
Pairwise Reachability Analysis for Higher Order
Concurrent Programs by Higher-Order Model

Checking

Kazuhide Yasukata, Naoki Kobayashi and Kazutaka Matsuda

The University of Tokyo

Abstract. We propose a sound, complete, and automatic method for
pairwise reachability analysis of higher-order concurrent programs with
recursion, nested locks, joins, and dynamic thread creation. The method
is based on a reduction to higher-order model checking (i.e., model check-
ing of trees generated by higher-order recursion schemes). It can be con-
sidered an extension of Gawlitz et al.’s work on the join-lock-sensitive
reachability analysis for dynamic pushdown networks (DPN) to higher-
order programs. To our knowledge, this is the first application of higher-
order model checking to sound and complete verification of (reasonably
expressive models of) concurrent programs.

1 Introduction

Verification of concurrent programs is important but fundamentally difficult,
especially in the presence of recursion. Ramalingam [19] has shown that the
reachability problem for two pushdown systems with rendezvous-style synchro-
nization primitives is undecidable. There are two major approaches to cope with
this limitation. One is to give up the soundness, and underapproximate the
actual behavior of a concurrent program by bounding the number of context
switches [18], etc. The other approach is to restrict the synchronization primi-
tives. Kahlon et al. [7] have shown that the pairwise reachability problem (“Given
two pushdown systems P1 and P2 and control locations `1 and `2, is there a
reachable global state where P1 is at `1 and P2 is at `2?”) is decidable if the
two pushdown systems synchronize only via nested locking. Lammich et al. [14]
later extended it to dynamic pushdown networks (DPN), where processes may
be dynamically created. Gawlitza et al. [4] have further extended the result to
allow synchronization via joins in addition to nested locking.

In the present paper, we follow the latter line of work and extend it to deal
with higher-order concurrent programs with recursion, dynamic process creation,
joins, and nested locking. We consider the pairwise reachability problem: “Given
a program P and two control locations `1 and `2, may the program reach a state
where one process is at `1 and another is at `2?”. We show that this problem
can be reduced to higher-order model checking [15, 9], hence it is decidable. The
main idea is to transform a given program to a non-deterministic higher-order

recursion scheme (a kind of tree grammar where non-terminals may take higher-
order functions as arguments) G that generates a tree language L(G) consisting
of all the possible execution histories (called action trees [14, 4]) of the program
ignoring the synchronization constraints imposed by joins and nested locking.
Let L1 be the set of action trees that respect the synchronization constraints
imposed by joins and nested locking, and L2 be the set of action trees that
represent histories that end with a state where two of the processes are at `1
and `2. Then, `1 and `2 are pairwise reachable if and only if L(G)∩L1 ∩L2 6= ∅.
Since both L1 and L2 are regular (where the regularity of L1 is due to [4]), the
latter condition can be decided by using higher-order model checking [15, 9]. We
formalize the reduction and prove its correctness. We also report preliminary
experimental results, which confirm that the approach is feasible at least for
small programs, despite the extremely high worst-case complexity of higher-
order model checking (k-EXPTIME complete for order-k higher-order recursion
schemes [15, 12]).

To our knowledge, this is the first application of higher-order model checking
to sound and complete verification of higher-order concurrent programs. The pre-
vious applications of higher-order model checking were mainly for higher-order
functional programs [9, 13, 16]. For concurrent programs, the previous applica-
tions [10, 5] were based on the underapproximation approach. One may think
that higher-order functions are exotic features for multi-threaded programs. As
demonstrated in [9, 20], however, even if higher-order functions are not so of-
ten used explicitly in source programs, they are required for precisely modelling
control/data structures such as exceptions and lists.

The rest of the paper is structured as follows. Section 2 introduces the target
language and formally defines the pairwise reachability problem. After providing
the necessary backgrounds (such as action trees [14, 4] and higher-order model
checking [15, 9]) Section 3 provides the reduction of the pairwise reachability
problem to higher-order model checking. Section 4 reports preliminary experi-
ments. Section 5 discusses related work and Section 6 concludes the paper.

2 Target Language and Pairwise Reachability Problem

This section introduces a higher-order concurrent programming language and
defines the pairwise reachability problem for it.

Definition 1. A program is a finite set of function definitions

{F1 x̃1 = e1, ..., Fn x̃n = en},

where Fi denotes a defined function symbol, and e ranges over the set Exp of
expressions, defined by:

e ::= $ | x | F | if e1 e2 | e1 e2 | join; e | acqi; e | reli; e | spawn(ec); e | e`

Here, i ranges over a finite set Lock of (non-reentrant) locks, and ` ranges over
a finite set Label of program point labels. Note that the arity of each function

may be 0. We require that the function symbols F1, ..., Fn are different from
each other, and that any program p contains exactly one definition of a “main”
function S, of the form S = e.

We explain the intuitive meaning of each expression; the formal operational
semantics is given later. The expression $ represents the termination of the cur-
rent process. The expression if e1 e2 executes either e1 or e2 non-deterministically,
and the expression e1e2 applies the function e1 to e2. As defined later, function
calls are based on the call-by-name semantics; call-by-value programs can be
transformed to call-by-name programs by using the CPS transformation [17].
The expression spawn(ec); e spawns a new child process that executes ec, and
continues to execute e without waiting for the child process. The expression
join; e waits for the termination of all the processes that the current process
has created, and then executes e. The expression acqi; e waits to acquire the
lock i, and then executes e. The expression reli; e releases the lock i and executes
e. The label ` in the expression e` is used for specifying the pairwise reachability
problem, and does not affect the operational semantics.

In this paper, we consider only “well-typed” programs, as defined below.

Definition 2 (types). The set of types is inductively defined by:

τ ::= unit | τ1 → τ2

Here, unit is the type of the unit value $, and τ1 → τ2 is the type of functions
from τ1 to τ2. The order and the arity of types are inductively defined by:

order(unit) = 0 order(τ1 → τ2) = max(order(τ1) + 1, order(τ2))
arity(unit) = 0 arity(τ1 → τ2) = arity(τ2) + 1

A type environment Γ is a map from a finite set of variables to types. The
type judgment relation Γ ` e : τ for expressions is the least relation closed
under the following rules:

∅ ` $: unit Γ{x 7→ τ} ` x : τ
Γ ` e1 : unit Γ ` e2 : unit

Γ ` if e1 e2 : unit

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

Γ ` e : unit

Γ ` join; e : unit

Γ ` e : unit

Γ ` acqi; e : unit

Γ ` e : unit

Γ ` reli; e : unit

Γ ` e : unit Γ ` ec : unit

Γ ` spawn(ec); e : unit

Γ ` e : unit

Γ ` e` : unit

A program p = {F1 x11, . . . , x1k1 = e1, . . . , Fn xn1, . . . , xnkn = en} is well-
typed under Γ if Γ = {Fi 7→ τi1 → ...→ τiki → unit | i ∈ { 1, . . . , n } } and Γ ∪
{xj1 7→ τj1, ..., xjkj 7→ τjkj} ` ej : unit holds for each j ∈ { 1, . . . , n }. The
order of p (well-typed under Γ) is max({ order(Γ (F)) | F ∈ dom(Γ) }).

Remark 1. In the language above, we have only the unit-value as a base value.
As we have higher-order functions, however, we can encode booleans and con-
ditionals by using the Church encoding. Values in infinite data domains (such
as unbounded integers) can be dealt with (soundly but incompletely) by using
predicate abstraction [9, 13].

Example 1. Here is an example of an order-2 program, well-typed under Γ =
{S 7→ unit, F 7→ (unit→ unit)→ unit→ unit, G 7→ unit→ unit,
H 7→ (unit→ unit)→ unit→ unit}.

p =

{
S = F G $ F g t = if (spawn(H g $); F g t) (join; t)
Gt = t` H g t = acq1; (g (rel1; t))

}
This program is obtained by CPS-transforming the following C-like code:

main(){f(g);}

f(g){

if(*){spawn{h(g);}; f(g);}

else{join(); }

}

g(){

L: <critical section>;

return;

}

h(g){ acq(1); g(); rel(1);}

The root process spawns non-deterministically many child processes, and then
waits for the child processes by the join operation. Each child acquires the lock
1 and then release 1 at the program point `.

We now define the formal semantics of programs. A configuration c of a
program is a map from a finite set consisting of sequences of natural numbers
(where each sequence serves as a process identifier) to the set of triples (e, L, s)
consisting of an expression e, a sequence L of locks, and a natural number s.
Intuitively, c(π) = (e, i1 · · · ik, s) means that the process π is executing e, that it
holds locks i1, . . . , ik that have been acquired in this order, and that it has created
s child processes so far. The reduction relation c −→ c′ on configurations is
defined by the following rules.

F x1 · · · xk → e ∈ p
c] {π 7→ (F e1 ... ek, L, s) } −→p c] {π 7→ ([e1/x1, ..., ek/xk]e, L, s) }

c] {π 7→ (if e1 e2, L, s) } −→p c] {π 7→ (ei, L, s) } (i ∈ { 1, 2 })

c] {π 7→ (e`, L, s) } −→p c] {π 7→ (e, L, s) }

i 6∈ locked(c] {π 7→ (acqi; e, L, s) })
c] {π 7→ (acqi; e, L, s) } −→p c] {π 7→ (e, L · i, s) }

c] {π 7→ (reli; e, L · i, s) } −→p c] {π 7→ (e, L, s) }

c] {π 7→ (spawn(ec); e, L, s) } −→p c] {π 7→ (e, L, s+ 1), π · s 7→ (ec, ε, 0) }

{ j | π · j ∈ dom(c) } = ∅
c] {π 7→ (join; e, L, s) } −→p c] {π 7→ (e, L, s) }

c] {π 7→ ($, ε, s) } −→p c

Here, locked(c) represents the set of all acquired locks, defined by:

locked(c) =
⋃

c(π)=(e,i1···ik,s)

{ i1, . . . , ik } .

Definition 3 (pairwise reachability). Let p be a (well-typed) program and
`1, `2 be labels. We say that (`1, `2) is pairwise reachable by p, written p |=
`1||`2, if there exist c, π1, π2 (π1 6= π2) such that { ε 7→ (S, ε, 0) } −→∗p c with

c(π1) = (e`11 , L1, s1) and c(π2) = (e`22 , L2, s2) for some e2, e2, L1, L2, s1, s2. The
pairwise reachability problem is the decision problem of checking whether
p |= `1||`2 holds.

Example 2. Recall the example program showed in Example 1. The verification
problem “can the program point ` (i.e., the critical section) be reached by mul-
tiple processes simultaneously?” can be reduced to the pairwise reachability for
the program p and the pair (`, `). In this case, the answer to the problem is “no”.

3 From Pairwise Reachability to Higher-Order Model
Checking

In this section, we show that the pairwise reachability problem can be reduced
to higher-order model checking [15], hence it is decidable. The basic idea of
this reduction is to transform a program to a grammar called a higher-order
recursion scheme [15], which generates action trees [4, 14] that represent all the
possible executions of the program. Since the set of action trees that represent
valid executions (i.e., those that respect synchronization constraints on joins
and nested locks) is regular, the pairwise reachability problem can be reduced to
an inclusion problem between the tree language generated by the higher-order
recursion scheme and the regular language, which can be further reduced to
higher-order model checking. We first review action trees and higher-order model
checking in Sections 3.1 and 3.2 respectively. We then present the reduction from
the pairwise reachability analysis to higher-order model checking.

3.1 Action trees

An action tree [4, 14] is a finite tree that represents a history of executions of
a program up to a certain state. It ignores how the executions of multiple pro-
cesses are interleaved, and expresses only process-wise execution histories and
the parent/child relationship between processes. Gawlitza et al. [4] originally
introduced action trees to represent execution histories of dynamic pushdown
networks, but the notion of action trees is independent of a particular compu-
tation model. Here we use them to represent execution histories of higher-order
concurrent programs introduced in the previous section.

Definition 4 (action trees). The set of action trees, ranged over by γ, is
defined inductively by:

γ ::= ⊥ | 〈$〉 | ` | 〈jo〉 γ | 〈sp〉 γ1 γ2 | 〈Acqi〉 γ | 〈Reli〉 γ.

Here, ` ranges over (program) labels and i over locks.

We have used the term representation of (labelled) trees above. Trees can also
be considered as map from paths to labels, by: (a γ1 · · · γn)# = { ε 7→ a } ∪
{ i · u 7→ b | γ#i (u) = b }.

Parent process

Child process

<Acq
i
>

<Rel
i
><$>

<sp>

<jo>

<$>

Fig. 1. Action tree.

Each non-leaf node represents an action of each
process. The tree 〈jo〉 γ (〈Acqi〉 γ and 〈Reli〉 γ re-
spectively) means that the process performed join
(acquires and releases the lock i, respectively) and
then behaved like γ. The tree 〈sp〉 γ1 γ2 means that
the process spawned a child process that behaved
like γ2, and the process itself behaved like γ1. Thus,
the leftmost path from the root node in an action
tree represents a sequence of actions performed by
the root process, and each leftmost path from the
second child of a 〈sp〉-node represents a sequence
of actions performed by the spawned process. Each
leaf node of an action tree represents the current
state of each process: 〈$〉 means that the process has terminated, ` means that
the process is at the program point `, and ⊥ means that the process is at a
program point not labeled by any element of Label. Figure 1 shows an exam-
ple of an action tree. It represents an execution history where the root process
spawns a child process, waits for the child, and terminates (represented by 〈$〉),
and the child process acquires and releases the lock i, and then terminates. It
corresponds to the following execution of the program in Example 1:

{ ε 7→ (S, ε, 0) } −→ { ε 7→ (F G $, ε, 0) } −→∗ { ε 7→ (spawn(H G $); F G $, ε, 0) }
−→ { ε 7→ (F G $, ε, 1), 0 7→ (H G $, ε, 0) }
−→∗ { ε 7→ (join; $, ε, 1), 0 7→ (acq1;G(rel1; $), ε, 0) }
−→∗ { ε 7→ (join; $, ε, 1), 0 7→ (G(rel1; $), 1, 0) }
−→∗ { ε 7→ (join; $, ε, 1), 0 7→ ((rel1; $)`, 1, 0) }
−→∗ { ε 7→ (join; $, ε, 1), 0 7→ ($, ε, 0) }
−→ { ε 7→ (join; $, ε, 1) } −→ { ε 7→ ($, ε, 1) } −→ ∅

Note that not every action tree represents a valid execution history. For ex-
ample, consider the action tree: 〈sp〉 (〈Acq1〉 `1) (〈Acq1〉 `2). It represents a state
where the parent and child processes are at program points `1 and `2 respec-
tively, after both having acquired the lock 1 (and not released it yet), which
is obviously impossible. In order to exclude action trees that do not respect
synchronization constraints, we introduce a transition system on abstract con-
figurations, obtained by removing expressions from configurations introduced in
the previous section.

Definition 5. An abstract configuration is a map from a finite set consist-
ing of sequences of natural numbers (where each sequence serves as a process
identifier) to the set of pairs (L, s) consisting of a sequence L of locks, and a
natural number s. The transition relation on abstract configurations is defined
by:

i 6∈ locked(c] {π 7→ (L, s) })

c] {π 7→ (L, s) } π,〈Acqi〉−−−−−→ c] {π 7→ (L · i, s) }

c] {π 7→ (L · i, s) } π,〈Reli〉−−−−−→ c] {π 7→ (L, s) }

c] {π 7→ (L, s) } π,〈sp〉−−−−→ c] {π 7→ (L, s+ 1), π · s 7→ (ε, 0) }

{ k | π · k ∈ dom(c) } = ∅

c] {π 7→ (L, s) } π,〈jo〉−−−→ c] {π 7→ (L, s) }

c] {π 7→ (ε, s) } π,〈$〉−−−→ c

Here, locked(c) is defined similarly to that for configurations, as

locked(c) =
⋃

c(π)=(i1···ik,s)

{ i1, . . . , ik } .

Each action tree can be mapped to an abstract configuration as follows.

θπ,L,s(〈$〉) = ∅ θπ,L,s(〈sp〉 γ1 γ2) = θπ,L,s+1(γ1) ∪ θπ·s,ε,0(γ2)
θπ,L,s(〈jo〉 γ) = θπ,L,s(γ) θπ,L,s(〈Acqi〉 γ) = θπ,L·i,s(γ)
θπ,L·i,s(〈Reli〉 γ) = θπ,L,s(γ) θπ,L,s(γ) = {π 7→ (L, s) } (if γ ∈ {⊥} ∪ Label)

We write θ(t) for θε,ε,s(t), and write γ1
u
 γ2 if γ1(u) = ⊥ and γ2 is ob-

tained from γ1 by replacing ⊥ at u with a tree of the form a⊥ . . . ⊥ with
a = 〈$〉, 〈sp〉, 〈jo〉, 〈Acqi〉, 〈Reli〉.

We can now define “valid” action trees as follows.

Definition 6. An action tree γ is join-lock sensitive if there is a sequence

⊥ = γ0
u1 γ1

u2 . . .
un γn = γ′ such that θ(γ0)

pn(u1,γ),γ1(u1)−−−−−−−−−−→ θ(γ1)
pn(u2,γ),γ2(u2)−−−−−−−−−−→

. . .
pn(un,γ),γn−−−−−−−→ θ(γn), where γ′ is the action tree obtained from γ by replacing

all ` ∈ Label with ⊥. Here, pn(u, γ) represents the identifier of the process that
executes the action of γ(u). It is defined by:

pn(ε, γ) = ε
pn(u · 1, γ) = pn(u, γ)
pn(u · 2, γ) = pn(u, γ) · cn(u, γ)

cn(ε, γ) = 0
cn(u · 1, γ) = cn(u, γ) if γ(u) 6= 〈sp〉
cn(u · 1, γ) = cn(u, γ) + 1 if γ(u) = 〈sp〉
cn(u · 2, γ) = 0

Note that pn(ui, γi) = pn(ui, γ).
The following is the key property of action trees, which we use in our reduc-

tion from pairwise reachability analysis to higher-order model checking.

Lemma 1 (Gawlitza et al. 2011, Section 5 [4]). The set Lsensitive of join-
lock-sensitive action trees is a regular tree language.

Remark 2. We have modified the original definition of join-lock sensitive (schedu-
lable) action trees. Our notion of join-lock sensitive action trees corresponds to
join-lock-well-formed, join-lock sensitive schedulable action trees [4].

3.2 Higher-Order Model Checking

In this subsection, we review higher-order recursion schemes and (a variation
of) higher-order model checking [15].

The set of sorts is given by the grammar: κ ::= o | κ1 → κ2. Intuitively
o describes trees, and κ1 → κ2 describes functions from κ1 to κ2. The order
of sorts is defined by: order(o) = 0 and order(κ1 → κ2) = max(order(κ1) +
1, order(κ2)).

Definition 7 (Higher-Order Recursion Scheme). A (non-deterministic)
higher-order recursion scheme (HORS, for short) is a quadruple: G =
(Σ,N ,R, S) where Σ is a ranked alphabet (i.e., a map from a finite set of sym-
bols called terminals to their arities); N is a map from a finite set of symbols
called non-terminals to sorts; S ∈ dom(N) is the start symbol of sort o; and
R is a finite set of transition rules of the form Ax1 · · · x` → t, where t ranges
over the set of applicative terms defined by t ::= x | a | A | t1t2. Here, a ranges
over dom(Σ) and A ranges over dom(N). If Ax1 · · · x` → t ∈ N , then N (A)
must be of the form κ1 → · · · → κ` → o and N ∪ {x1 : κ1, . . . , x` : κ` } `Σ t : o
must be derivable by using the following rules (where non-terminals are treated
as variables).

K `Σ a : o→ · · · → o︸ ︷︷ ︸
Σ(a)

→ o K `Σ x : K(x)

K `Σ t1 : κ1 → κ2 K `Σ t2 : κ1

K `Σ t1t2 : κ2

The order of a HORS G, written order(G) is max({ order(A) | A ∈ dom(N) }).

Note that unlike deterministic HORS, there may be an arbitrary number of
rewriting rules for each non-terminal. We omit the adjective ‘non-deterministic’
in the rest of this paper.

To define the rewriting relation, we define the notion of the reduction context.

Definition 8. The set of reduction contexts is defined by:

C ::= [] | a t1 . . . ti−1 C ti+1 . . . tn

For a reduction context C, we write C[t] for the term obtained from C by replac-
ing [] with t.

Then, the rewriting relation −→G on terms is defined by:

C[A t1 . . . tm] −→G C[[t1/x1, . . . , tm/xm]t] (if Ax1 . . . xm → t)

In this paper, we consider a HORS as a generator of a language of finite trees,
rather than that of an infinite tree [15].

Definition 9 (Tree Languages of Recursion Schemes). Let G = (Σ,N ,R, S)
be a HORS. The language generated by G is defined by:

L(G) = {t | t is a ranked Σ-labeled tree and S −→∗G t}

Example 3. Consider an order-2 HORS G = (Σ,N ,R, S) such that

Σ = { a 7→ 2, b 7→ 1, c 7→ 0 }
N = {S 7→ o, F 7→ (o→ o)→ o→ o, G 7→ o→ o, T 7→ (o→ o)→ o→ o }
R = {S → F Gc, F g x→ a (g x) (F (T g)x), F g x→ g x,

Gx→ b x, T g x→ g (g x)}

Here is an example of reduction from S to a (b c) (b2 c).

S −→G F Gc −→G a (Gc) (F (T G)c) −→G a (b c)(F (T G) c) −→G a (b c)(T Gc)

−→G a (b c)(G (Gc)) −→∗G a (b c)(b (b c))

The language L(G) is { a (b c)(a (b2 c)(a . . . (a (b2
n−1

c)(b2
n

c)) . . .)) | n ∈ N+ }.
The following theorem is an easy corollary of Ong’s result on the model

checking of (deterministic) HORS [15].

Theorem 1. Given a HORS G and a regular tree language L, it is decidable
whether L(G) ⊆ L.

In the present paper, we call the inclusion problem above a higher-order model
checking problem. The standard model checking problem for HORS [15] is the
problem of deciding whether the infinite tree generated by a deterministic HORS
satisfies a given property.

3.3 Reduction from Pairwise Reachability to Higher-Order Model
Checking

Now we show how to reduce pairwise reachability to higher-order model checking.
First, we define a transformation from a concurrent program to a HORS that
generates action trees of the which join-lock sensitive subset represent all and
only the possible reachable configurations of the program.

Definition 10. Let p = {F1 x11, . . . , x1k1 = e1, . . . , Fn xn1, . . . , xnkn = en} be
a well-typed higher-order concurrent program under Γ . A (non-deterministic)

HORS Gp is defined by:

Σ = { 〈sp〉 7→ 2, 〈jo〉 7→ 1, 〈$〉 7→ 0,⊥ 7→ 0 }
∪ { 〈Acqi〉, 〈Reli〉 | i ∈ Lock } ∪ { ` 7→ 0 | ` ∈ Label }

Gp = (Σ,NΓ ∪N0,RΓ ∪R0, S)

NΓ = {F1 7→ (Γ (F1))], . . . , Fn 7→ (Γ (Fn))]}
N0 = {E$ 7→ o, Eif 7→ (o→ o→ o), Ejoin 7→ (o→ o), Espawn 7→ (o→ o→ o)}

∪{Eacqi
7→ (o→ o) | i ∈ Lock} ∪ {Ereli 7→ (o→ o) | i ∈ Lock}

∪{E` 7→ (o→ o) | ` ∈ Label}
RΓ = {F1x̃1 → E(e1), ..., Fnx̃n → E(en)}
R0 = {Eif x y → x, Eif x y → y, Ejoin x→ 〈jo〉x, Espawn x y → 〈sp〉x y}

∪{Eacqi
x→ 〈Acqi〉x | i ∈ Lock} ∪ {Ereli x→ 〈Reli〉x | i ∈ Lock}

∪{E` x→ ` | ` ∈ Label} ∪ {E` x→ x | ` ∈ Label} ∪ {E$ → 〈$〉 }
∪{E x̃→ ⊥ | E ∈ dom(NΓ ∪N0) \ {E` | ` ∈ Label}}

Here, (·)] is a transformation from types of expressions to sorts, defined by:

unit] = o and (τ1 → τ2)] = τ]1 → τ]2 . The function E transforms an expression
to an applicative term, defined inductively by:

E($) = E$ E(x) = x E(F) = F E(if e1 e2) = Eif E(e1) E(e2)
E(e1 e2) = E(e1) E(e2) E(join; e) = Ejoin E(e) E(acqi; e) = Eacqi

E(e)
E(reli; e) = Ereli E(e) E(spawn(ec); e) = Espawn E(e) E(ec) E(e`) = E` E(e)

The idea of the transformation above is quite simple: just replace each syn-
chronization primitive op with a non-terminal Eop, which will generate a tree
node 〈op〉 indicating that the operation op has been performed. Additionally, in
order to generate all the intermediate states of an execution, we allow each non-
terminal to be reduced to ⊥ or ` ∈ Label. Note that order(Γ (F)) = order(N (F))
holds for every function symbol F of p. Thus, order(Gp) = max(order(p), 1).

Example 4. The program p of Example 1 is transformed to the recursion scheme
Gp = (Σ,NΓ ∪N0,RΓ ∪R0, S) where

NΓ = {S 7→ o, F 7→ (o→ o)→ o→ o, G 7→ o→ o, H 7→ (o→ o)→ o→ o}

RΓ =

S → F GE$

F g t→ Eif (Espawn (F g t) (H gE$)) (Ejoin t)
Gt→ E` t

H g t→ Eacqi
(g (Ereli t))

 .

The action tree in Figure 1 is generated by the following reduction sequence:

S −→ F GE$ −→ Eif (Espawn (F GE$) (H GE$)) (EjoinE$)
−→ Espawn (F GE$) (H GE$)) −→ 〈sp〉 (F GE$) (H GE$))
−→∗ 〈sp〉 (Eif (Espawn (F GE$) (H GE$)) (EjoinE$)) (Eacqi

(G (Ereli E$)))
−→∗ 〈sp〉 (EjoinE$) (〈Acqi〉 (G (Ereli E$))) −→∗ 〈sp〉 (〈jo〉E$) (〈Acqi〉 (Ereli E$))
−→∗ 〈sp〉 (〈jo〉 〈$〉) (〈Acqi〉 (〈Reli〉E$)) −→ 〈sp〉 (〈jo〉 〈$〉) (〈Acqi〉 (〈Reli〉 〈$〉))

Now we show that the grammar generates all the action trees that corre-
sponds to the reachable configurations of a program. We first prepare some
definitions. To clarify the relationship between an applicative term (consisting
of terminals and non-terminals of a HORS) and a configuration, we first define
the terms that can appear at “run-time” and thus have unique corresponding
configurations.

Definition 11. An applicative term t is called a run-time term if (1) t has
sort o, (2) t contains no labels nor ⊥, and (3) no terminals occur in the argu-
ments of non-terminals in t.

Definition 12. Let t be a run-time term of sort o. The action tree t⊥ is defined
by:

(E` t)
⊥ = ` (A t1 . . . tn)⊥ = ⊥ (if A 6∈ {E` | ` ∈ Label })

(a t1 . . . tn)⊥ = a t⊥1 . . . t⊥n

We extend the map Xπ,L,S(·) to that on run-time trees, by:

Xπ,L,s(〈sp〉 t1 t2) = Xπ,L,s+1(t1) ∪ Xπ·s,ε,0(t2) Xπ,L,s(〈jo〉 t) = Xπ,L,s(t)
Xπ,L,s(〈$〉) = ∅ Xπ,L,s(〈Acqi〉 t) = Xπ,L·i,s(t) Xπ,L·i,s(〈Reli〉 t) = Xπ,L,s(t)
Xπ,L,s(t) = {π 7→ (E−1(t), L, s) } (for the other cases)

Here, E−1 is the inverse of E . We write X(t) for Xε,ε,0(t).
The following lemmas establish the correspondence between p and Gp. Proofs

are given in Appendix A.

Lemma 2. Suppose S −→∗Gp t where t is a run-time term and t⊥ is join-lock

sensitive. Then, { ε 7→ (S, ε, 0) } −→∗p X(t) holds.

Lemma 3. If { ε 7→ (S, ε, 0) } −→∗p c, then there exists a run-time term t such

that S −→∗Gp t, X(t) = c, and t⊥ is join-lock-sensitive.

By the above lemmas, the pairwise reachability problem on p is reduced to
higher-order model checking on Gp.

Theorem 2. Let p be a program and (`1, `2) be a pair of labels. Let L`1,`2 be
the set { γ | ∃u1, u2.γ(u1) = `1 ∧ γ(u2) = `2 ∧ u1 6= u2 } of action trees. Then,
p |= `1||`2 if and only if L(Gp) 6⊆ Lsensitive ∪ L`1,`2 holds.

Proof. Suppose p |= `1||`2. Then there exists c such that { (S, ε, 0) } −→∗p c with

c(π1) = (e`11 , L1, s1), c(π2) = (e`22 , L2, s2), and π1 6= π2. By Lemma 3, there exists
a run-time term t such that S −→∗Gp t, X(t) = c, and t⊥ is join-lock-sensitive.

By the conditions X(t) = c and t⊥, t⊥ ∈ L`1,`2 . Since S −→∗Gp t −→
∗
Gp t

⊥, we

have t⊥ ∈ L(Gp) ∩ Lsensitive ∩ L`1,`2 , i.e., L(Gp) 6⊆ Lsensitive ∪ L`1,`2 .
Conversely, suppose L(Gp) 6⊆ Lsensitive∪L`1,`2 , i.e., γ ∈ L(Gp)∩Lsensitive∩L`1,`2

for some action tree γ. Then there exists a run-time term t such that t⊥ = γ and
S −→∗Gp t. By Lemma 2, we have { ε 7→ (S, ε, 0) } −→∗p X(t). By the conditions

t⊥ = γ and γ ∈ L`1,`2 , t has two distinct sub-terms (at redex-positions) of the

form E`1 t1 and E`2 t2. Thus, there exist π1, π2 such that X(t)(π1) = (e`11 , L1, s1)
and X(t)(π2) = (e`22 , L2, s2) with π1 6= π2. Therefore, we have p |= `1||`2 as
required. ut

Because Lsensitive ∪ L`1,`2 is a regular tree language, by Theorems 1 and 2, the
pairwise reachability p |= `1||`2 is decidable.

Complexity. Recall that the order of Gp is max(order(p), 1) and the model
checking of order-k HORS is k-EXPTIME [15]. Therefore, the pairwise reacha-
bility analysis for order-k programs is k-EXPTIME for k ≥ 1. As for the lower-
bound, the problem of checking whether ` ∈ L(G) (where ` is a singleton tree
consisting of the leaf `) is already (k − 1)-EXPTIME-hard [12]. Since it can be
easily reduced to a pairwise reachability analysis problem, the pairwise reacha-
bility is (k − 1)-EXPTIME-hard. It should be noted, however, that if a regular
tree language L is fixed, and also if both the largest arity and order of symbols
are fixed, then L(G) ⊆ L can be decided in time linear in the size of G [11].
In our method, the regular tree language Lsensitive ∪ L`1,`2 is determined by the
sets Label and Lock. We can fix Label as { `1, `2 } by omitting the other labels
from the input program. Therefore, if we fix (i) the largest arity and order of
functions in a program and (ii) the number of locks used in the program (i.e.,
|Lock|), then the pairwise reachability can also be decided in time linear in the
size of the program.

4 Preliminary Experiments

We carried out preliminary experiments to check the feasibility of our verification
method. As the underlying model checker, we used HorSat [1]. At the time
of writing this paper, we have not yet fully automated the translation from
programs to HORS, but doing so is not difficult.

Table 1 shows the experimental results. The column “Order” and “# of func-
tions” indicate the order and the number of function definitions of each program.
The rightmost column shows the times spent for higher-order model checking
(excluding those for translations, which can be performed instantly once au-
tomated). Note that the Reachability column shows the answers for pairwise
reachability, not for the original verification problems. The benchmark program
example has been taken from Example 1. The program example wrong is a varia-
tion of example, obtained by omitting join operation of F . The other benchmark
programs have been obtained by encoding exceptions, Java-style “synchronized”
constructs (but with non-reentrant locks), and lists. The encoding uses higher-
order functions, so it demonstrates an advantage of being able to deal with
higher-order programs. For example, exception models the following OCaml-
like program:

let rec read_and_update x =

let n = read_int(x) (* may raise an Eof exception *) in

Table 1. The experimental results

Program Order # of functions Checked pair Reachability Elapsed time [sec.]

example 2 4 (`, `) no 0.16

example wrong 2 4 (`, `) yes 0.15

exception 3 7 (`, `) no 0.38

exception wrong 3 7 (`, `) yes 0.04

synchronized 3 7 (`1, `1) no 1.14
(`1, `2) yes 1.69

list 4 8 (`1, `1) no 0.55
(`1, `2) no 0.73

lock g; c := c+n; (* may raise an Overflow exception *)

unlock g; read_and_update x;;

let rec f file =

let x = open_in file in

try read_and_update(x) with

Eof -> close x | Overflow -> unlock g;

spawn(f("foo"));spawn(f("bar"));join();print c

Here, the goal of verification is to check that no race occurs on the shared
variable c. The above program is encoded into the following order-3 program of
the language in Section 2;

R h k = if (h True) (acqg; (if (relg;R h k) (h False))`)
F k = R H k H b = b $ (relg; $) P k = k`

S = spawn(F); (spawn(F); (join; (P $))) True x y = x False x y = y

Here, the function R corresponds to read and update; we have abstracted away
x and instead added an exception handler h and a continuation parameter k in
order to precisely model exception primitives. The program exception wrong is
a variation of exception obtained by omitting acqg and relg operations. The
other benchmark programs are explained in Appendix B.

All the benchmark programs have been verified within a few seconds. Al-
though the programs are very small, this is encouraging, considering the worst-
case complexity of higher-order model checking. As discussed at the end of the
previous section, the pairwise reachability can be decided in time linear with re-
spect to the size of HORS under a certain assumption; thus, the results indicate
that our method may scale for larger programs.

5 Related Work

As already mentioned in Section 1, the present work is based on the series of work
on verification of pushdown systems with nested locking [7, 14, 4], and extends

it to deal with higher-order programs. The target language of our verification
is more expressive than dynamic pushdown networks and corresponds to an ex-
tension of collapsible pushdown systems [6] (which are higher-order pushdown
systems extended with collapse operations) with concurrency primitives. Gawl-
itza et al. [4] used a clever encoding of a configuration of a dynamic pushdown
network, so that the (forward) reachable set of configurations can be represented
as a regular tree language and the reachability problem can be reduced to the
inclusion between regular tree languages. One of our insights was that thanks to
the decidability of higher-order model checking, actually we need not represent
the reachable set as a regular language; a higher-order tree language (generated
by a HORS) suffices. This has enabled not only the higher-order extension, but
also a conceptual simplification of the verification method in our opinion.

Higher-order model checking has recently been applied to program verifica-
tion, but most of them have been for sequential programs [9, 13, 16]. Kobayashi
and Igarashi [10] have shown that the reachability problem for higher-order con-
current programs with a bounded number of context switches can be reduced
to higher-order model checking. (They have also shown a reduction from ver-
ification of higher-order concurrent programs to an extension of higher-order
model checking, but the latter is undecidable.) Hague [5] has shown the decid-
ability of reachability of ordered, phase-bounded and scope-bounded concurrent
collapsible pushdown systems. These methods underapproximate the reachable
set of ordinary higher-order concurrent programs (without the “bound” condi-
tions). To our knowledge, there is no realistic implementation of those methods.
There are also overapproximation approaches to static analysis or verification of
higher-order concurrent programs [2, 3, 8].

6 Conclusion

We have shown the decidability of pairwise reachability of higher-order con-
current programs with recursion, dynamic process creation, joins, and nested
locking. To our knowledge, this is the first realistic application of higher-order
model checking to verification of concurrent programs. Despite the extremely
high worst-case complexity of higher-order model checking, preliminary experi-
ments show that our approach is feasible at least for small programs.

Acknowledgement We would like to thank Markus Müller-Olm for the dis-
cussion on the subject and information about dynamic pushdown networks, and
anonymous referees for useful comments. We would also like to thank Taku Terao
for providing his higher-order model checker for the experiments. This work was
supported by JSPS Kakenhi 23220001.

References

1. C. H. Broadbent and N. Kobayashi. Saturation-based model checking of higher-
order recursion schemes. In S. R. D. Rocca, editor, CSL, volume 23 of LIPIcs,
pages 129–148. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.

2. E. D’Osualdo, J. Kochems, and C.-H. L. Ong. Automatic verification of Erlang-
style concurrency. In Proceedings of the 20th Static Analysis Symposium, SAS’13.
Springer-Verlag, 2013.

3. J. Feret. Abstract interpretation of mobile systems. Journal of Logic and Algebraic
Programming, 63(1), 2005.

4. T. M. Gawlitza, P. Lammich, M. Müller-Olm, H. Seidl, and A. Wenner. Join-
lock-sensitive forward reachability analysis for concurrent programs with dynamic
process creation. In R. Jhala and D. A. Schmidt, editors, VMCAI, volume 6538 of
Lecture Notes in Computer Science, pages 199–213. Springer, 2011.

5. M. Hague. Saturation of concurrent collapsible pushdown systems. In Proceedings
of FSTTCS 2013, volume 24 of LIPIcs, pages 313–325, 2013.

6. M. Hague, A. Murawski, C.-H. L. Ong, and O. Serre. Collapsible pushdown au-
tomata and recursion schemes. In Proceedings of 23rd Annual IEEE Symposium
on Logic in Computer Science, pages 452–461. IEEE Computer Society, 2008.

7. V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about threads communicating via
locks. In K. Etessami and S. K. Rajamani, editors, CAV, volume 3576 of Lecture
Notes in Computer Science, pages 505–518. Springer, 2005.

8. N. Kobayashi. Type systems for concurrent programs. In Proceedings of UNU/IIST
20th Anniversary Colloquium, volume 2757 of Lecture Notes in Computer Science,
pages 439–453. Springer, 2003.

9. N. Kobayashi. Model checking higher-order programs. J. ACM, 60(3):20, 2013.
10. N. Kobayashi and A. Igarashi. Model checking higher-order programs with re-

cursive types. In Proceedings of ESOP 2013, volume 7792 of Lecture Notes in
Computer Science, pages 392–411. Springer, 2013.

11. N. Kobayashi and C.-H. L. Ong. A type system equivalent to the modal mu-
calculus model checking of higher-order recursion schemes. In Proceedings of LICS
2009, pages 179–188, 2009.

12. N. Kobayashi and C.-H. L. Ong. Complexity of model checking recursion schemes
for fragments of the modal mu-calculus. Logical Methods in Computer Science,
7(4), 2011.

13. N. Kobayashi, R. Sato, and H. Unno. Predicate abstraction and CEGAR for
higher-order model checking. In Proceedings of PLDI 2011, pages 222–233, 2011.

14. P. Lammich, M. Müller-Olm, and A. Wenner. Predecessor sets of dynamic push-
down networks with tree-regular constraints. In A. Bouajjani and O. Maler, editors,
CAV, volume 5643 of Lecture Notes in Computer Science, pages 525–539. Springer,
2009.

15. C.-H. L. Ong. On model-checking trees generated by higher-order recursion
schemes. In LICS, pages 81–90, 2006.

16. C.-H. L. Ong and S. Ramsay. Verifying higher-order programs with pattern-
matching algebraic data types. In Proceedings of POPL 2011, pages 587–598,
2011.

17. G. D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Com-
put. Sci., 1(2):125–159, 1975.

18. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.
In Proceedings of TACAS 2005, volume 3440 of Lecture Notes in Computer Science,
pages 93–107. Springer, 2005.

19. G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Program. Lang. Syst., 22(2):416–430, 2000.

20. R. Sato, H. Unno, and N. Kobayashi. Towards a scalable software model checker
for higher-order programs. In Proceedings of PEPM 2013, pages 53–62, 2013.

Appendix

A Proofs for Section 3

In this section, we will prove Lemmas 2 and 3.
An applicative term can be viewed as a map from paths to actions or terms.

Definition 13. Each applicative term t on Σ of the sort o can be regarded as a
map from N∗+ to dom(Σ) or applicative terms, inductively defined as follows.

(a t1 · · · tn)(ε) = a

(A t1 · · · tn)(ε) = A t1 · · · tn
(a t1 · · · ti · · · tn)(i · π) = ti(π)

Let us write btc⊥ for the action tree obtained from a run-time term t by
replacing all terms of the form A t̃′ by ⊥. Note that t⊥ and btc⊥ only differ in
the positions u with t(u) = E` t

′. By definition, btc⊥ is join-lock sensitive if and
only if t⊥ is.

For a reduction context C, let us define the hole position of C by the
position u such that C(u) = []. Then, we have the following lemma.

Lemma 4. Let C be a reduction context. Then, there exist c, π, L, s such that
X(C[t]) = c] Xπ,L,s(t) holds for all run-time terms t, and π = pn(u, bC[t]c⊥)
where u is the hole position of C.

Above, we implicitly use the fact that C[t] is a run-time term if t is.
Given a configuration c, we write erase(c) for the abstract configuration ob-

tained from the configuration c by removing expression parts. The following
lemma relates X(·) and θ(·).

Lemma 5. For a run-time term t, erase(X(t)) = θ(btc⊥) holds.

The following lemma allows us to re-order the reduction sequence.

Lemma 6. Let t0, t1, t2 be run-time terms such that t0 −→Gp t1 −→Gp t2 holds.
Assume that the first reduction occurs at the position u1 and the second reduction
occurs at the position u2. If u1 is not a prefix of u2, then there exists a run-time
term t′1 such that t0 −→Gp t′1 −→Gp t2 holds and that the first reduction occurs
at u2 and the second reduction occurs at u1.

Proof. By the assumption, t0 must be of the form C[s1, s2] where C is a context
with two holes at u1 and u2, with t1 = C[s′1, s2], t2 = C[s′1, s

′
2], and si −→Gp s′i

(for i = 1, 2). Thus, the required result holds for t′1 = C[s1, s
′
2]. ut

The following lemma plays an important role to prove Lemma 2. Roughly
speaking, this lemma says that, if we can derive a run-time term t such that t⊥

is join-lock sensitive, then we have a reduction sequence that leads to t according
to a valid execution history specified by t⊥.

Lemma 7. Suppose S −→∗Gp t where t is a run-time term and t⊥ is join-lock
sensitive. Then, there exists a sequence of run-time terms S = t0 −→Gp t1 −→Gp
. . . −→Gp tn = t such that, for all 1 ≤ i ≤ n,

– bti−1c⊥ = btic⊥ or bti−1c⊥
u
 btic⊥, and

– if bti−1c⊥
u
 btic⊥, then θ(bti−1c⊥)

pn(u,btc⊥),btc⊥(u)−−−−−−−−−−−−→ θ(btic⊥) holds.

Proof. Since t⊥ is join-lock sensitive, there is a sequence ⊥ = γ0
u1 γ1

u2 . . .
um

γm = btc⊥ such that θ(γ0)
pn(u1,btc⊥(u1)),btc⊥(u1)−−−−−−−−−−−−−−−−→ θ(γ1)

pn(u2,btc⊥(u2)),btc⊥(u2)−−−−−−−−−−−−−−−−→

. . .
pn(um,btc⊥(um)),btc⊥(um)−−−−−−−−−−−−−−−−−→ θ(γm). By Lemma 6, we have

S = t0 = t′0 −→∗Gp t
′
1 −→∗Gp t

′
2 −→∗Gp . . . −→

∗
Gp t
′
m −→∗Gp t (*)

where all the reductions in the subsequence t′i −→∗Gp t
′
i+1 occur at ui+1 and the

reductions in the subsequence t′m −→∗Gp t occur at leaf positions. By construction,

all the terms t′ that occur in t′i −→∗Gp t
′
i+1 except t′i+1 satisfy bt′c⊥ = γi. Thus,

gathering all the terms that occur in the reduction sequence (*), we obtain the
sequence satisfying the required conditions. ut

Now, we are ready to prove Lemma 2.
Proof of Lemma 2. By Lemma 7, we have a sequence of run-time terms
S = t0 −→Gp t1 −→Gp . . . −→Gp tn = t such that, for all 1 ≤ k ≤ n,

– btk−1c⊥ = btic⊥ or btk−1c⊥
u
 btkc⊥, and

– if btk−1c⊥
u
 btkc⊥, then θ(btk−1c⊥)

pn(u,btc⊥),btc⊥(u)−−−−−−−−−−−−→ θ(btkc⊥) holds.

Then, we prove X(t0) −→p . . . −→p X(tk) for any k (0 ≤ k ≤ n) by the induction
on k.

For the base case where k = 0, the statement trivially holds.
Let us consider the step case where k > 0. We only discuss the two repre-

sentative cases: (1) tk−1 = C[F t̃′] and tk = C[[t̃′/x̃]E(e)] for a rule F x̃ → e,
and (2) tk−1 = C[Eacqi

t′] and tk = C[〈Acqi〉 t′]. The other cases can be proved
similarly to either of the two cases.

Case (1). By Lemma 4, we have X(tk−1) = c] {π 7→ (F E−1(t̃′), L, s) }, and

X(tk) = c] {π 7→ ([E−1(t̃′)/x̃]e, L, s) }. Thus, we conclude that X(tk−1) −→p

X(tk). Note that, in this case, we have btkc⊥ = btk−1c⊥ and θ(btkc⊥) = θ(btk−1c⊥).
A Similar discussion can be applicable to the cases where tk−1 = C[Eif t

′
1 t
′
2]

and tk−1 = C[E` t
′
1], and thus we shall omit the proofs.

Case (2). By Lemma 4, we have X(tk−1) = c] {π 7→ (acqi; E−1(t′), L, s) } and

X(tk) = c]{π 7→ (E−1(t′), L · i, s) }. Here, btk−1c⊥
u
 btkc⊥ where u is the hole

position of C. By Lemma 4, we have π = pn(u, btk−1c⊥) = pn(u, btc⊥). Thus, we

have θ(btk−1c⊥)
π,〈Acqi〉−−−−−→ θ(btkc⊥). By Lemma 5, we have erase(X(tk−1))

π,〈Acqi〉−−−−−→
erase(X(tk)). Thus, we have X(tk−1) −→p X(tk). A Similar discussion can be

applicable to the cases where tk−1 = C[Ereli t
′], tk−1 = C[Espawn t

′
1 t
′
2], tk−1 =

C[Ejoin t
′] and tk−1 = C[E$], and thus we shall omit the proofs. ut

Then, we switch to prove Lemma 3. The following lemma is a key to prove
Lemma 3.

Lemma 8. Suppose that c −→p c′ and X(t) = c for some run-time term t
such that btc⊥ is join-lock sensitive. Then, we have run-time term t′ such that
t −→Gp t′, X(t′) = c′ and bt′c⊥ is join-lock sensitive.

Proof. We prove the lemma by the case analysis on −→p.

Consider the case where c = c′′] {π 7→ (F e1, . . . , ek, L, s) } and c′ = c′′]
{π 7→ ([e1/x1, . . . , ek/xk]e, L, s) } where p has the rule F x1 . . . xk = e. Since
X(t) = c, there are t1, . . . , tk such that t = C[F t1 . . . tk] and E−1(ti) = ei for any
i. From the definition of Gp, we can reduce the term t to t′ = C[[t1/x1, . . . , tk/xk]E(e)].
Note that E(e) does not contain terminals by its definition, and, since t is a run-
time term, t1, . . . , tn do not contain terminals either. Thus, we have X(t′) = c′′]
{π 7→ E−1([t1/x1, . . . , tk/xk]E(e)) }. Since E does only renaming and E−1 is the
inverse of E , we have E−1([t1/x1, . . . , tk/xk]E(e)) = e[E−1(t1)/x1, . . . , E−1(tk)/xk],
and thus X(t′) = c′. Note that we have btc⊥ = bt′c⊥ and erase(c) = erase(c′)
in this case. The cases where c = c′′] {π 7→ (if e1 e2, L, s) }, and where c =
c′′] {π 7→ (e`, L, s) } can be proved similarly, and thus we shall omit proofs for
these cases.

Consider the case where c = c′′]{π 7→ (acqi; e, L, s) } and c′ = c′′]{π 7→ (e, L · i, s) }.
In this case, since X(t) = c, t must be of the form C[Eacqi

t1]. Let t′ be
C[〈Acqi〉 t1]. Then, it satisfies X(t′) = c′ and t −→Gp t′. Now, we discuss the

join-lock sensitivity of bt′c⊥. We have btc⊥ u
 bt′c⊥, where u is the hole posi-

tion of C. By Lemma 4, we have π = pn(u, bt′c⊥). Since we have c −→p c
′,

we have erase(c)
π,〈Acqi〉−−−−−→ erase(c′). By Lemma 5, we have θ(btc⊥)

π,〈Acqi〉−−−−−→
θ(bt′c⊥). Thus, we conclude that bt′c⊥ is join-lock sensitive. The cases where
c = c′′] {π 7→ (reli; e, L, s) }, c = c′′] {π 7→ (spawn(e2); e1, L, s) }, c = c′′]
{π 7→ (join; e1, L, s) } and c = c′′] {π 7→ ($, L, s) } can be proved similarly and
thus we shall omit proofs for these cases. ut

Now, we are ready to prove Lemma 3.

Proof of Lemma 3. Since we have { ε 7→ (S, ε, 0) } −→∗p c, we have a sequence
{ ε 7→ (S, ε, 0) } = c0 −→p c1 −→p . . . −→p cn = c. We have X(S) = c0, and
bSc⊥ = ⊥ is clearly join-lock sensitive. Then, applying Lemma 8 inductively on
the derivation length, we obtain a run-time term t such that X(t) = c and btc⊥
is join-lock sensitive. Thus, by definition, t⊥ is join-lock sensitive. ut

B Benchmark Programs

Here we explain the other benchmark programs used in the experiments de-
scribed in Section 4.

The program synchronized is:

S = spawn(F $); spawn(F $); join; $

G1 f k = acq1; (f(rel1; k))

G2 f k = acq2; (f(rel2; k))

O1 k = k`1

O2 k = k`2

P o g k = g o k

F k = if (P O1G1 k) (P O2G2 k)

It models the following Java-like program:

Object g1,g2;

put_message(msg, out, g) = {

synchronize(g){

out.println(msg);

}

}

f() = {

if (<some_condition>) {

put_message <result_message> System.out g1;

}else{

put_message <error_message> System.err g2;

}

}

main() = spawn(f());spawn(f());join;

In the former program, the higher-order functionGi models the construct synchronize,
which acquires and releases lock i respectively before and after executing f . The
goal of the verification is to check

1. whether no race occurs on the same same output functions Oi and
2. whether O1 and O2 can be executed concurrently.

Note that these conditions can be checked independently. The answers to them
are yes.

The program list is:

S = F (Cons P1 (Cons P1 (Cons P2 (Cons P2 Nil)))) $

U p k = acqi; (p (p (reli; k)))

F l k = l k G

G p k = (spawn(U p $); k))

P1 k = k`1

P2 k = k`2

Nil n c = n

Cons x xs n c = c x (xs n c)

It models the following O’Caml like program, using higher-order functions to
encode list operations.

let p1 = ref 1 in let p2 = ref 2 in

let update_and_print p =

(lock g;

p := !p+n;

print !p;

unlock g);;

let rec f ps =

match ps with

[]->()

| (p:ps) -> (spawn(update_and_print p); f ps);;

main = f [p1;p1;p2;p2];

In the former program, the higher-order function Pi models the variable accesses
to pi in update and print. The goal of the verification is to check

1. whether no race occurs on the same variable access Pi and
2. whether P1 and P2 can be executed concurrently.

The answer is yes for the former question but no for the latter.

