
Automated Synthesis of Functional Programs
with Auxiliary Functions

Shingo Eguchi, Naoki Kobayashi, and Takeshi Tsukada

The University of Tokyo

Abstract. Polikarpova et al. have recently proposed a method for syn-
thesizing functional programs from specifications expressed as refinement
types, and implemented a program synthesis tool Synquid. Although
Synquid can generate non-trivial programs on various data structures
such as lists and binary search trees, it cannot automatically generate
programs that require auxiliary functions, unless users provide the spec-
ifications of auxiliary functions. We propose an extension of Synquid
to enable automatic synthesis of programs with auxiliary functions. The
idea is to prepare a template of the target function containing unknown
auxiliary functions, infer the types of auxiliary functions, and then use
Synquid to synthesize the auxiliary functions. We have implemented a
program synthesizer based on our method, and confirmed through exper-
iments that our method can synthesize several programs with auxiliary
functions, which Synquid is unable to automatically synthesize.

1 Introduction

The goal of program synthesis [2–4, 6, 7, 9, 10] is to automatically generate pro-
grams from certain program specifications. The program specifications can be
examples (a finite set of input/output pairs) [2, 3], validator code [10], or re-
finement types [9]. In the present paper, we are interested in the approach of
synthesizing programs from refinement types [9], because refinement types can
express detailed specifications of programs, and synthesized programs are guar-
anteed to be correct by construction (in that they indeed satisfy the specification
given in the form of refinement types).

Polikarpova et al. [9] have formalized a method for synthesizing a program
from a given refinement type, and implemented a program synthesis tool called
Synquid. It can automatically generate a number of interesting programs such
as those manipulating lists and trees. Synquid, however, suffers from the lim-
itation that it cannot automatically synthesize programs that require auxiliary
functions (unless the types of auxiliary functions are given as hints).

In the present paper, we propose an extension of Synquid to enable auto-
matic synthesis of programs with auxiliary functions. Given a refinement type
specification of a function, our method proceeds as follows.

Step 1: Prepare a template of the target function with unknown auxiliary func-
tions. The template is chosen based on the simple type of the target function.

sort :: l :List Int

→ {List Int 〈λx.λy.x ≤ y〉 | len ν = len l ∧ elems ν = elems l}

Fig. 1. The type of a sorting function

sort = λl. match l with

| Nil 7→ �1

| Cons x xs 7→ �2 x (sort xs)

Fig. 2. A template for list-sorting function

For example, if the function takes a list as an argument, a template that re-
curses over the list is typically selected.

Step 2: Infer the types of auxiliary functions from the template.
Step 3: Synthesize the auxiliary functions by passing the inferred types to Syn-

quid. (If this fails, go back to Step 1 and choose another template.)

We sketch our method through an example of the synthesis of a list-sorting
function. Following Synquid [9], a specification of the target function can be
given as the refinement type shown in Figure 1. Here, “List Int 〈λx.λy.x ≤ y〉”
is the type of a sorted list of integers, where the part λx.λy.x ≤ y means that
(λx.λy.x ≤ y)v1 v2 holds for any two elements v1 and v2 such that v1 occurs
before v2 in the list. Thus, the type specification in Figure 1 means that the
target function sort should take a list of integers as input, and returns a sorted
list that is of the same length and has the same set of elements as the input list.

In Step 1, we generate a template of the target function. Since the argument of
the function is a list, a default choice is the “fold template” shown in Figure 2.
The template contains the holes �1 and �2 for unknown auxiliary functions.
Thus, the goal has been reduced to the problem of finding appropriate auxiliary
functions to fill the holes.

In Step 2, we infer the types of auxiliary functions, so that the whole function
has the type in Figure 2. This is the main step of our method and consists of a
few substeps. First, using a variation of the type inference algorithm of Synquid,
we obtain type judgments for the auxiliary functions. For example, for �2, we
infer:

l : List Int , x : Int , xs : {List Int | len ν = len l − 1 ∧ elems ν + [x] = elems l}
` �2 :: x′ : {Int | ν = x}

→ l′ : {List Int 〈λx.λy.x ≤ y〉 | len ν = len xs ∧ elems ν = elems xs}
→ {List Int 〈λx.λy.x ≤ y〉 | len ν = len l ∧ elems ν = elems l}.

Here, for example, the type of the second argument of �2 comes from the
type of the target function sort. Since we wish to infer a closed function for �2

2

�1 :: {List Int 〈λxλy.x ≤ y〉 | len ν = 0 ∧ elems ν = ∅}
�2 :: x : Int → l : List Int

→ {List Int 〈λxλy.x ≤ y〉 | len ν = len l + 1 ∧ elems ν = elems l + [x]}

Fig. 3. The type of the auxiliary function

g = λx.λl.match l with

| Nil 7→ ConsxNil

| Cons y ys 7→ if x ≤ y thenCons x (Cons y ys)

else Cons y (g x ys)

sort = λl.match l with

| Nil 7→ Nil

| Cons x xs 7→ g x (sort xs)

Fig. 4. A synthesized list-sorting function

(that does not contain l, x, xs), we then convert the above judgment to a closed
type using quantifiers. For example, the result type becomes:

{List Int 〈λx.λy.x ≤ y〉 |
∀l, x, xs.(len xs = len l − 1 ∧ elems xs + [x] = elems l

∧len l′ = len xs ∧ elems l′ = elems xs)
⇒ len ν = len l ∧ elems ν = elems l}.

Here, the lefthand side of the implication comes from the constraints in the type
environment and the type of the second argument. We then eliminate quantifiers
(in a sound but incomplete manner), and obtain the types shown in Figure 3.

Finally, in Step 3, we just pass the inferred types of auxiliary functions to
Synquid. By filling the holes of the template with the auxiliary functions synthe-
sized by Synquid, we get a complete list-sorting function as shown in Figure 4.

We have implemented a prototype program synthesis tool, which uses Syn-
quid as a backend, based on the proposed method. We have tested it for several
examples, and confirmed that our method is able to synthesize programs with
auxiliary functions, which Synquid alone fails to synthesize automatically.

The rest of the paper is structured as follows. Section 2 defines the tar-
get language. Section 3 describes the proposed method. Section 4 reports an
implementation and experimental results. Section 5 discusses related work and
Section 6 concludes the paper.

3

t (program terms) ::= e | b | f
e (E-terms) ::= x | e e | e f
b (branching) ::= if e then t else t | (match e with C1x̃1 7→ t1 | · · · | Ckx̃k 7→ tk)
f (functions) ::= λx.t | fix x.t

Fig. 5. Syntax of programs

2 Target Language

This section defines the target language of program synthesis. Since the language
is essentially the same as the one used in Synquid [9], we explain it only briefly.
For the sake of simplicity, we omit polymorphic types in the formalization below,
although they are supported by the implementation reported in Section 4.

Figure 5 shows the syntax of program terms. Following [9], we classify terms
into E-terms, branching, and function terms; this is for the convenience of for-
malizing the synthesis algorithm. Apart from it, the syntax is that of a standard
functional language. In the figure, x and C range over the sets of variables and
data constructors respectively. Data constructors are also treated as variables
(so that C is also an E-term). The match expression first evaluates e, and if the
value is of the form Ci ṽ, evaluates [ṽ/x̃i]ti; here we write ·̃ for a sequence. The
function term fix x.t denotes the recursive function defined by x = t.

The syntax of types is given in Figure 6. A type is either a refinement type
{B | ψ} or a function type x : T1 → T2. The type {B | ψ} describes the
set of elements ν of ground type B that satisfies ψ; here, ψ is a formula that
may contain a special variable ν, which refers to the element. For example,
{Int | ν > 0} represents the type of an integer ν such that ν > 0. For a
technical convenience, we assume that ψ always contains ν as a free variable, by
considering ψ∧ (ν = ν) instead of ψ if necessarily. The function type x :T1 → T2
is dependent, in that x may occur in T2 when T1 is a refinement type. A ground
type B is either a base type (Bool or Int), or a data type DT1 · · · Tn, where D
denotes a type constructor. For the sake of simplicity, we consider only covariant
type constructors, i.e., DT1 · · · Tn is a subtype of DT ′1 · · · T ′n if Ti is a subtype
of T ′i for every i ∈ {1, . . . , n}. The type List Int 〈λx.λy.x ≤ y〉 of sorted lists in
Section 1 is expressed as (List〈λx.λy.x ≤ y〉)Int , where List〈λx.λy.x ≤ y〉 is
the D-part. The list constructor Cons is given a type of the form:

z : {B | ψ′} → w : (List〈λx.λy.ψ〉){B | ψ′ ∧ [z/x, ν/y]ψ}
→ {(List〈λx.λy.ψ〉){B | ψ′} | len ν = len w + 1 ∧ elems ν = elems w + [z]}

for each ground type B and formulas ψ,ψ′. Here, len and elems are unin-
terpreted function symbols. In a contextual type let C in T , the context
C binds some variables in T and impose constraints on them; for example,
let x : {Int | ν > 0} in {Int | ν = 2x} denotes the type of positive even
integers.

4

T (types) ::= {B | ψ} | x : T1 → T2

B (ground types) ::= Bool | Int | D T1 · · · Tn
C (contexts) ::= · | x : T ;C

T̂ (contextual types) ::= let C in T

Fig. 6. Syntax of types

A type environment Γ is a sequence consisting of bindings of variables to
types and formulas (called path conditions), subject to certain well-formedness
conditions. We write Γ ` T to mean that T is well formed under Γ ; see Ap-
pendix A for the well-formedness conditions on types and type environments.
Figure 7 shows the typing rules. The typing rules are fairly standard ones for a
refinement type system, except that, in rule T-App, contextual types are used
to avoid substituting program terms for variables in types; this treatment of
contextual types follows the formalization of Synquid [9].

In the figure, FV(ψ) represents the set of free variables occurring in ψ. In

rule T-Match, x̃i : T̃i → T represents xi,1 : Ti,1 → · · ·xi,ki : Ti,ki → T .
We write JΓ Kvars for the formula obtained by extracting constraints on the

variables vars from Γ . It is defined by:

JΓ ;ψKvars = ψ ∧ JΓ Kvars∪FV(ψ)

JΓ ;x : {B | ψ}Kvars =

{
[x/ν]ψ ∧ JΓ Kvars∪FV(ψ) if x ∈ vars
JΓ Kvars otherwise

JΓ ;x : T1 → T2Kvars = JΓ Kvars
J·Kvars = >.

The goal of our program synthesis is, given a type environment Γ (that
represents the types of constants and already synthesized functions) and a type
T , to find a program term t such that Γ ` t :: T .

3 Our Method

This section describes our method for synthesizing programs with auxiliary func-
tions. As mentioned in Section 1, the method consists of the following three steps:

Step 1: Generate a program template with unknown auxiliary functions.
Step 2: Infer the types of the unknown auxiliary functions.
Step 3: Synthesize auxiliary functions of the required types by using Synquid.

3.1 Step 1: Generating templates

In this step, program templates are generated based on the (simple) type of an
argument of the target function. Figure 8 shows the syntax of templates. It is an
extension of the language syntax described in Section 2 with unknown auxiliary
functions �i. We require that for each i, �i occurs only once in a template.

5

Subtyping Γ ` T <: T ′

Γ ` B <: B′ valid(JΓ KFV(ψ→ψ′) ∧ ψ → ψ′)

Γ ` {B | ψ} <: {B′ | ψ′}
(<:-G)

Γ ` T1 <: T ′
1 (Γ ; y : T1) ` [y/x]T ′

2 <: T2

Γ ` x : T ′
1 → T ′

2 <: y : T1 → T2

(<:-Fun)

Γ ` Int <: Int
(<:-Int)

Γ ` Bool <: Bool
(<:-Bool)

Γ ` Ti <: T ′
i for each i ∈ {1, . . . , n}

Γ ` D T1 · · · Tn <: D T ′
1 · · · T ′

n

(<:-DT)

Typing with contextual types Γ ` e :: T̂

Γ (x) = {B | ψ}
Γ ` x :: let · in {B | ν = x}

(T-VarG)

Γ (x) = T Γ ` T
Γ ` x :: let · in T

(T-Var)

Γ ` e :: let C1 in x : Tx → T
Γ ;C1 ` t :: let C2 in T ′

x

Γ ;C1;C2 ` T ′
x <: Tx

Γ ` e t :: let C1;C2;x : T ′
x in T

(T-App)

Context-free typing Γ ` t :: T

Γ ` e :: let C in T ′ Γ ;C ` T ′ <: T

Γ ` e :: T
(T-Sub)

Γ ` x : Tx → T Γ ;x : Tx ` t :: T

Γ ` λx.t :: x : Tx → T
(T-Abs)

Γ ` e :: let C in {Bool | ψ} Γ ` T
Γ ;C; [>/ν]ψ ` t1 :: T Γ ;C; [⊥/ν]ψ ` t2 :: T

Γ ` if e then t1 else t2 :: T
(T-If)

Γ ` e :: let C in {D T ′
1 · · · T ′

n | ψ} Γ ` T
Γ (Ci) = x̃i : T̃i → {D T ′

1 · · · T ′
n | ψ′

i} Γi = x̃i : T̃i; [z/ν]ψ′
i

Γ ;C; z : {D T ′
1 · · · T ′

n | ψ};Γi ` ti :: T (for each i)

Γ ` match e with C1x̃1 7→ t1 | · · · | Ckx̃k 7→ tk :: T
(T-Match)

Γ ;x : T ` t :: T

Γ ` fix x.t :: T
(T-Fix)

Fig. 7. Typing rules

6

t� (program terms with holes) ::= e | b | f | e� | b� | f�
e� (E-terms with a hole) ::= �i | e� e | e� f
b� (branching with holes) ::= if e then t� else t�

| (match e with C1x̃1 7→ t1� | · · · | Ckx̃k 7→ tk�)
f� (functions with holes) ::= λx.t� | fix x.t�

Fig. 8. The syntax of templates

We generate multiple candidates of templates automatically, and proceed to
Steps 2 and 3 for each candidate. If the synthesis fails, we backtrack and try
another candidate.

In the current implementation (reported in Section 4), we prepare the fol-
lowing templates.

– Fold-style (or, catamorphism) templates: These are templates of functions
that recurse over an argument of algebraic data type. For example, the fol-
lowings are templates for unary functions on lists (shown on the lefthand
side) and those on binary trees (shown on the righthand side).

f = λl. match l with

Nil 7→ �1

| Cons x xs 7→ �2 x (f xs)

f = λt. match t with

Empty 7→ �1

| Node v l r 7→ �2 x (f l) (f r)

– Divide-conquer-style templates: These are templates for functions on lists
(or other set-like data structures). The following is a template for a function
that takes a list as the first argument.

f = λl. match l with

Nil 7→ �1

| Cons x Nil 7→ �2 x

| Cons x xs 7→ (match (split l) with Pair l1 l2 7→ �3 (f l1) (f l2))

The function f takes a list l as an input; if the length of l is more than
1, it splits l into two lists l1 and l2, recursively calls itself for l1 and l2,
and combines the result with the unknown auxiliary function �3. A typical
example that fits this template is the merge sort function, where �3 is the
merge function.

Note that the rest of our method (Steps 2 and 3) does not depend on the choice
of templates; thus other templates can be freely added.

7

3.2 Step 2: Inferring the types of auxiliary functions

This section describes a procedure to infer the types of auxiliary functions from
the template generated in Step 1. This procedure is the core part of our method,
which consists of the following three substeps.

Step 2.1: Extract type constraints on each auxiliary function.
Step 2.2: From the type constraints, construct closed types of auxiliary func-

tions that may contain quantifiers in refinement formulas.
Step 2.3: Eliminate quantifiers from the types of auxiliary functions.

Step 2.1: Extraction of type constraints Given a type T of a program
to synthesize and a program template t� with n holes, this step derives a
set {Γ1 ` �1 :: T1, . . . , Γn ` �n :: Tn} of constraints for each hole �i. The con-
straints mean that, if each hole �i is filled by a closed term of type stronger
than Ti, then the resulting program has type T .

The procedure is shown in Fig. 9, obtained based on the typing rules in Sec-
tion 2. It is similar to the type checking algorithm used in Synquid [9]; the main
difference from the corresponding type inference algorithm of Synquid is that,
when a template of the form �i e1 . . . en is encountered (the case for e� in the
procedure step2.1, processed by the subprocedure extractConst), we first per-
form type inference for the arguments e1, . . . , en, and then construct the type for
�i. To see this, observe that the template �i e1 . . . en matches the first pattern
e� :: T of the match expression in step2.1, and the subprocedure extractConst
is called. In extractConst, �i e1 . . . en (with n > 0) matches the second pattern
e′� e (where e′� and e are bound to �i e1 . . . en−1 and en respectively), and the
type Tn of en is first inferred. Subsequently, the procedure extractConst is re-
cursively called and the types Tn−1, . . . , T1 of en−1, . . . , e1 (along with contexts
Cn−1, . . . , C1) are inferred in this order, and then y1 : T1 → · · · → yn : Tn → T
(along with a context) is obtained the type of �i. In contrast, for an application
e1e2, Synquid first performs type inference for the function part e1, and then
propagates the resulting type information to the argument e2.

Example 1. Given the type T of a sorting function in Figure 1 and the template
t� in Figure 2, step2.1(Γ ` t� :: T) (where Γ contains types for constants such
as Nil) returns the following constraint for the auxiliary function �2 (we omit
types for constants).

l : List Int ;x : Int ; xs : List 〈λx.λy.x ≤ y〉 {Int | x ≤ ν} ;
z : {List Int | ν = l}; len xs+ 1 = len z ∧ elems xs+ [x] = elems z
`
�i :: y : {Int | ν = x}

→ ys : {List〈λxλy.x ≤ y〉 {Int | x ≤ ν}
| len ν = len xs ∧ elems ν = elems xs}

→ {List〈λxλy.x ≤ y〉 Int | len ν = len l ∧ elems ν = elems l}.

ut

8

step2.1(Γ ` t� :: T) =

match (t� :: T) with

| e� :: T ⇒ extractConst(Γ, e�, T , ∅)
| e :: T when Γ ` e :: T ⇒ ∅
| fix x.t� :: T ⇒ step2.1 ((Γ ;x : T) ` t� : T)

| λy.t� :: (x : Tx → T ′) ⇒ step2.1((Γ ; y : Tx) ` t� :: [y/x]T ′) (1)

| if e1 then t′� else t′′� : T

when Γ ` e1 :: let C in {Bool | ψ} ⇒
step2.1((Γ ;C; [true/ν]ψ) ` t′� : T) ∪ step2.1((Γ ;C; [false/ν]ψ) ` t′′� : T)

| (match e with C1x̃1 7→ t
(1)
� | · · · | Ckx̃k 7→ t

(k)
�) : T

when Γ ` e :: let C in {D T̃ | ψ}

Γ (Ci) = x̃i : T̃i → {D T̃ | ψ′
i} ⇒⋃

i

step2.1((Γ ;C; z : {D T̃ | ψ} ` t(i)� : T) (where z is fresh)

| ⇒ fail

extractConst(Γ, e�, T , C) =

match e� with

| �i ⇒ {Γ ;C ` �i :: T}
| e′� e⇒

infer C′ and T ′ such that

Γ ` e :: let C′
in T ′

where all variables bounded in C′ occur only in T ′

extractConst(Γ, e′�, y : T ′ → T ,C;C′) (where y is fresh)

| e′� f ⇒
infer T ′ such that

Γ ` f :: T ′

extractConst(Γ, e′�, y : T ′ → T ,C) (where y is fresh)

Fig. 9. The algorithm for Step 2.1

9

The theorem below states the soundness of the procedure. Intuitively, it
claims that a target program of type T can indeed be obtained from a given
template t�, by filling the holes �1, . . . ,�n with terms t1, . . . , tn of the types
inferred by the procedure step2.1.

Theorem 1. Let Γ be a well-formed environment, t� a program template and
T a type well-formed under Γ . Suppose that step2.1(Γ ` t� :: T) returns

{∆1 ` �1 :: U1, . . . ,∆n ` �n :: Un}.

If ∅ ` Si and ∆i ` Si <: Ui for each i ∈ {1, . . . , n}, then

Γ ; �1 : S1, . . . ,�n : Sn ` t� :: T.

Step 2.2: Construction of closed types We have obtained a constraint
Γi ` �i :: Ti for each hole �i, and now it suffices to find an auxiliary function
(i.e. a closed term) of type Ti for each i. We shall use Synquid [9] to synthesize
a desired function but the type Ti itself cannot be an input of Synquid since it
is not closed in general. The goal of Step 2.2 is, thus, to calculate a closed type
Si such that Γ ` Si <: Ti, using universal and existential quantifiers.

In order to solve the problem above by induction on Ti, we generalize the
problem as follows: Given a well-formed type Γ ` T and a set var of variables,

(a) find a type S such that Γ ` S <: T and FV(S) ⊆ var , and
(b) find a type S such that Γ ` T <: S and FV(S) ⊆ var .

Let us first consider the simplest but most important case, where T is a
scalar type {B | ψ} with B = Bool or Int . Suppose that ψ has free variables
{ν}∪var∪{y1, . . . , yn}, where yi (1 ≤ i ≤ n) comes from the environment Γ and
yi /∈ var . Let var = {x1, . . . , xk} and x be the sequence of variables x1, . . . , xk.
The goal is to find a formula ψ0(ν,x) with free variable {ν, x1, . . . , xk} such that

Γ ` {B | ψ0(ν,x)} <: {B | ψ(ν,x,y)}.

By the subtyping rule, this subtyping judgment holds if and only if

JΓ Kx,y(x,y, z) ∧ ψ0(ν,x)⇒ ψ(ν,x,y)

is valid. The weakest formula ψ0(ν,x) that satisfies the above condition can be
given by using the universal quantifier, namely,

ψ0(ν,x) := ∀yz.
(
JΓ Kx,y(x,y, z)⇒ ψ(ν,x,y)

)
.

The dual problem can be solved in a similar way: the formula ψ′0(ν) defined by

ψ′0(ν,x) := ∃yz.
(
JΓ Kx,y(x,y, z) ∧ ψ(ν,x,y)

)
satisfies the subtyping judgment Γ ` {B | ψ(ν,x,y)} <: {B | ψ′0(ν,x)}.

10

The case T = {DU1 . . . U` | ψ} is similar to the above case, except that we
should replace each Ui with a closed type Si. We recursively call the procedure
to construct such a Si.

When T = (x : T1 → T2), we simply invoke the procedures recursively. Every
solution S must be of the form S = (x : S1 → S2), and the requirements are
Γ ` T1 <: S1 (with FV(S1) ⊆ var) and Γ ;x : T1 ` S2 <: T2 (with FV(S2) ⊆
var∪{x}). These subproblems can be solved by recursively calling the procedure.

Figure 10 gives a formal definition of the procedures; necessType(Γ ` T, var)
solves the problem (a) and suffType(Γ ` T, var) does (b).

Example 2. We continue discussing the example of the list sorting function. So
far, the following constraint for the hole �2 is derived. (Γ is same as the envi-
ronment shown in Example 1)

Γ ` �2 :: y : {Int | ν = x}
→ ys : {List〈λxλy.x ≤ y〉 {Int | x ≤ ν}

| len ν = len xs ∧ elems ν = elems xs}
→ {List〈λxλy.x ≤ y〉 Int | len ν = len l ∧ elems ν = elems l}

In this step, we construct a closed type from the above constraint. The result
is shown in Figure 11.

The type returned by the procedure indeed satisfies the requirement.

Theorem 2. Let Γ ` T be a well-formed type and var be a set of variables.

– If S = necessType(Γ ` T, var), then Γ ` S <: T and FV(S) ⊆ var.
– If S = suffType(Γ ` T, var), then Γ ` T <: S and FV(S) ⊆ var.

Hence, if S = necessType(Γ ` T, ∅), then Γ ` S <: T and S is closed.

Step 2.3: Elimination of quantifiers By Step 2.2, closed types of auxiliary
functions have been obtained, but these types cannot be passed to Synquid
yet because Synquid can handle only types with quantifier-free refinement for-
mulas. Therefore, in Step 2.3, we eliminate quantifiers from the types derived
by Step 2.2. Depending on the underlying logic, there may not exist a sound
and complete quantifier elimination procedure. For example, in our running ex-
ample, we use a combination of uninterpreted function symbols, linear integer
arithmetic, and sets, for which a complete procedure does not exist. We thus
apply a sound but incomplete procedure, so that, given the type T obtained by
Step 2.2, produces a subtype T ′ of T that does not contain quantifiers.

An important observation in designing a sound procedure is that, by the
definition of the procedure for Step 2.2, existential quantifiers may occur in
the form ∃x̃.(ψ1 ∧ · · · ∧ ψk) only in negative positions of types, and universal
quantifiers may occur in the form ∀x̃.(ψ1∧· · ·∧ψk ⇒ ψ) only in positive positions.
Here, as usual, we say that ψ occurs positively in {B | ψ}, and that ψ occurs
positively (resp. negatively) in x:T1 → T2 if ψ occurs positively (resp. negatively)

11

step2.2(Γ ` T) = necessType(Γ ` T, ∅)

necessType(Γ ` T, var) =

match T with

| {B | ψ} ⇒
{B | ∀X.(JΓ KFV(ψ)∪var → ψ)} where X = FV(JΓ KFV(ψ)∪var → ψ) \ var

| {D T1 · · · Tn | ψ} ⇒
let T ′

k, = necessType(Γ ` Tk var) (for each k) in

{D T ′
1 · · · T ′

n | ∀X.(JΓ KFV(ψ)∪var → ψ)}
where X = FV(JΓ KFV(ψ)∪var → ψ) \ var

| x : T1 → T2 ⇒
let T ′

1 = suffType(Γ ` T1, var) in

let T ′
2 = necessType((Γ ;x : T1) ` T2, var ∪ {x}) in

x : T ′
1 → T ′

2

suffType(Γ ` T, var) =

match T with

| {B | ψ} ⇒
{B | ∃X.(JΓ KFV(ψ)∪var ∧ ψ)} where X = FV(JΓ KFV(ψ)∪var ∧ ψ) \ var

| {D T1 · · · Tn | ψ} ⇒
let T ′

k = suffType(Γ ` Tk var) (for each k) in

{D T1 · · · Tn | ∃X.(JΓ KFV(ψ)∪var ∧ ψ)}
where X = FV(JΓ KFV(ψ)∪var ∧ ψ) \ var

| x : T1 → T2 ⇒
let T ′

1, = necessType(Γ ` T1, var) in

let T ′
2, = suffType((Γ ;x : T ′

1) ` T2, var ∪ {x})in
x : T ′

1 → T ′
2

Fig. 10. The algorithm for Step 2.2

12

y : {Int | P1}
→ ys : {List〈λxλy.x ≤ y〉 {Int | P2} | P3}
→ {List〈λxλy.x ≤ y〉 {Int | P4} | P5}

P1 ≡ ∃x, xs, z.(JΓ1K{x} ∧ ν = x), P2 ≡ ∃x, xs, z, l.(JΓ2K{x,y} ∧ x ≤ ν),
P3 ≡ ∃x, xs, z, l.(JΓ2K{xs,y} ∧ len ν = len xs ∧ elems ν = elems xs),
P4 ≡ ∀x, xs, z, l.(JΓ3K{y,ys} ⇒ True)
P5 ≡ ∀x, xs, z, l.(JΓ3K{l,y,ys} ⇒ len ν = len l ∧ elems ν = elems l)
where
Γ1 ≡ Γ, Γ2 ≡ Γ ; y : {Int | ν = x}
Γ3 ≡ Γ2; ys : {List〈λxλy.x ≤ y〉 {Int | ν ≤ x} |

len ν = len xs ∧ elems ν = elems xs}

JΓ1K{x} ≡ z = l ∧ len xs+ 1 = len z ∧ elems xs+ [x] = elems z
JΓ2K{x,y} ≡ JΓ2K{xs,y} ≡

z = l ∧ len xs+ 1 = len z ∧ elems xs+ [x] = elems z ∧ y = x
JΓ3K{y,ys} ≡ JΓ3K{l,y,ys} ≡

z = l ∧ len xs+ 1 = len z ∧ elems xs+ [x] = elems z ∧ y = x
∧len ys = len xs ∧ elems ys = elems xs

Fig. 11. An example output of Step 2.2

in T2 or negatively (resp. positively) in T1. Thus, it suffices to replace each
existential formula ψ with a quantifier-free formula ψ′ weaker than ψ (i.e., ψ ⇒
ψ′), and each universal formula ψ with a quantifier-free formula ψ′ stronger than
ψ. We discuss two procedures below.

The first procedure, which is naive but was adopted in our implementation
and effective in the experiments reported in Section 4, just propagates equal-
ity information so that quantified variables are removed as much as possible.
Given an existentially-quantified formula ∃x̃.(ψ1∧· · ·∧ψ`), we collect the subset
of {ψ, . . . , ψ`} consisting of equality constraints, orient the equations (so that
terms containing quantified variables tend to be replaced by those that do not
contain quantified variables), and rewrite each ψi to ψ′i using the equations.
We then collect the subset {ψ′i}i∈I of {ψ′1, . . . , ψ′k} that do not contain quan-
tified variables, and replace ∃x̃.(ψ1 ∧ · · · ∧ ψ`) with ∧i∈Iψ′i. Similarly, given a
universally quantified formula ∀x̃.(ψ1 ∧ · · · ∧ ψk ⇒ ψ), we rewrite ψ by using
the equality constraints in ψ1, . . . , ψk. If the resulting formula ψ′ contains no
quantified variables, we return ψ′; otherwise the whole formula is replaced by ⊥.

Example 3. We continue Example 2. The type obtained in Step 2.2 is shown in
Figure 11. Here,

P5 ≡ ∀ x, xs, z, l.
(z = l ∧ len xs+ 1 = len z ∧ elems xs+ [x] = elems z ∧ x = y
∧len ys = len xs ∧ elems ys = elems xs
⇒ len ν = len l ∧ elems ν = elems l)

13

Using the equations on the lefthand side of⇒, the righthand side can be rewrit-
ten as follows.

len ν = len l ∧ elems ν = elems l
 len ν = len z ∧ elems ν = elems z (by z = l)
 len ν = len xs+ 1 ∧ elems ν = elems xs+ [x]

(by len xs+ 1 = len z, elems xs+ [x] = elems z)
 len ν = len ys+ 1 ∧ elems ν = elems ys+ [y]

(by x = y, len ys = len xs, elems ys = elems xs)

Since the resulting formula does not contain quantified variables, we obtain
len ν = len ys + 1 ∧ elems ν = elems ys + [y] as a sound approximation
of P5. We can eliminate quantifiers from P1, . . . , P4 in a similar manner, and
obtain the following type for auxiliary function �2.

�2 :: y : Int → ys : List〈λxλy.x ≤ y〉 Int →
{List〈λxλy.x ≤ y〉 Int | len ν = len ys+ 1 ∧ elems ν = elems ys+ [y]}

ut

Though the naive algorithm above may be effective for formulas consisting
of equality constraints, it is not so for formulas containing other constraints. For
example, ∃y.(lenx ≤ 1+len y∧2×len y ≤ z) is equivalent to 2×lenx ≤ 2+z,
but the naive algorithm obviously fails to output it, as there is no equality infor-
mation available. The second method we discuss below first eliminates uninter-
preted function symbols, and then applies quantifier elimination to the formula
without uninterpreted function symbols. Consider the following formula (which
is a twisted version of the formula above):

∃y, w.(lenx ≤ 1 + len y ∧ y = w ∧ 2× lenw ≤ z).

We first pick equality constraints; y = w in the case above. For each equality
constraint v1 = v2, we add equalities of the form

E[v1] = E[v2]

whenever the term E[v1] or E[v2] occurs in the formula. In the example above,
we obtain

∃y, w.(lenx ≤ 1 + len y ∧ y = w ∧ 2× lenw ≤ z ∧ len y = lenw)).

We then replace each term t constructed by uninterpreted function symbols with
a fresh variable vt.

∃y, w, vlen y, vlenw.(vlen x ≤ 1 + vlen y ∧ y = w ∧ 2× vlenw ≤ z ∧ vlen y = vlenw).

Note that the resulting formula is weaker than the original formula, because
we have lost correlations between, e.g., x and vlen x. In general, an existential
formula (a universal formula, resp.) may be replaced by a weaker (a stronger,

14

infer aux types(Γ ` t� :: T){
{Γ1 ` �1 :: T1, . . . , Γk ` �k :: Tk} ← step2.1(Γ ` t� :: T);

foreach Γi ` �i :: Ti do {
T ′
i ← step2.2(Γi ` Ti);
T�i ← step2.3(T ′

i)};
return {�1 : T�1

, . . . ,�k : T�k};
}

Fig. 12. Step 2

resp.) formula, but this is what we need for the soundness of our quantifier
elimination. In the example above, we can now apply quantifier elimination for
linear integer arithmetic, and obtain 2 × vlen x ≤ 2 + z. Finally, by recovering
terms containing uninterpreted function symbols, we obtain 2 × lenx ≤ 2 + z,
as required. This approach would be effective in particular when the underlying
logic is a logic L extended with uninterpreted function symbols, such that a
complete quantifier elimination procedure exists for L.

Soundness of Step 2. The whole procedure for Step 2 is summarized in Fig-
ure 12; step-2.3 is one of the sound but incomplete quantifier procedures dis-
cussed above. Theorem 3 below states soundness of the procedure. The first
property states that the inferred types are closed (so that they can be passed
to Synquid), and the second one implies that if we can find auxiliary functions
of the inferred types, we can obtain a target function of type T by filling the
template t with the auxiliary functions.

Theorem 3. Given {�i : T�i} = infer aux types(Γ ` t :: T), the following
properties hold.

1. FV(T�i) = ∅
2. (Γ ;�i : T�i) ` t :: T

Proof. See Appendix B.

3.3 Step 3: Synthesizing auxiliary function using Synquid

Finally, we pass to Synquid the types of auxiliary functions inferred in Step 2
(Section 3.2). By filling the template with the auxiliary functions, we obtain a
required target function. If Synquid fails to discover auxiliary functions (this can
happen either if the types inferred in Step 2 are not inhabited by any programs,
or if they are inhabited but Synquid is not powerful enough to find inhabitants),
we go back to Step 1 and try another template.

15

f = λl. match l with

Nil 7→ �1

| Cons x Nil 7→ �2 x

| Cons x xs 7→ (match (�3 l) with Pair l1 l2 7→ append (f l1) (f l2))

Fig. 13. An invalid divide-and-conquer template

3.4 Limitations

Our procedure for program synthesis may fail for various reasons, due to lim-
itations of each step. First, the syntax of templates in Figure 8 is rather re-
stricted. For example, consider another divide-conquer template shown in Fig-
ure 13, which is obtained by replacing split of the divide-and-conquer template
in Section 3.1 with a hole, and instead instantiating �3 to the append function.
This template is invalid due to the position in which �3 occurs; if it were valid,
we would be able to obtain a quick sort function, by instantiating �3 with the
partition function. Unfortunately allowing this (invalid) template is problematic
for type inference in Step 2.1. A problem is that, in order to conclude that the
subterm append (f l1) (f l2) returns a sorted list, we need to infer that all the
elements of l1 are no greater than those of l2. It is not clear at all how to infer
such information from the specification of f .

The other sources of failures of our program synthesis include the incom-
pleteness of the quantifier elimination procedure in Step 2.3, and limitations of
the backend tool Synquid used in Step 3.

4 Implementation and Experiments

We have implemented a prototype program synthesis tool based on our method.
The tool is written in OCaml and uses Synquid [8, 9] for the final step of our
method.

We have run our tool and compared it with Synquid for several problems
of synthesizing programs that manipulate lists and binary search trees. We have
checked the standard libraries of functional languages such as the list library
of Haskell, and chosen, as the benchmark problems, library functions whose
specifications can be expressed by refinement types and whose implementations
are expected to require auxiliary functions. In all the problems, no information
about auxiliary functions was given to our tool and Synquid. Our tool uses the
fold-style templates and the divide-conquer template discussed in Section 3.1.
The experiment was conducted on a machine with 1.8GHz Intel Core i5 (8GB
of memory).

The experimental results are summarized in Table 1. The column “programs”
shows the names of functions to synthesize. We briefly describe them below.

16

Table 1. Experimental results (times are in seconds).

our method Synquid Synquid + foldr
programs total type-infer synquid total total

list-intersect 1.290 0.166 1.103 - -

list-sub 0.603 0.110 0.478 - -

list-to-bst 1.934 0.059 1.860 - -

list-sort 0.910 0.105 0.791 - 3.931

list-reverse 0.574 0.104 0.457 - -

list-unique 0.568 0.101 0.455 - 2.937

list-concat 0.466 0.052 0.400 - -

bst-to-list 2.752 0.091 2.644 - -

list-mergeSort 5.865 0.207 5.655 - N/A

– list-intersect: given two sets (represented as lists), returns the intersec-
tion

– list-sub: given two sets (represented as lists), returns the difference
– list-to-bst: converts a list to a binary search tree.
– list-sort: sorts a list.
– list-reverse: reverses a list.
– list-unique: removes duplicate elements in a list.
– list-concat: flattens a list of lists.
– bst-to-list: converts a binary search tree to a list.
– list-mergeSort: sorts a list; the divide-conquer pattern is used as the de-

fault template.

The fold-style template was used as the default template, except for the last
one. The three sub-columns in the column “our method” respectively show the
total execution time, the time spent for the inference of the types of auxiliary
functions (in Steps 1 and 2 in Section 3), and the time spent by Synquid (in
Step 3 in Section 3). The cell “-” represents a failure. The column “Synquid”
shows the result of running Synquid with no hints, and “Synquid+foldr” shows
the result of running Synquid with the type of the fold-right function (shown in
Figure 14) as a hint (so that Synquid can use the fold-right function in the target
functions). The latter is based on the method for discovering auxiliary functions
as proposed by Polikarpova [9]. The result “N/A” for list-mergeSort means
“non-applicable”; given the type of the fold-right function, Synquid synthesizes
an insertion sort program instead of a merge sort program.

As the table shows, our tool could successfully synthesize all the programs.
In contrast, Synquid could synthesize none of the benchmark programs; it is as
expected, because the benchmark programs require auxiliary functions. It may
come as a surprise that, even given the type of the fold-right function, Synquid
could synthesize only two of the benchmark programs. This is because of the
limitation that the full behavior of the fold-right function is not expressed by its
type, The type in Figure 14 is quite general: roughly, it describes that, for any
predicate p on a list of elements of type β and a value of type γ, foldr f seed ys

17

foldr :: 〈p :: List β → γ → Bool〉.
f : (t : List β → h : β → acc : {γ | p t ν} → {γ | p (Cons h t) ν})
→ seed : {γ | p Nil ν} → ys : List β → {γ | p ys ν}

Fig. 14. The type of the fold-right function [9]

returns a value r such that p ys r, provided that p Nil seed holds and the
accumulation function f preserves the invariant p between an input list and the
corresponding output. The type still fails to describe certain information about
the behavior of fold-right; for example, the type of the first argument f does not
directly express the relationship between the accumulation parameter acc and
the return value.

5 Related Work

We have already discussed the work of Polikarpova et al. [9], which we have
extended to enable synthesis of programs with auxiliary functions. There are
other studies of automated synthesis of functional programs [2, 6, 7, 9, 10], but
we are not aware of previous methods that can automatically synthesize auxiliary
functions from the specification of a main function alone. Kneuss et al. [6] discuss
the synthesis of a merge sort function from a user-supplied template similar to
our divide-and-conquer template, but they also require that the specification of
the auxiliary function “merge” be provided by a user.

To express precise specifications of target functions, we have borrowed the
type system of Polikarpova et al. [9], which is in turn based on Vazou et al.’s
type system with abstract refinement types [11].

In the context of automated theorem proving, there have been studies on
techniques for automated discovery of lemmas [1, 5]. Through the Curry-Howard
correspondence between proofs and programs, lemmas correspond to auxiliary
functions; thus, we plan to investigate the techniques for lemma discovery to
refine our method.

6 Conclusion

We have proposed a method for automatically synthesizing functional programs
that require auxiliary functions. We have implemented a prototype synthesis
tool that uses Synquid as a backend, and confirmed that it is able to synthesize
several functions with auxiliary functions. Overcoming the limitations discussed
in Section 3.4 is left for future work.

Acknowledgments We would like to thank anonymous referees for useful com-
ments. This work was supported by JSPS KAKENHI Grant Number JP15H05706
and JP16K16004.

18

References

1. Aoto, T.: Sound lemma generation for proving inductive validity of equations.
In: Hariharan, R., Mukund, M., Vinay, V. (eds.) IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS
2008, December 9-11, 2008, Bangalore, India. LIPIcs, vol. 2, pp. 13–24. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2008)

2. Frankle, J., Osera, P., Walker, D., Zdancewic, S.: Example-directed synthesis: a
type-theoretic interpretation. In: Bod́ık, R., Majumdar, R. (eds.) Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. pp.
802–815. ACM (2016)

3. Gulwani, S., Harris, W.R., Singh, R.: Spreadsheet data manipulation using exam-
ples. Communications of the ACM 55(8), 97–105 (2012)

4. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
In: Hall, M.W., Padua, D.A. (eds.) Proceedings of the 32nd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2011, San
Jose, CA, USA, June 4-8, 2011. pp. 62–73. ACM (2011)

5. Kapur, D., Subramaniam, M.: Lemma discovery in automated induction. In:
McRobbie, M.A., Slaney, J.K. (eds.) Automated Deduction - CADE-13, 13th In-
ternational Conference on Automated Deduction, New Brunswick, NJ, USA, July
30 - August 3, 1996, Proceedings. Lecture Notes in Computer Science, vol. 1104,
pp. 538–552. Springer (1996)

6. Kneuss, E., Kuraj, I., Kuncak, V., Suter, P.: Synthesis modulo recursive functions.
In: Hosking, A.L., Eugster, P.T., Lopes, C.V. (eds.) Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis,
IN, USA, October 26-31, 2013. pp. 407–426. ACM (2013)

7. Osera, P., Zdancewic, S.: Type-and-example-directed program synthesis. In: Grove,
D., Blackburn, S. (eds.) Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, Portland, OR, USA, June
15-17, 2015. pp. 619–630. ACM (2015)

8. Polikarpova, N.: Synquid. https://bitbucket.org/nadiapolikarpova/synquid/.

9. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymorphic
refinement types. In: Krintz, C., Berger, E. (eds.) Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016. pp. 522–538. ACM (2016),
http://doi.acm.org/10.1145/2908080

10. Solar-Lezama, A.: Program synthesis by sketching. Ph.D. thesis, University of Cal-
ifornia, Berkeley (2008)

11. Vazou, N., Rondon, P.M., Jhala, R.: Abstract refinement types. In: Felleisen, M.,
Gardner, P. (eds.) Programming Languages and Systems - 22nd European Sympo-
sium on Programming, ESOP 2013, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.
Proceedings. Lecture Notes in Computer Science, vol. 7792, pp. 209–228. Springer
(2013)

19

Appendix

A Well-formedness of Types and Type Environments

A formula ψ is well formed in the environment Γ , written Γ ` ψ, when it has
a boolean sort under the assumption that each free variable in ψ has the sort
declared in Γ .

The well-formedness relations on types and type environments, Γ ` T and
` Γ respectively, are defined by the rules given below.

Γ ; ν : B ` ψ
Γ ` {B | ψ}

(WfT-Sc)
Γ ;C ` T

Γ ` let C in T
(WfT-Ctx)

Γ ` {B | ψ} Γ ;x : {B | ψ} ` T
Γ ` x : {B | ψ} → T

(WfT-Fun1)

Tx is not of the form {B | ψ} Γ ` Tx Γ ` T
Γ ` x : Tx → T

(WfT-Fun2)

` ∅
(WfTE-Emp)

` Γ Γ ` T x does not occur in Γ

` Γ ;x : T
(WfTE-T)

` Γ Γ ` ψ
` Γ ;ψ

(WfTE-P)

B Proof

In this section, we will prove Theorem 1, Theorem 2 and Theorem 3.

B.1 Useful Lemmas

Hereafter we implicitly assume that for every environment Γ , Γ = (Γ1;x :
T ;Γ2; y : U ;Γ3) implies x 6= y, by renaming if necessarily.

Lemma 1.

– Let Γ be an environment and Γ ′ be a permutation. Assume Γ ` T <: U and
Γ ′ is well-formed (i.e. Γ ′ `). Then Γ ′ ` T <: U .

– Assume that Γ,C,∆ ` T <: U and that the judgement Γ,∆ ` T <: U is well-
formed (i.e. Γ,∆ ` T and Γ,∆ ` U and thus Γ,∆ `). Then Γ,∆ ` T <: U .

20

In particular, if T is a function type, Γ ; x : T ;∆ ` U <: U ′ implies Γ ;∆ ` U <:
U ′.

For a given type environment Γ , we write dom(Γ) for the set of variables
declared in Γ . Formally

dom(∅) := ∅
dom(Γ ; x : T) := dom(Γ) ∪ {x}

dom(Γ ; ψ) := dom(Γ).

The next lemma relies on the technical assumption that ν ∈ FV(ψ) for every
scalar type {B | ψ}.

Lemma 2. Let Γ be a well-formed environment and var ⊆ dom(Γ). Then

JΓ Kvar ⊇ var .

Proof. By easy induction.

B.2 Proof of Theorem 1

Lemma 3. Let Γ be a well-formed environment, e� be an E-term with a hole,
T be a well-formed type (i.e. Γ ` T) and C be a context (with Γ ` C). Suppose
that

{∆ ` �i :: U} = extractConst(Γ, e�, T , C).

Let S be a type such that ∅ ` S and ∆ ` S <: U . Then there exists a well-formed
contextual let C ′ in T ′ (i.e. Γ ` let C ′ in T ′) such that

(Γ ; �i : S) ` e� :: let C ′ in T ′ (2)

(Γ ; �i : S;C;C ′) ` T ′ <: T. (3)

Proof. By induction on the structure of e�.

– (Case: e� = �i) By definition (Fig. 9),

extractConst(Γ, �i, T , C) = {Γ ;C ` �i :: T}

and thus ∆ = (Γ ;C) and U = T . Let C ′ = ∅ and T ′ = S. By the variable
rule,

(Γ ; �i : S) ` �i :: let ∅ in S

and thus we obtain (2). By the assumption,

(Γ ;C) ` S <: T

which implies (3) by weakening.

21

– (Case: e� = e′� e0) Let let C0 in T0 be a (well-formed) contextual type
found by the procedure. Then

Γ ` e0 :: let C0 in T0

and

{�i : (∆ ` ∗ <: U)} = extractConst(Γ, e′� e0, T , C)

= extractConst(Γ, e′�, y : T0 → T ,C;C0)

where y is a fresh variable not appearing in T . By the induction hypothesis,
there exists a well-formed contextual type Γ ` let C ′0 in T ′1 such that

(Γ ; �i : S) ` e′� :: let C ′0 in T
′
1

(Γ ; �i : S;C;C0;C ′0) ` T ′1 <: (y : T0 → T).

By the second condition, T ′1 = (y : T ′0 → T ′) for some y, T ′0 and T ′ and

(Γ ; �i : S;C;C0;C ′0) ` T0 <: T ′0

(Γ ; �i : S;C;C0;C ′0; y : T0) ` T ′ <: T. (4)

Let C ′ = (C ′0;C0; y : T0), which is well-formed (i.e. Γ ` C ′) since Γ ` C ′0
and Γ ` let C0 in T0. Since C ′0 does not depend on C0, one can exchange
C0 and C ′0 in (4), which leads to (3). Since Γ ;C0 ` T0 and Γ ;C ′0 ` T ′0, by
Lemma 1, we can drop the context C from the former judgement and obtain

(Γ ; �i : S;C ′0;C0) ` T0 <: T ′0.

Therefore

(Γ ; �i : S) ` e′� :: let C ′0 in (y : T ′0 → T ′)
(Γ ; �i : S;C ′0) ` e :: let C0 in T0

(Γ ;C ′0;C0) ` T0 <: T ′0
(Γ ; �i : S) ` e′� e :: let C ′0;C0; y : T0 in T

′ (APP)

and we have (2) as desired.
– (Case: e� = e′� f) Similar to the above case.

ut

Lemma 4. Let Γ be a well-formed environment, e� be an E-term with a hole,
T be a well-formed type (i.e. Γ ` T). Suppose that

{∆ ` �i :: U} = extractConst(Γ, e�, T , ∅).

Let S be a type such that ∅ ` S and ∆ ` S <: U . Then

(Γ ; �i : S) ` e� :: T.

22

Proof. By Lemma 3, there exists a well-formed contextual type let C ′ in T ′

such that
(Γ ; �i : S) ` e� :: let C ′ in T ′

and
(Γ ; �i : S;C ′) ` T ′ <: T.

By the subtyping rule,

(Γ ; �i : S) ` e� :: let C ′ in T ′ (Γ ; �i : S;C ′) ` T ′ <: T

(Γ ;�i : S) ` e� :: T
(SUBT)

as required. ut

Proof (of Theorem 1). By induction on the structure of t. The base case t = e�
is a consequence of Lemma 4. Other cases are easy. ut

B.3 Proof of Theorem 2

By induction on the construction of the type T .

– (Case: T = {B | ψ} with B = Bool or Int) Let

S := necessType(Γ ` T, var)

S′ := suffType(Γ ` T, var).

By definition (Fig. 10), we have

S = {B | ∀x1 . . . xn.(JΓ KFV(ψ)∪var → ψ)}
S′ = {B | ∃x1 . . . xn.(JΓ KFV(ψ)∪var ∧ ψ)}

where {x1, . . . , xn} = (FV(JΓ KFV(ψ)∪var)∪FV(ψ))\ (var ∪{ν}). Let x be the
sequence x1 . . . xn of variables.
Obviously FV(S) = FV(S′) ⊆ var .
We prove Γ ` S <: T . By the subtyping rule, it suffices to show that
Γ ` B <: B, which trivially holds, and

JΓ KFV((∀x. JΓ KFV(ψ)∪var⇒ψ)⇒ψ) ∧
(
∀x. JΓ KFV(ψ)∪var ⇒ ψ

)
⇒ ψ

is valid. By definition,

FV((∀x. JΓ KFV(ψ)∪var ⇒ ψ)⇒ ψ) = FV(∀x. JΓ KFV(ψ)∪var ⇒ ψ) ∪ FV(ψ).

By Lemma 2, FV(JΓ KFV(ψ)∪var) ⊇ var and thus

FV(∀x. JΓ KFV(ψ)∪var ⇒ ψ) ∪ FV(ψ) = var ∪ FV(ψ).

Hence the above formula is equivalent to

JΓ KFV(ψ)∪var ∧
(
∀x. JΓ KFV(ψ)∪var ⇒ ψ

)
⇒ ψ,

23

which is easy to show.
We prove Γ ` S′ <: T . By the subtyping rule, it suffices to show that
Γ ` B <: B and

JΓ KFV(∃x. JΓ KFV(ψ)∪var∧ψ) ∧ ψ ⇒
(
∃x. JΓ KFV(ψ)∪var ∧ ψ

)
.

By the same argument as above, this is equivalent to

JΓ KFV(ψ)∪var ∧ ψ ⇒
(
∃x. JΓ KFV(ψ)∪var ∧ ψ

)
,

which is true.
– (Case: T = {D T1 · · · Tn | ψ}) Let

{DS1 . . . Sn | ϕ} = necessType(Γ ` {DT1 . . . Tn | ψ}, var)

{DS′1 . . . S
′
n | ϕ′} = suffType(Γ ` {DT1 . . . Tn | ψ}, var).

By definition, for each i ≤ n,

Si = necessType(Γ ` Ti, var)

S′i = suffType(Γ ` Ti, var).

Since the shapes of the formulas ϕ and ϕ′ are similar to the above case, we
can prove that both

JΓ KFV(ϕ⇒ψ) ∧ ϕ⇒ ψ

and

JΓ KFV(ψ⇒ϕ′) ∧ ψ ⇒ ϕ′

are valid.
To prove Γ ` S <: T , it suffices to show that

Γ ` Si <: Ti

for every i, which follows from the induction hypothesis. The subtyping
judgement Γ ` T <: S′ can be proved similarly.
FV(S) ⊆ var follows from the induction hypothesis FV(Si) ⊆ var and
FV(ϕ) ⊆ var , which follows from the construction. The proof of FV(S′) ⊆ var
is similar.

– (Case: T = x : T1 → T2) Let

S := necessType(Γ ` T, var)

S′ := suffType(Γ ` T, var).

By definition,

S = (x : S1 → S2)

S′ = (x : S′1 → S′2)

24

and

S1 = suffType(Γ ` T1, var)

S2 = necessType(Γ ` T2, var ∪ {x})
S′1 = necessType(Γ ` T1, var)

S′2 = suffType(Γ ` T2, var ∪ {x}).

By the induction hypothesis and the definition of free variables, FV(S) ⊆ var
and FV(S′) ⊆ var .
The subtyping judgement Γ ` S <: T follows from the induction hypotheses
Γ ` T1 <: S1 and Γ ; x : T1 ` S2 <: T2. Similarly Γ ` T <: S′ holds.

B.4 Proof of Theorem 3

Theorem 3 is derived from Theorem 1, Theorem 2 and the soundness of step 2.3
discussed in Section 3.2.

25

