kobayashi et al. FoSSaCS14).

4 Computing Downward Closures of Word Languages of the
Higher-Order Collapsible Pushdown Hierarchy.

5 Extensions of Higher-Order Model Checking
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Tree Equivalence of λY-terms.)
Is the problem decidable?

2 The Nondeterministic Safety Conjecture: there is a word language
recognisable by a nondeterministic n-CPDA, but not by any
nondeterministic HOPDA.
False for n = 2; open for n ≥ 3.

3 Are Unsafe Word Languages Context Sensitive?.
Answer is Yes for order up to 3 (Kobayashi et al. FoSSaCS14).

4 Computing Downward Closures of Word Languages of the
Higher-Order Collapsible Pushdown Hierarchy.

5 Extensions of Higher-Order Model Checking

Kobayashi, Ong Higher-Order Model Checking 18 Jan 16, POPL16 Tutorial 25 / 25


	Higher-Order Pushdown Automata: A Model of Higher-order Computation
	Properties of the Maslov(= Higher-order Pushdown) Hierarchy of Word Languages
	Computing Downwards Closure of Higher-order Pushdown Languages

	Model Checking Higher-type Böhm Trees
	Challenge of Compositional Higher-order Model Checking
	Automata-Logic-Games Correspondence for Higher-type Computation

	Some Open Problems

