
Higher-Order Model Checking in Direct Style

Taku Terao1,2, Takeshi Tsukada1, and Naoki Kobayashi1

1 The University of Tokyo
2 JSPS Research Fellow

Abstract. Higher-order model checking, or model checking of higher-
order recursion schemes, has been recently applied to fully automated
verification of functional programs. The previous approach has been in-
direct, in the sense that higher-order functional programs are first ab-
stracted to (call-by-value) higher-order Boolean programs, and then fur-
ther translated to higher-order recursion schemes (which are essentially
call-by-name programs) and model checked. These multi-step transfor-
mations caused a number of problems such as code explosion. In this
paper, we advocate a more direct approach, where higher-order Boolean
programs are directly model checked, without transformation to higher-
order recursion schemes. To this end, we develop a model checking al-
gorithm for higher-order call-by-value Boolean programs, and prove its
correctness. According to experiments, our prototype implementation
outperforms the indirect method for large instances.

1 Introduction

Higher-order model checking [14], or model checking of higher-order recursion
schemes (HORS), has recently been applied to automated verification of higher-
order functional programs [9,11,12,15,17]. A HORS is a higher-order tree gram-
mar for generating a (possibly infinite) tree, and higher-order model checking is
concerned about whether the tree generated by a given HORS satisfies a given
property. Although the worst-case complexity of higher-order model checking
is huge (k-EXPTIME complete for order-k HORS [14]), practical algorithms
for higher-order model checking have been developed [8,4,16,18], which do not
always suffer from the k-EXPTIME bottleneck.

A typical approach for applying higher-order model checking to program
verification [11] is as follows. As illustrated on the left-hand side of Figure 1,
a source program, which is a call-by-value higher-order functional program, is
first abstracted to a call-by-value, higher-order Boolean functional program, us-
ing predicate abstraction. The Boolean functional program is further translated
to a HORS, which is essentially a call-by-name higher-order functional pro-
gram, and then model checked. We call this approach indirect, as it involves
many steps of program transformations. This indirect approach has an advan-
tage that, thanks to the CPS transformation used in the translation to HORS,

This is the long version of this work. The final publication is available at
link.springer.com.

http://link.springer.com

2 Taku Terao, Takeshi Tsukada, and Naoki Kobayashi

Call-by-value higher-order functional program

Call-by-value higher-order Boolean program

Call-by-name higher-order Boolean program

Higher-order recursion scheme

Model checker
for HORS

Call-by-value higher-order functional program

Call-by-value higher-order Boolean program

Predicate Abstraction

CPS-Transformation

λ-Lifting

Predicate Abstraction

Safe Unsafe

Indirect Style (previous) Direct Style (ours)

Model checker
for Boolean programs

Safe Unsafe

Fig. 1. Overview: Indirect vs direct style

various control structures (such as exceptions and call/cc) and evaluation strate-
gies (call-by-value and call-by-name) can be uniformly handled. The multi-step
transformations, however, incur a number of drawbacks as well, such as code
explosion and the increase of the order of programs (where the order of a pro-
gram is the largest order of functions; a function is first-order if both the input
and output are base values, and it is second-order if it can take a first-order
function as an argument, etc.). The multi-step transformations also make it dif-
ficult to propagate the result of higher-order model checking back to the source
program, e.g., for the purpose of counter-example-guided abstraction refinement
(CEGAR), and certificate generation.

In view of the drawbacks of the indirect approach mentioned above, we ad-
vocate higher-order model checking in a more direct style, where call-by-value
higher-order Boolean programs are directly model checked, without the trans-
lation to HORS, as illustrated on the right-hand side of Figure 1. That would
avoid the increase of the size and order of programs (recall that the complex-
ity of higher-order model checking is k-EXPTIME complete for order-k HORS;
thus the order is the most critical parameter for the complexity). In addition,
the direct style approach would take an advantage of optimization using the
control structure of the original program, which has been lost during the CPS-
transformation in indirect style.

Our goal is then to develop an appropriate algorithm that directly solves the
model-checking problem for call-by-value higher-order Boolean programs. We
focus here on the reachability problem (of checking whether a given program
reaches a certain program point); any safety properties can be reduced to the
reachability problem in a standard manner.

Higher-Order Model Checking in Direct Style 3

From a purely theoretical point of view, this goal has been achieved by
Tsukada and Kobayashi [19]. They developed an intersection type system for
reachability checking of call-by-value higher-order Boolean programs, which gives
a better (and exact in a certain sense) upper bound of the worst case complex-
ity of the problem than the näıve indirect approach. However their algorithm,
which basically enumerates all the types of subterms, is far from practical since
the number of candidate types for a given subterm is hyper-exponential.

Now the challenge is to find an appropriate subset of types to be considered
for a given program: this subset has to be large enough to correctly analyze the
behaviour of the program and, at the same time, sufficiently small to be ma-
nipulated in realistic time. In previous work [4,18] for a call-by-name language,
this subset is computed with the help of the control-flow analysis, which gives
an over-approximation of the behaviour of the program. The näıve adaptation
of this idea to a call-by-value language, however, does not work well. This is be-
cause the flow-information tends to be less accurate for call-by-value programs:
in an application t1 t2, one has to over-approximate the evaluation of both t1
and t2 in call-by-value, whereas in call-by-name t2 itself is the accurate actual
argument. We propose an algorithm (the 0-Control-Flow-Analysis (CFA) guided
saturation algorithm) that deeply integrates the type system and the 0-CFA. The
integration reduces the inaccuracy of the flow analysis and makes the algorithm
efficient, although it is technically more complicated.

We have implemented the algorithm, and confirmed through experiments
that for large instances, our direct approach for model checking call-by-value
Boolean programs outperforms the previous indirect approach of translating a
call-by-value program to HORS and then model-checking the HORS.

The contributions of this paper are summarized as follows.

– A practical algorithm for the call-by-value reachability problem in direct
style. The way to reduce type candidates using control-flow analysis is quite
different from that of previous algorithms [4,18].

– The formalization of the algorithm and a proof of its correctness. The proof
is more involved than the corresponding proof of the correctness of Tsukada
and Kobayashi’s algorithm [19] due to the flow-based optimization, and also
than that of the correctness of the HorSat algorithm [4], due to the call-
by-value evaluation strategy.

– Implementation and evaluation of the algorithm.

The rest of this paper is structured as follows. Section 2 defines the target
language, its semantics, and the reachability problem. Section 3 gives an inter-
section type system that characterizes the reachability of a program. Section
4 describes the 0-CFA guided saturation algorithm, and proves its correctness.
Section 5 describes the experimental results. Section 6 discusses related work,
and the final section concludes the paper.

4 Taku Terao, Takeshi Tsukada, and Naoki Kobayashi

P (Programs) ::= let rec D : K in t

t (Terms) ::= eℓ

e (Expressions) ::= b | p | x | f | op(t̃) | ⟨t1, . . . , tk⟩ | πk
i t | t1 t2

| t1 ⊕ t2 | fail | Ω | let x = t1 in t2 | assume t1; t2

p (Lambda-abstractions) ::= λx : κ. t

b (Booleans) ::= true | false
κ (Sorts) ::= bool | ⟨κ1, . . . , κk⟩ | κ1 → κ2

D (Global definitions) ::= {f1 7→ p1, . . . , fk 7→ pk}
K (Global sort environments) ::= { f1 7→ κ1, . . . , fk 7→ κk }
Σ (Local sort environments) ::= {x1 7→ κ1, . . . , xk 7→ κk }

Fig. 2. Syntax

2 Call-by-value Reachability Problem

2.1 Target Language

We first introduce notations used in the rest of this paper. We write Lab,
Var, and Fun, respectively for the countable sets of labels, variables, and func-
tion symbols. We assume that the meta-variable ℓ represents a label, the meta-
variables x, y represent variables, and f, g represent function symbols. We write
dom(g) for the domain set of a function g, and x̃ for a finite sequence like
x1, . . . , xk. Let ρ be a map. We denote ρ[x 7→ v] as the map that maps y to v
if x = y and that behaves as the same as ρ otherwise. We denote ∅ as both the
empty set and the empty map, whose domain set is the empty set.

The target language of the reachability analysis in this paper is a simply-
typed, call-by-value lambda calculus with Booleans, tuples and global mutual
recursions. The syntax of the language is given in Figure 2. Each subterm is
labeled with Lab in this language, for the control-flow analysis described later.
We call terms for labeled ones, and expressions for unlabeled ones. The expres-
sion op(t̃) is a Boolean operation, such as t1 ∧ t2, t1 ∨ t2, and ¬t, and πk

i t is
the i-th (zero-indexed) projection for the k-tuple t. The expression t1 ⊕ t2 is a
non-deterministic choice of t1 and t2. The terms Ω and fail represent divergence
and failure, respectively. The assume-expression assume t1; t2 evaluates t2 only
if t1 is evaluated to true (and diverges if t1 is evaluated to false).

A sort is the simple type of a term, which is either Boolean sort bool, a tuple
sort, or a function sort; we use the word “sort” to distinguish simple types from
intersection types introduced later. A local sort environment and (resp. global
sort environment) is a finite map from variables (resp. function symbols) to sorts.
A global definition is a finite map from function symbols to lambda-expressions.
A program consists of a global definition D, a global sort environment K, and a
term, called the main term.

Higher-Order Model Checking in Direct Style 5

Next, we define well-sorted terms. Let K be a global sort environment, Σ
a local sort environment, and κ a sort. A sort judgment for a term t (resp. an
expression e) is of the form K, Σ ⊢ t : κ (resp. K, Σ ⊢ e : κ). The sort system
of the target language is the standard simple type system with the following
primitive types: fail : κ, Ω : κ, assume : bool → κ, and ⊕ : κ → κ → κ. The
inference rules are given in Appendix A.

The depth of a sort κ, written dep(κ), is defined as follows: dep(bool) =
1, dep(⟨κ1, . . . , κk⟩) = max(dep(κ1), . . . , dep(κk)), and dep(κ1 → κ2) = 1 +
max(dep(κ1), dep(κ2)). The depth of a well-sorted term t, written dep(t), is the
maximum depth of sorts which appear in the derivation tree of K, Σ ⊢ t : κ. Let
D be a global definition, and K be a global sort environment. We write ⊢ D : K
if dom(D) = dom(K) and ∀f ∈ dom(D).K, ∅ ⊢ D(f) : K(f). We say program
P = let rec D : K in t0 has sort κ if ⊢ D : K, and K, ∅ ⊢ t0 : κ. We say P is
well-sorted if P has some sort κ. The depth of a well-sorted program P is the
maximum depth of terms in P .

Example 1. Consider the program P1 = let rec D1 : K1 in t1 where:

D1 = { f 7→ λ(y : bool → bool). tf } K1 = { f 7→ (bool → bool) → bool }
tf = (assume (y1 true2)3; (assume (¬(y5 true6)7)8; fail9)10)11

t1 = (let z = (λ(x : bool). (true12 ⊕ false13)14)15 in (f16 z17)18)19

P1 is well-sorted and has sort bool.

2.2 Semantics

We define the operational semantics of the language in the style of Nielson
et al. [13]; this style of operational semantics is convenient for discussing flow
analysis later. First, we define the following auxiliary syntactic objects:

e ::= · · · | c | bind ρ in t

ρ (Environments) ::= {x1 7→ v1, . . . , xn 7→ vk }
c (Closures) ::= close p in ρ

v (Values) ::= wℓ

w (Pre-values) ::= b | f | c | ⟨v1, . . . , vk⟩

The term close p in ρ represents a closure, and the term bind ρ in t evaluates
t under the environment ρ. An environment is a finite map from variables to
values. A value is either a Boolean, a function symbol, a closure, or a tuple
of values. We note that values (resp. pre-values) are subclass of terms (resp.
expressions). We extend the sort inference rules to support these terms as follows:

K ⊢ ρ : Σ′ K, Σ′ ⊢ p : κ

K, Σ ⊢ close p in ρ : κ
(Close)

K ⊢ ρ : Σ′ K, Σ′ ⊢ t : κ

K, Σ ⊢ bind ρ in t : κ
(Bind)

dom(ρ) = dom(Σ) ∀x ∈ dom(ρ). K, ∅ ⊢ ρ(x) : Σ(x)

K ⊢ ρ : Σ
(Env)

6 Taku Terao, Takeshi Tsukada, and Naoki Kobayashi

A sort judgment for environments is of the form K ⊢ ρ : Σ, which means that
for each binding x 7→ v in ρ, v has type Σ(x).

Next, we define reduction relations. We fix some well-sorted program P =
let rec D : K in e0. Let ρ be an environment, and Σ be a local sort environment
such that K ⊢ ρ : Σ. The reduction relation for terms is of the form ρ ⊢D t −→ t′,
where K, Σ ⊢ t : κ for some sort κ. The reduction rules are given in Figures 3.
In rule (Op-2), [[op]] denotes the Boolean function that corresponds to each
operation op, and FV (p) denotes the set of free variables of p. We write ρ ⊢D

t −→∗ t′ for the reflexive and transitive closure of ρ ⊢D t1 −→ t2.

ρ(x) = wℓ0

ρ ⊢D xℓ −→ wℓ

(Var)

ρ ⊢D t −→ t′

ρ ⊢D op(ṽ, t, t̃)ℓ −→ op(ṽ, t′, t̃)ℓ

(Op-1)

b′ = [[op]](b̃)

ρ ⊢D op(b̃)ℓ −→ b′ℓ

(Op-2)

ρ ⊢D t −→ t′

ρ ⊢D ⟨ṽ, t, t̃⟩ℓ −→ ⟨ṽ, t′, t̃⟩ℓ
(Tuple)

ρ ⊢D t −→ t′

ρ ⊢D (πk
i t)

ℓ −→ (πk
i t

′)ℓ
(Proj-1)

v = ⟨wℓ0
0 , . . . , w

ℓk−1

k−1 ⟩ℓ
′

ρ ⊢D (πk
i v)

ℓ −→ wℓ
i

(Proj-2)
ρ′ = {x 7→ ρ(x) | x ∈ FV(p) }
ρ ⊢D pℓ −→ (close p in ρ′)ℓ

(Fun)

ρ ⊢D t1 −→ t′1

ρ ⊢D (t1 t2)
ℓ −→ (t′1 t2)

ℓ
(App-1)

c = close λx : κ. t in ρ′

ρ ⊢D (cℓ1 v2)
ℓ −→ (bind ρ′[x 7→ v2] in t)ℓ

(App-3)

ρ ⊢D t2 −→ t′2

ρ ⊢D (v1 t2)
ℓ −→ (v1 t′2)

ℓ
(App-2)

(λx : κ. t) = D(f)

ρ ⊢D (f ℓ1 v2)
ℓ −→ (bind [x 7→ v2] in t)ℓ

(App-4)

ρ ⊢D t1 −→ t′1

ρ ⊢D (let x = t1 in t2)
ℓ −→ (let x = t′1 in t2)

ℓ
(Let-1)

ρ ⊢D (let x = v1 in t2)
ℓ −→ (bind ρ[x 7→ v1] in t2)

ℓ
(Let-2)

i ∈ { 1, 2 }
ρ ⊢D (eℓ11 ⊕ eℓ22)ℓ −→ eℓi

(Br)

ρ ⊢D t1 −→ t′1

ρ ⊢D (assume t1; t2)
ℓ −→ (assume t′1; t2)

ℓ

(Assume-1)

ρ ⊢D (assume trueℓ1 ; eℓ22)ℓ −→ eℓ2
(Assume-2)

ρ′ ⊢D t −→ t′

ρ ⊢D (bind ρ′ in t)ℓ −→ (bind ρ′ in t′)ℓ

(Bind-1)

ρ ⊢D (bind ρ′ in wℓ1)ℓ −→ wℓ

(Bind-2)

Fig. 3. Reduction relation

Higher-Order Model Checking in Direct Style 7

2.3 Reachability Problem

We are interested in the reachability problem: whether a program P may execute
the command fail We define the set of error expressions, called Err, as follows:‡

ϕ (Error expr.) ::= fail | let x = ϕℓ in t2 | bind ρ in ϕℓ | ⟨ṽ, ϕℓ, t̃⟩ | op(ṽ, ϕℓ, t̃)

| assume ϕℓ; t | ϕℓ t | v ϕℓ.

Then, the reachability problem is defined as follows.

Definition 1 (Reachability Problem). A program P = let rec D : K in t0
is unsafe if ∅ ⊢D t0 −→∗ ϕℓ holds for some ϕ ∈ Err. A well-sorted program P
is called safe if P is not unsafe. Given a well-sorted program, the task of the
reachability problem is to decide whether the program is safe.

Example 2. For example, P1 = let rec D1 : K1 in t1 in Example 1 is unsafe,
and the program P2 = let rec D1 : K1 in t2 below is safe.

t2 = (let w = (true20 ⊕ false21)22 in (f23 (λ(x : bool). w24)25)26)27

3 Intersection Type System

In this section, we present an intersection type system that characterizes the
unsafety of programs, which is an extension of Tsukada and Kobayashi’s type
system [19].

The sets of value types σ and term types τ are defined by:

σ ::= true | false | ⟨σ1, . . . , σk⟩ |
∧
i∈I

(σi → τi) τ ::= σ | fail

Value types are those for values, and term types are for terms, as the names
suggest. Intuitively the type true describes the value true. The type of the
form ⟨σ1, . . . , σk⟩ describes a tuple whose i-th element has type σi. A type of
the form

∧
i∈I(σi → τi) represents a function that returns a term of type τi if

the argument has type σi for each i ∈ I. Here, we suppose that I be some finite
set. We write

∧
∅ if I is the empty set. A term type is either a value type or the

special type fail, which represents a term that is evaluated to an error term. We
also call a local type environment ∆ (resp. a global type environment Γ) for a
finite map from variables (resp. function symbols) to value types.

The refinement relations σ :: κ and τ :: κ for value/term types are defined
by the following rules:

‡Note that the terms like assume false; t and Ω are not error expressions. They
are intended to model divergent terms, although they are treated as stuck terms in the
operational semantics for a technical convenience.

8 Taku Terao, Takeshi Tsukada, and Naoki Kobayashi

Γ,∆ ⊢ e : τ

Γ,∆ ⊢ eℓ : τ
(Term)

Γ,∆ ⊢ ti : σi for each 1 ≤ i ≤ k

Γ,∆ ⊢ t1 . . . tk : σ1 . . . σk

(Seq)

Γ,∆ ⊢ t1 . . . tl−1 : σ̃ Γ,∆ ⊢ tl : fail for some 0 ≤ l ≤ k

Γ,∆ ⊢ t1 . . . tk : fail
(Seq-F)

Γ,∆ ⊢ x : ∆(x)
(Var)

Γ,∆ ⊢ b : b
(Bool) Γ,∆ ⊢ t̃ : b̃

Γ,∆ ⊢ op(t̃) : [[op]](b̃)
(Op)

Γ,∆ ⊢ t̃ : σ̃

Γ,∆ ⊢ ⟨t̃⟩ : ⟨σ̃⟩
(Tuple)

Γ,∆ ⊢ t : ⟨σ0, . . . , σk−1⟩
Γ,∆ ⊢ πk

i t : σi

(Proj)

Γ,∆ ⊢ t̃ : fail

Γ,∆ ⊢ op(t̃) : fail
(Op-F)

Γ,∆ ⊢ t̃ : fail

Γ,∆ ⊢ ⟨t̃⟩ : fail
(Tuple-F)

Γ,∆ ⊢ t : fail

Γ,∆ ⊢ πk
i t : fail

(Proj-F)
Γ,∆[x 7→ σi] ⊢ t : τi σi :: κ for each i ∈ I

Γ,∆ ⊢ λx : κ. t :
∧

i∈I(σi → τi)
(Fun)

Γ,∆ ⊢ t1, t2 : fail

Γ,∆ ⊢ t1 t2 : fail
(App-F)

Γ,∆ ⊢ t1 : τ

Γ,∆ ⊢ t1 ⊕ t2 : τ
(Br-1)

Γ,∆ ⊢ t2 : τ

Γ,∆ ⊢ t1 ⊕ t2 : τ
(Br-2) Γ,∆ ⊢ fail : fail

(Fail)

Γ,∆ ⊢ t1 :
∧

i∈I(σi → τi) Γ,∆ ⊢ t2 : σj for some j ∈ I

Γ,∆ ⊢ t1 t2 : τj
(App)

Γ,∆ ⊢ t1 : σ1 Γ,∆[x 7→ σ1] ⊢ t2 : τ

Γ,∆ ⊢ let x = t1 in t2 : τ
(Let)

Γ,∆ ⊢ t1 : fail

Γ,∆ ⊢ let x = t1 in t2 : fail
(Let-F)

Γ,∆ ⊢ t1 : true ∆ ⊢ t2 : τ

Γ,∆ ⊢ assume t1; t2 : τ
(Assume)

Γ,∆ ⊢ t1 : fail

Γ,∆ ⊢ assume t1; t2 : fail
(Assume-F)

Γ ⊢ ρ : ∆′ Γ,∆′ ⊢ p : σ

Γ,∆ ⊢ close p in ρ : σ
(Close)

Γ ⊢ ρ : ∆′ Γ,∆′ ⊢ t : τ

∆ ⊢ bind ρ in t : τ
(Bind)

dom(∆) = dom(ρ) Γ ⊢ ρ(x) : ∆(x) for each x ∈ dom(∆)

Γ ⊢ ρ : ∆
(Env)

Fig. 4. Typing rules

b :: bool
σi :: κ1 τi :: κ2 for each i

(
∧

i σi → τi) :: (κ1 → κ2)

σi :: κi for each i

⟨σ1, . . . , σk⟩ :: ⟨κ1, . . . , κk⟩ fail :: κ .

We naturally extend this refinement relation to those for local/global type envi-
ronments and denote ∆ :: Σ and Γ :: K.

There are four kinds of type judgments in the intersection type system;

– Γ,∆ ⊢ t : τ for term t;
– Γ,∆ ⊢ e : τ for expression e;
– Γ,∆ ⊢ t̃ : σ̃ or Γ,∆ ⊢ t̃ : fail for sequence t̃; and
– Γ ⊢ ρ : ∆ for environment ρ.

The typing rules for those judgments are given in Figure 4. Intuitively, the
type judgment for terms represents “under-approximation” of the evaluation

Higher-Order Model Checking in Direct Style 9

of the term. The judgment Γ,∆ ⊢ t : σ intuitively means that there is a
reduction ρ ⊢D t −→∗ v for some value v of type σ, and Γ,∆ ⊢ t : fail
means that ρ ⊢D t −→∗ ϕℓ for some error expression ϕ. For example, for
the term t1 = ⟨true ⊕ false, true⟩ℓ, the judgments Γ,∆ ⊢ t1 : ⟨true, true⟩
and Γ,∆ ⊢ t1 : ⟨false, true⟩ should hold because there are reductions ρ ⊢D

t1 −→∗ ⟨true, true⟩ℓ and ρ ⊢D t1 −→∗ ⟨false, true⟩ℓ. Furthermore, for the
term t2 = (let x = true ⊕ false in assume x; fail)ℓ, Γ,∆ ⊢ t2 : fail because
ρ ⊢D t2 −→∗ (bind ρ[x 7→ true] in fail)ℓ. We remark that a term that always
diverges (e.g. Ω and assume false; t) does not have any types. The judgments
Γ,∆ ⊢ t̃ : σ̃ and Γ,∆ ⊢ t̃ : fail are auxiliary judgments, which correspond to
the evaluation strategy that evaluates t̃ from left to right. For example, the rule
(Seq-F) means that the evaluation t̃ = t1 . . . tk fails (e.g. Γ,∆ ⊢ t̃ : fail) if
and only if some ti fails (e.g. Γ,∆ ⊢ ti : fail), and t0, . . . , ti−1 are evaluated
to some values ṽ (e.g. Γ,∆ ⊢ t1, . . . , ti−1 : σ̃). The judgment for environments
Γ,∆ ⊢ ρ : ∆ represents that for each binding [x 7→ v] in ρ, v has type ∆(x).

The type system above is an extension of Tsukada and Kobayashi’s one [19].
The main differences are:

– Our target language supports tuples as first-class values, while tuples may
occur only as function arguments in their language. By supporting them,
we avoid hyper-exponential explosion of the number of types caused by the
CPS-transformation to eliminate first-class tuples.

– Our target language also supports let-expressions. Although it is possible
to define them as syntactic sugar, supporting them as primitives makes our
type inference algorithm more efficient.

We define some operators used in the rest of this section. Let σ and σ′ be
value types that are refinements of some function sort. The intersection of σ and
σ′, written as σ ∧ σ′, is defined by:∧

i∈I

(σi → τi) ∧
∧
j∈J

(σj → τj) =
∧

k∈(I∪J)

(σk → τk),

where σ =
∧

i∈I(σi → τi) and σ′ =
∧

j∈J(σj → τj). Let D be a global definition,
and Γ and Γ ′ be global type environments. We say Γ ′ is a D-expansion of Γ ,
written as Γ ◁D Γ ′, if the following condition holds:

Γ ◁D Γ ′ ⇐⇒ dom(Γ) = dom(Γ ′),
∀f ∈ dom(Γ).∃σ. Γ, ∅ ⊢ D(f) : σ and Γ ′(f) = (Γ (f) ∧ σ)

This expansion soundly computes types of each recursive function. Intuitively,
Γ ◁D Γ ′ means that, assuming Γ is a sound type environment for D, Γ ′(f) is
a sound type of f because Γ ′(f) is obtained from Γ (f) by adding a valid type
of D(f). We write Γ⊤

D for the environment {f 7→
∧

∅ | f ∈ dom(D)}, which
corresponds to approximating D as D⊤ = {f 7→ λx : κ. Ω | f ∈ dom(D)}. It is
always safe to approximate the behaviour of D with Γ⊤

D . We write ◁∗
D for the

reflexive and transitive closure of ◁D. We say Γ is sound for D if Γ⊤
D ◁∗

D Γ .

10 Taku Terao, Takeshi Tsukada, and Naoki Kobayashi

Theorem 1 indicates that the intersection type system characterizes the
reachability of Boolean programs. The proof is similar to the proof of the cor-
responding theorem for Tsukada and Kobayashi’s type system [19]: see Ap-
pendix B.

Theorem 1. Let P = let rec D : K in t0 be a well-sorted program. P is unsafe
if and only if there is a global type environment Γ that is sound for D, and that
Γ, ∅ ⊢ t0 : fail.

According to this theorem, the reachability checking problem is solved by
saturation-based algorithms. For example, it is easily shown that the following
näıve saturation function FD is sufficient for deciding the reachability.

FD(Γ)(f) = Γ (f) ∧
∧{

σ → τ

∣∣∣∣ D(f) = λx : κ. t, σ :: κ,
Γ, [x 7→ σ] ⊢ t : τ

}
The saturation function is effectively computable. To compute the second operand
of ∧ in the definition of FD(Γ)(f), it suffices to pick each σ such that σ :: κ,
and computes τ such that Γ, [x 7→ σ] ⊢ t : τ . Note that there are only finitely
many σ such that σ :: κ. Given a well-sorted program let rec D : K in t0, let
Γ0 = Γ⊤

D and Γi+1 = FD(Γi). The sequence Γ0, Γ1, . . . , Γm, . . . converges for
some m, because Γi ◁D Γi+1 for each i, and ◁D is a partial order on the (finite)
set of type environments. Thus, the reachability is decided by checking whether
Γm, ∅ ⊢ t0 : fail holds.

4 The 0-CFA Guided Saturation Algorithm

In the following discussion, we fix some well-sorted program P = let rec D :
K in t0. We assume that all variables bound in lambda-expressions or let-
expressions in P are distinct from each other, and that all the labels in P are
also distinct from each other. Therefore, we assume each variable x has the
corresponding sort, and we write sort(x) for it.

This section presents an efficient algorithm for deciding the reachability prob-
lem, based on the type system in the previous section. Unfortunately, the näıve
algorithm presented in Section 3 is impractical, mainly due to the (Fun) rule:

Γ,∆[x 7→ σi] ⊢ t : τi σi :: κ for each i ∈ I

Γ,∆ ⊢ λx : κ. t :
∧

i∈I(σi → τi)
(Fun)

The rule tells us how to enumerate the type judgments for λx : κ. t from those
for t, but there are a huge number of candidate types of the argument x because
they are only restricted to have a certain sort κ; when the depth of κ is k, the
number of candidate types is k-fold exponential. Therefore, we modify the type
system to reduce irrelevant type candidates.

Higher-Order Model Checking in Direct Style 11

4.1 The δ̂-Guided Type System

A flow type environment is a function that maps a variable x to a set of value
types that are refinement of sort(x). Let Γ be a global type environment, δ̂ be
a flow type environment, and ∆ be a local type environment. We define the
δ̂-guided type judgment of the form either Γ,∆ ⊢δ̂ t : τ or Γ,∆ ⊢δ̂ e : τ . The
typing rules for this judgment are the same as that of Γ,∆ ⊢ t : τ , except for
(Fun), which is replaced by the following rule:

S =
{
(σ, τ)

∣∣∣ σ ∈ δ̂(x), Γ,∆[x 7→ σ] ⊢δ̂ t : τ
}

Γ,∆ ⊢δ̂ λx : κ. t :
∧

(σ,τ)∈S(σ → τ)
(Fun’)

This modified rule derives the “strongest” type of the lambda-abstraction, as-
suming δ̂(x) is an over-approximation of the set of types bound to x. This type

system, named the δ̂-guided type system, is built so that the type judgments are
deterministic for values, lambda-abstractions and environments.

Proposition 1. Suppose Γ :: K. Then,

– K, ∅ ⊢ v : κ implies ∃!σ.σ :: κ ∧ Γ, ∅ ⊢δ̂ v : σ,
– K, ∅ ⊢ p : κ implies ∃!σ.σ :: κ ∧ Γ, ∅ ⊢δ̂ p : σ, and
– K ⊢ ρ : Σ implies ∃!∆.∆ :: Σ ∧ Γ ⊢δ̂ ρ : ∆.

Thereby, we write [[v]]Γ,δ̂, [[p]]Γ,δ̂ and [[ρ]]Γ,δ̂ for the value type of value v, lambda-
abstraction p, and environment ρ, respectively.

We define the δ̂-guided saturation function GD(δ̂, Γ) as follows:

GD(δ̂, Γ)(f) = Γ (f) ∧ [[D(f)]]Γ,δ̂

It is easily shown that the soundness theorem of δ̂-guided type system holds.

Theorem 2 (Soundness). Let P = let rec D : K in t0 be a well-sorted pro-

gram. Let δ̂0, δ̂1, . . . be a sequence of flow type environments. We define a se-
quence of global type environments Γ0, Γ1, . . . as follows: (i) Γ0 = Γ⊤

D , and (ii)

Γi+1 = GD(δ̂i, Γi) for each i ≥ 0. The program P is unsafe if there is some m
such that Γm, ∅ ⊢δ̂m

t0 : fail.

However, the completeness of the δ̂-guided type system depends on the flow
environments used during saturation. For example, if we use the largest flow
type environment, that is, δ̂(x) = {σ | σ :: sort(x) }, we have the completeness,
but we lose the efficiency. We have to find a method to compute a sufficiently
large flow type environment δ̂ such that the δ̂-guided type system achieves both
the completeness and the efficiency.

In the call-by-name case, a sufficient condition on δ̂ to guarantee the com-
pleteness can be formalized in terms of flow information [4]. For each function call

t1 t2, we just need to require that δ̂(x) ⊇ {σ | Γ,∆ ⊢δ̂ t2 : σ } for each possible
value λx. t of t1.

12 Taku Terao, Takeshi Tsukada, and Naoki Kobayashi

However, in the call-by-value case, the condition on δ̂ is more subtle because
the actual value bound to argument x is not t2 itself but an evaluation result of
t2. In order to prove that the δ̂-guided type system is complete, it is required
that δ̂(x) contains all the types of the values bound to x during the evalua-

tion,§ i.e. δ̂(x) ⊇ { [[v]]Γ,δ̂ | ρ ⊢D t2 −→∗ v }. Therefore, we have to prove that

{ [[v]]Γ,δ̂ | ρ ⊢D t2 −→∗ v } ⊇ {σ | Γ,∆ ⊢δ̂ t2 : σ }, but this fact follows from the

completeness of the δ̂-guided type system, which causes a circular reasoning.
In the rest of this section, we first formalize 0-CFA for our target language,

propose our 0-CFA guided saturation algorithm, and prove the correctness of
the algorithm.

4.2 0-CFA

We adopt the formalization of 0-CFA by Nielson et al. [13].
An abstract value is defined by:

av (abstract values) ::= bool | p | f | ⟨av1, . . . , avk⟩.

The set of abstract values is denoted as V̂alue. An abstract value is regarded
as a value without environments. The abstract value of a value v, written v̂, is
defined by:

ŵℓ = ŵ b̂ = bool f̂ = f

̂close p in ρ = p ̂⟨v1, . . . , vk⟩ = ⟨v̂1, . . . , v̂k⟩.

An abstract cache is a function from Lab to P(V̂alue), and an abstract en-

vironment is a function from Var to P(V̂alue). Let Ĉ be an abstract cache,
and ρ̂ be an abstract environment. We define the relations (Ĉ, ρ̂) |=D eℓ and
(Ĉ, ρ̂) |=D ρ, which represents (Ĉ, ρ̂) is an acceptable CFA result of the term eℓ

and the environment ρ, respectively.
The relations are co-inductively defined by the rules given in Figure 5. In the

(tuple) rule, Ĉ(ℓ1) ⊗ · · · ⊗ Ĉ(ℓk) means the set { ⟨v̂1, . . . , v̂k⟩ | ∀i.v̂i ∈ Ĉ(ℓi) }.
In the (proj) rule, πk

i (Ĉ(ℓ1)) = { v̂i | ⟨v̂0, . . . , v̂k−1⟩ ∈ Ĉ(ℓ1) }. The relation

(Ĉ, ρ̂) |=D eℓ is defined so that if eℓ is evaluated to a value v, then the abstract
value of v is in Ĉ(ℓ). The relation (Ĉ, ρ̂) |=D ρ means that for each binding
x 7→ v in ρ, ρ̂(x) contains the abstract value of v.

4.3 The 0-CFA Guided Saturation Algorithm

We propose a method to compute a sufficiently large δ̂ so that the δ̂-guided type
system would be complete. Let Ĉ be an abstract cache. We define two relations
(Ĉ, δ̂) |=D,Γ (t,∆), and (Ĉ, δ̂) |=D,Γ ρ. The relation (Ĉ, δ̂) |=Γ (t,∆) means

§In the call-by-name case, this property immediately follows from the condition
δ̂(x) ⊇ {σ | Γ,∆ ⊢δ̂ t2 : σ } because t2 is not evaluated before the function call.

Higher-Order Model Checking in Direct Style 13

Ĉ(ℓ) ∋ bool

(Ĉ, ρ̂) |=D bℓ

(Bool)

Ĉ(ℓ) ⊇ ρ̂(x)

(Ĉ, ρ̂) |=D xℓ

(Var)

(Ĉ, ρ̂) |=D failℓ

(Fail)
(Ĉ, ρ̂) |=D Ωℓ

(Omega)

Ĉ(ℓ) ∋ f
D(f) = λx : κ. t

(Ĉ, ρ̂) |=D t

(Ĉ, ρ̂) |=D f ℓ
(Tfun)

(Ĉ, ρ̂) |=D eℓ1

Ĉ(ℓ) ⊇ πk
i (Ĉ(ℓ1))

(Ĉ, ρ̂) |=D (πk
i e

ℓ1)ℓ
(Proj)

(Ĉ, ρ̂) |=D ρ (Ĉ, ρ̂) |=D p

(Ĉ, ρ̂) |=D (close p in ρ)ℓ
(Close)

Ĉ(ℓ) ∋ (λx : κ. t) (Ĉ, ρ̂) |=D t

(Ĉ, ρ̂) |=D (λx : κ. t)ℓ
(Fun)

(Ĉ, ρ̂) |=D ti for each i Ĉ(ℓ) ∋ bool

(Ĉ, ρ̂) |=D op(t1, . . . , tk)
ℓ

(Op)

(Ĉ, ρ̂) |=D eℓii for each i

Ĉ(ℓ) ⊇ Ĉ(ℓ1)⊗ · · · ⊗ Ĉ(ℓk)

(Ĉ, ρ̂) |=D ⟨eℓ11 , . . . , e
ℓk
k ⟩ℓ

(Tuple)

(Ĉ, ρ̂) |=D eℓ11
(Ĉ, ρ̂) |=D eℓ22

∀(λx : κ. eℓ0) ∈ (Ĉ(ℓ1) ∪ {D(f) | f ∈ Ĉ(ℓ1) }).
ρ(x) ⊇ Ĉ(ℓ2) ∧ Ĉ(ℓ) ⊇ Ĉ(ℓ0)

(Ĉ, ρ̂) |=D (eℓ11 eℓ22)ℓ
(App)

(Ĉ, ρ̂) |=D eℓ11
(Ĉ, ρ̂) |=D ρ

Ĉ(ℓ) ⊇ Ĉ(ℓ1)

(Ĉ, ρ̂) |=D (bind ρ in eℓ11)ℓ
(Bind)

(Ĉ, ρ̂) |=D eℓ11
(Ĉ, ρ̂) |=D eℓ22

Ĉ(ℓ) ⊇ Ĉ(ℓ1)

Ĉ(ℓ) ⊇ Ĉ(ℓ2)

(Ĉ, ρ̂) |=D (eℓ11 ⊕ eℓ22)ℓ
(Br)

(Ĉ, ρ̂) |=D eℓ11 (Ĉ, ρ̂) |=D eℓ22
ρ̂(x) ⊇ Ĉ(ℓ1) Ĉ(ℓ) ⊇ Ĉ(ℓ2)

(Ĉ, ρ̂) |=D let x = eℓ11 in eℓ22
(Let)

(Ĉ, ρ̂) |=D t1
(Ĉ, ρ̂) |=D eℓ22

Ĉ(ℓ) ⊇ Ĉ(ℓ2)

(Ĉ, ρ̂) |=D (assume t1; e
ℓ2
2)ℓ

(Assume)

(Ĉ, ρ̂) |=D wℓ ρ̂(x) ⊇ Ĉ(ℓ) for each binding x 7→ wℓ in ρ

(Ĉ, ρ̂) |=D ρ
(Env)

Fig. 5. 0-CFA rules

14 Taku Terao, Takeshi Tsukada, and Naoki Kobayashi

(Ĉ, δ̂) |=D,Γ (bℓ,∆)
(Bool)

(Ĉ, δ̂) |=D,Γ (xℓ,∆)
(Var)

(Ĉ, δ̂) |=D,Γ (t,∆)

(Ĉ, δ̂) |=D,Γ ((πk
i t)

ℓ,∆)
(Proj)

(Ĉ, δ̂) |=D,Γ (failℓ,∆)
(Fail)

D(f) = λx : κ. t

(Ĉ, δ̂) |=D,Γ (t, [x 7→ σ]) for each σ ∈ δ̂(x)

(Ĉ, δ̂) |=D,Γ (f ℓ,∆)
(Tfun)

(Ĉ, δ̂) |=D,Γ (Ωℓ,∆)
(Omega) (Ĉ, δ̂) |=D,Γ (t,∆[x 7→ σ]) for each σ ∈ δ̂(x)

(Ĉ, ρ̂) |=D,Γ ((λx : κ. t)ℓ,∆)
(Fun)

(Ĉ, δ̂) |=D,Γ (ti,∆) for each i

(Ĉ, δ̂) |=D,Γ (op(t1, . . . , tk)
ℓ,∆)

(Op)
(Ĉ, δ̂) |=D,Γ (ti,∆) for each i

(Ĉ, δ̂) |=D,Γ (⟨t1, . . . , tk⟩ℓ,∆)
(Tuple)

(Ĉ, δ̂) |=D,Γ (eℓ11 ,∆),

(Ĉ, δ̂) |=D,Γ (t2,∆)

∀(λx : κ. t) ∈ (Ĉ(ℓ1) ∪ {D(f) | f ∈ Ĉ(ℓ1) })
δ̂(x) ⊇ {σ | Γ,∆ ⊢δ̂ t2 : σ }

(Ĉ, δ̂) |=D,Γ ((eℓ11 t2)
ℓ,∆)

(App)

(Ĉ, δ̂) |=D,Γ (t1,∆) (Ĉ, δ̂) |=D,Γ (t2,∆[x 7→ σ]) for each Γ,∆ ⊢δ̂ t1 : σ

(Ĉ, δ̂) |=D,Γ ((let x = t1 in t2)
ℓ,∆)

(Let)

(Ĉ, δ̂) |=D,Γ (t1,∆) Γ,∆ ⊢δ̂ t1 : true =⇒ (Ĉ, δ̂) |=D,Γ (t2,∆)

(Ĉ, δ̂) |=D,Γ ((assume t1; t2)
ℓ,∆)

(Assume)

(Ĉ, δ̂) |=D,Γ (t, [[ρ]]Γ,δ̂) (Ĉ, δ̂) |=D,Γ ρ

(Ĉ, δ̂) |=D,Γ ((bind ρ in t)ℓ,∆)
(Bind)

(Ĉ, δ̂) |=D,Γ ρ (Ĉ, δ̂) |=Γ (pℓ, [[ρ]]Γ,δ̂)

(Ĉ, δ̂) |=D,Γ ((close p in ρ)ℓ,∆)
(Close)

(Ĉ, δ̂) |=D,Γ (t1,∆)

(Ĉ, δ̂) |=D,Γ (t2,∆)

(Ĉ, δ̂) |=D,Γ ((t1 ⊕ t2)
ℓ,∆)

(Br)

∀x ∈ dom(ρ). (Ĉ, δ̂) |=D,Γ (ρ(x), ∅)
(Ĉ, δ̂) |=D,Γ ρ

(Env)

Fig. 6. Derivation rules for (Ĉ, δ̂) |=D,Γ (t,∆) and (Ĉ, δ̂) |=D,Γ ρ

intuitively that, during any evaluations of t under an environment ρ such that
Γ ⊢ ρ : ∆, the type of values bound to variable x is approximated by δ̂(x).
The derivation rules for those relations are given in Figure 6. We regard these
rules as an algorithm to saturate δ̂, given Ĉ, ∆ and t. The algorithm basically
traverses the term t with possible ∆ using δ̂-guided type system as dataflow,
and propagates types to δ̂ using the rule (App): if t is an function call eℓ1 t2,
the algorithm enumerates each lambda abstraction λx : κ. t0 that eℓ1 may be
evaluated to by using Ĉ, and propagates each type σ of t2 (i.e. Γ,∆ ⊢δ̂ t : σ) to

δ̂(x).

Algorithm 1 shows our algorithm for the reachability problem, named the 0-
CFA guided saturation algorithm. Given a well-sorted program P = let rec D :
K in t0, the algorithm initializes Γ0 with Γ⊤

D , computes a 0-CFA result (Ĉ, ρ̂)

such that (Ĉ, ρ̂) |=D t, sets i = 0, and enters the main loop. In the main loop, it

Higher-Order Model Checking in Direct Style 15

Algorithm 1 The 0-CFA guided saturation algorithm

function IsSafe(P = let rec D : K in t0)
Γ0 := Γ⊤

D

Compute (Ĉ, ρ̂) such that (Ĉ, ρ̂) |=D t0
i := 0
repeat

Compute δ̂i such that (Ĉ, δ̂i) |=D,Γi (t0, ∅)
Γi+1 = GD(δ̂i, Γi)
i := i+ 1
if Γi−1, ∅ ⊢δ̂i−1

t0 : fail then
return Unsafe

end if
until Γi−1 = Γi

return Safe
end function

computes δ̂i such that (Ĉ, δ̂i) |=D,Γi t0, and then, sets Γi+1 with GD(δ̂i, Γi) and
increments i. The algorithm outputs “Unsafe” if Γi ⊢δ̂i

t0 : fail holds for some
i. Otherwise, the main loop eventually breaks when Γi = Γi−1 holds, and then,
the algorithm outputs “Safe”.

We explain how the saturation algorithm runs for the program P1 in Exam-
ple 1. Let ℓ1 and ℓ2 be the labels of the first application of y and the second
application of y in function f . A result of 0-CFA would be Ĉ(ℓ1) = Ĉ(ℓ2) =

λ(x : bool). true⊕ false. Let Γ0 = { f 7→
∧
∅ }. Then, δ̂0 would be

δ̂0(y) = {
∧

∅, (true → true) ∧ (true → false) } δ̂0(x) = { true } .

Therefore, Γ0, ∅ ⊢δ̂0
D1(f) : (true → true) ∧ (true → false) → fail holds, and

it would be Γ1 = { f : (true → true) ∧ (true → false) → fail }. In the next

iteration, there are no updates, i.e. δ̂1 = δ̂0 and Γ1 = Γ0. Because Γ1, ∅ ⊢δ̂1
t1 :

fail holds, the algorithm outputs “Unsafe”.

4.4 Correctness of the 0-CFA Guided Saturation Algorithm

We prove the correctness of Algorithm 1. If the algorithm outputs “Unsafe”,
the given program is unsafe by using Theorem 2. In order to justify the case
that the algorithm outputs “Safe”, we prove the completeness of the δ̂-guided
type system.

First, the following lemma indicates that (Ĉ, ρ̂) |=D t and (Ĉ, δ̂) |=D,Γ (t,∆)

satisfy subject reduction, and also that the δ̂-guided type system satisfies subject
expansion. This lemma solves the problem of circular reasoning discussed at the
end of Section 4.1. The proof is given in Appendix C.

Lemma 1. Let Γ be a global type environment such that Γ = GD(δ̂, Γ). Suppose

that (Ĉ, ρ̂) |=D t1, (Ĉ, ρ̂) |=D ρ, ρ ⊢D t1 −→ t2, (Ĉ, δ̂) |=D,Γ ρ, and (Ĉ, δ̂) |=D,Γ

(t1,∆), where ∆ = [[ρ]]Γ,δ̂. Then, (i) (Ĉ, δ̂) |=D t2, (ii) (Ĉ, δ̂) |=D,Γ (t2,∆), and

(iii) for any term type τ , Γ,∆ ⊢δ̂ t2 : τ implies Γ,∆ ⊢δ̂ t1 : τ .

16 Taku Terao, Takeshi Tsukada, and Naoki Kobayashi

We use the fact that δ̂-guided type system derives fail for error terms.

Lemma 2. Let ϕ be a well-sorted error expression. Then, Γ, ∅ ⊢δ̂ ϕ : fail.

Then, we have the following completeness theorem, which justifies the correctness
of Algorithm 1.

Theorem 3. Let P = let rec D : K in t0 be a well-sorted program, Γ be a global
type environment such that Γ :: K and Γ = GD(δ̂, Γ). Suppose that (Ĉ, ρ̂) |=D t0,

and (Ĉ, δ̂) |=D,Γ (t0, ∅). If Γ, ∅ ̸ ⊢δ̂t0 : fail then P is safe.

Proof. We prove the contraposition. Assume that P is unsafe, i.e., that there is
a sequence e0 . . . en such that eℓ0 = t0, ∅ ⊢D eℓi −→ eℓi+1 for each 0 ≤ i ≤ n− 1,
and that eℓn is an error term. We have ∀τ.Γ, ∅ ⊢δ̂ eℓn : τ =⇒ Γ, ∅ ⊢δ̂ t0 : τ by
induction on n and using Lemma 1. By Lemma 2, Γ, ∅ ⊢δ̂ eℓn : fail. Therefore,
we have Γ, ∅ ⊢δ̂ t0 : fail. ⊓⊔

5 Implementation and Experiments

5.1 Benchmarks and Environment

We have implemented a reachability checker named HiBoch for call-by-value
Boolean programs. In order to evaluate the performance of our algorithm, we
prepared two benchmarks. The first benchmark consists of Boolean programs
generated by a CEGAR-based verification system for ML programs. More pre-
cisely, we prepared fourteen instances of verification problems for ML programs,
which have been manually converted from the MoCHi benchmark [17], and
passed them to our prototype CEGAR-based verification system, which uses
HiBoch as a backend reachability checker. During each CEGAR cycle, the sys-
tem generates an instance of the reachability problem for Boolean programs by
predicate abstraction, and we used these problem instances for the first bench-
mark.

The second benchmark consists of a series of Boolean programs generated by
a template named “Flow”, which was manually designed to clarify the differences
between the direct and indirect styles. More details on this benchmark are given
in Appendix D.

We compared our direct method with the previous indirect method, which
converts Boolean programs to HORS and checks the reachability with a higher-
order model checker. We use HorSat [4] as the main higher-order model checker
in the indirect method; since HorSat also uses a 0-CFA-based saturation algo-
rithm (but for HORS, not for Boolean programs), we believe that HorSat is
the most appropriate target of comparison for evaluating the difference between
the direct/indirect approaches. We also report the results of the indirect method
using the other state-of-the-art higher-order model checkers HorSat2 [10] and
Preface [16], but one should note that the difference of the performance may
not properly reflect that between the direct/indirect approaches, because Hor-
Sat2 uses a different flow analysis and Preface is not based on saturation.

Higher-Order Model Checking in Direct Style 17

The experimental environment was as follows. The machine spec is 2.3GHz
Intel Core i7 CPU, 16GB RAM. Our implementation was compiled with the
Glasgow Haskell Compiler, version 7.10.3,HorSat andHorSat2 were compiled
with the OCaml native-code compiler, version 4.02.1, and Preface was run on
Mono JIT compiler version 3.2.4. The running times of each model checker were
limited to 200 seconds.

5.2 Experimental Result

Figure 7 and 8 show the experimental results. The horizontal axis is the size
of Boolean programs, measured on the size of the abstract syntax trees, and
the vertical axis is the elapsed time of each model checker, excluding the elapsed
times for converting the reachability problem instances to the higher-order model
checking instances.

For the first benchmark, HiBoch solves all the test cases in a few seconds.
For the instances of size within 5000, HorSat2 is the fastest, and HiBoch is the
second fastest, which is 4–7 times faster than HorSat (and also Preface). For
the instances of size over 5000, HiBoch is the fastest ¶ by an order of magnitude.
We regard the reason of this result as the fact that these instances have larger ar-
ity (where the arity means the number of function arguments). The indirect style
approach suffers from huge numbers of combinations between argument types.
Our direct approach reduces many irrelevant combinations using the structure
of call-by-value programs, which is lost during the CPS-transformation.

For the second benchmark, as we expected, HiBoch clearly outperforms the
indirect approaches, even the one using HorSat2.

6 Related Work

As mentioned already, the reachability of higher-order call-by-value Boolean pro-
grams has been analyzed by a combination of CPS-transformation and higher-
order model checking [11,17]. Because the näıve CPS-transformation algorithm
often generates too complex HORS, Sato et al. [17] proposed a method called se-
lected CPS transformation, in which insertion of some redundant continuations
is avoided. The experiments reported in Section 5 adapt this selective CPS trans-
formation, but the indirect method still suffers from the complexity due to the
CPS transformation.

Tsukada and Kobayashi [19] studied the complexity of the reachability prob-
lem, and showed that the problem is k-EXPTIME complete for depth-k pro-
grams. They also introduced an intersection type system and a type inference
algorithm, which are the basis of our work. However, their algorithm has been
designed just for proving an upper-bound of the complexity; the algorithm is
impractical in the sense that it always suffers from the k-EXPTIME bottleneck,
while our 0-CFA guided algorithm does not.

¶Unfortunately, we could not measure the elapsed time of HorSat2 for some large
instances because it raised stack-overflow exceptions.

18 Taku Terao, Takeshi Tsukada, and Naoki Kobayashi

Fig. 7. Experimental Result for MoCHi benchmark

Fig. 8. Experimental result for Flow benchmark

Higher-Order Model Checking in Direct Style 19

For first-order Boolean programs, Ball and Rajamani [2] proposed a path-
sensitive, dataflow algorithm and implemented Bebop tool, which is used as a
backend of SLAM [1]. It is not clear whether and how their algorithm can be
extended to deal with higher-order Boolean programs.

Flow-based optimizations have been used in recent model checking algorithms
for higher-order recursion schemes [3,4,16,18]. However, näıve application of such
optimizations to call-by-value language would be less accurate because we need
to estimate the evaluation result of not only functions but also their arguments.
Our method employs the intersection type system to precisely represent the
evaluation results.

Some of the recent higher-order model checkers [10,16] use more accurate flow
information. For example, Preface [16] dynamically refines flow information
using type-based abstraction. We believe it is possible to integrate more accurate
flow analysis [5,6,7] also into our algorithm.

7 Conclusion

We have proposed a direct algorithm for the reachability problem of higher-order
Boolean programs, and proved its correctness. We have confirmed through ex-
periments that our direct approach improves the performance of the reachability
analysis.

We are now developing a direct-style version of MoCHi, a fully automated
software model checker for OCaml programs, on top of our reachability checker
for Boolean programs, and plan to compare the overall performance with the
indirect style. We expect that avoiding CPS transformations also benefits the
predicate discovery phase.

Acknowledgment.

This work was supported by JSPS KAKENHI Grant Numbers JP16J01038 and
JP15H05706.

References

1. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and static driver verifier:
Technology transfer of formal methods inside microsoft. In: Integrated Formal
Methods 2004. LNCS, vol. 2999, pp. 1–20. Springer (2004)

2. Ball, T., Rajamani, S.K.: Bebop: a path-sensitive interprocedural dataflow engine.
In: Proceedings of PASTE ’01. pp. 97–103. ACM (2001)

3. Broadbent, C.H., Carayol, A., Hague, M., Serre, O.: C-SHORe: a collapsible ap-
proach to higher-order verification. In: Proceedings of ICFP ’13. pp. 13–24 (2013)

4. Broadbent, C.H., Kobayashi, N.: Saturation-based model checking of higher-order
recursion schemes. In: Proceedings of CSL 2013. LIPIcs, vol. 23, pp. 129–148 (2013)

5. Gilray, T., Lyde, S., Adams, M.D., Might, M., Horn, D.V.: Pushdown control-flow
analysis for free. In: Proceedings of POPL ’16. pp. 691–704. ACM (2016)

20 Taku Terao, Takeshi Tsukada, and Naoki Kobayashi

6. Horn, D.V., Might, M.: Abstracting abstract machines. In: Proceedings of ICFP
’10. pp. 51–62. ACM (2010)

7. Johnson, J.I., Horn, D.V.: Abstracting abstract control. In: Proceedings of DLS
’14. pp. 11–22. ACM (2014)

8. Kobayashi, N.: Model-checking higher-order functions. In: Proceedings of PPDP
’09. pp. 25–36. ACM (2009)

9. Kobayashi, N.: Model checking higher-order programs. Journal of the ACM 60(3)
(2013)

10. Kobayashi, N.: HorSat2: A saturation-based higher-order model checker. A tool
paper under submission. The tool is available at http://www-kb.is.s.u-tokyo.

ac.jp/~koba/horsat2. (2015)
11. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-

order model checking. In: Proceedings of PLDI ’11. pp. 222–233. ACM (2011)
12. Kuwahara, T., Terauchi, T., Unno, H., Kobayashi, N.: Automatic termination veri-

fication for higher-order functional programs. In: Proceedings of ESOP ’14. LNCS,
vol. 8410, pp. 392–411. Springer (2014)

13. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
(1999)

14. Ong, C.H.L.: On model-checking trees generated by higher-order recursion
schemes. In: Proceedings of LICS ’06. pp. 81–90. IEEE Computer Society Press
(2006)

15. Ong, C.H.L., Ramsay, S.: Verifying higher-order programs with pattern-matching
algebraic data types. In: Proceedings of POPL ’11. pp. 587–598. ACM (2011)

16. Ramsay, S.J., Neatherway, R.P., Ong, C.L.: A type-directed abstraction refinement
approach to higher-order model checking. In: Proceedings of POPL ’14. pp. 61–72.
ACM (2014)

17. Sato, R., Unno, H., Kobayashi, N.: Towards a scalable software model checker for
higher-order programs. In: Proceedings of PEPM ’13. pp. 53–62. ACM (2013)

18. Terao, T., Kobayashi, N.: A ZDD-based efficient higher-order model checking al-
gorithm. In: Proceedings of APLAS ’13. LNCS, vol. 8858, pp. 354–371. Springer
(2014)

19. Tsukada, T., Kobayashi, N.: Complexity of model-checking call-by-value programs.
In: Proceedings of FoSSaCS ’14. LNCS, vol. 8412, pp. 180–194. Springer (2014)

http://www-kb.is.s.u-tokyo.ac.jp/~koba/horsat2
http://www-kb.is.s.u-tokyo.ac.jp/~koba/horsat2

Higher-Order Model Checking in Direct Style 21

A The Sort System of the Target Language

K, Σ ⊢ e : κ

K, Σ ⊢ eℓ : κ
(Term)

x ∈ dom(Σ)

K, Σ ⊢ x : Σ(x)
(Var)

f ∈ dom(K)

K, Σ ⊢ f : K(f)
(Tfun)

K, Σ ⊢ b : bool
(Bool)

K, Σ ⊢ fail : κ
(Fail)

K, Σ ⊢ Ω : κ
(Omega)

K, Σ[x 7→ κ1] ⊢ t : κ2

K, Σ ⊢ λx : κ1. t : κ1 → κ2

(Fun)
∀i ∈ {1, . . . , k}.K, Σ ⊢ ti : bool

K, Σ ⊢ op(t1, . . . , tk) : bool
(Bop)

K, Σ ⊢ t : ⟨κ0, . . . , κk−1⟩
K, Σ ⊢ πk

i t : κi

(Proj)
∀i ∈ {1, . . . , k}.K, Σ ⊢ ti : κi

K, Σ ⊢ ⟨t1, . . . , tk⟩ : ⟨κ1, . . . , κk⟩
(Tuple)

K, Σ ⊢ t1 : κ1 → κ2 K, Σ ⊢ t2 : κ1

K, Σ ⊢ t1 t2 : κ2

(App)

K, Σ ⊢ t1 : κ K, Σ ⊢ t2 : κ

K, Σ ⊢ t1 ⊕ t2 : κ
(Br)

K, Σ ⊢ t1 : κ1 K, Σ[x 7→ κ1] ⊢ t2 : κ2

K, Σ ⊢ let x = t1 in t2 : κ2

(Let)

K, Σ ⊢ t1 : bool K, Σ ⊢ t2 : κ2

K, Σ ⊢ assume t1; t2 : κ2

(Assume)

Fig. 9. Sort judgment rules

B Proof of Theorem 1

Because the intersection type system of our target language is a natural exten-
sition of Tsukada and Kobayashi’s one [19], we only give a proof sketch for the
theorem.

We first eliminate recursive functions in the program by unfolding. Let P =
let recD : K in t0 be a well-sorted program, andD = {f1 7→ λx1 : κ1. t1, . . . , fk 7→
λxk : κk. tk} We define n-th expansion of P , written as [P]n as the following
term:

let f0
1 = λx1 : κ1. Ω in let f0

2 = λx2 : κ2. Ω in . . . let f0
k = λxk : κk. Ω in

let f1
1 = λx1 : κ1. (f

0
1 x1 ⊕ [f̃0

i /f̃i]t1) in

let f1
2 = λx2 : κ2. (f

0
2 x2 ⊕ [f̃0

i /f̃i]t2) in

. . . let f1
k = λxk : κk. (f

0
k xk ⊕ [f̃0

i /f̃i]tk) in

...

let fn
1 = λx1 : κ1. (f

n−1
1 x1 ⊕ [˜fn−1

i /f̃i]t1) in

let fn
2 = λx2 : κ2. (f

n−1
2 x2 ⊕ [˜fn−1

i /f̃i]t2) in

. . . let fn
k = λxk : κk. (f

n−1
k xk ⊕ [˜fn−1

i /f̃i]tk) in [f̃n
i /f̃i]t0

22 Taku Terao, Takeshi Tsukada, and Naoki Kobayashi

Here, [f̃k
i /f̃i]t denotes the term obtained by replacing each function symbol fi

in t with fk
i . The n-th expansion of P approximates the behavior of recursive

functions by unfolding them n times.
The behavior of program P is approximated with the expansions of P .

Lemma 3. Let P be a well-sorted program. P is unsafe if and only if ∅ ⊢∅
[P]n −→∗ ϕℓ for some n and error expression ϕ.

Proof (Sketch). Suppose that we have a reduction sequence ∅ ⊢D t0 −→∗ t′. Let
n be the number of global function call in the sequence. Then, the sequence is
simulated by [P]n. On the other hand, suppose that we have a reduction sequence
∅ ⊢∅ [P]n −→∗ t′ for some n. The sequence is simulated by P by replacing each
closure appears in the reduction sequence ∅ ⊢∅ [P]n −→∗ t′ to the corresponding
function symbol.

There is a correspondence between [P]n and a global type environment Γ .
such that Γ⊤

D ◁n
D Γ , described as follows.

Proposition 2. Let P = let rec D : K in t0 be a well-sorted program, and
τ be a term type. The type judgment ∅, ∅ ⊢ [P]n : τ holds if and only if there
is a sequence of global type environments Γ0, Γ1, . . . , Γn such that Γ0 = Γ⊤

D ,
∀i. Γi ◁D Γi+1, and Γn, ∅ ⊢ t0 : τ .

Proof. By induction on n

Next, we show some propeties of the intersection type system. We use the
following fact.

Proposition 3. Let ϕ be an error term and v be a value. For any Γ and ∆,

– Γ,∆ ⊢ ϕ : τ implies τ = fail, and
– Γ,∆ ⊢ v : τ implies τ = σ for some value type σ.

Proof. By straightforward induction on the structure of error terms and values.

The intersection type system has the following the progress and the subject
expansion properties, which are restricted in the case that there are no recursions.

Lemma 4 (Progress). Suppose ∅, ∆ ⊢ t : τ and ∅ ⊢ ρ : ∆. Then,

1. ρ ⊢ t −→ t′ and ∅,∆ ⊢ t′ : τ for some t′,
2. t is an error term, or
3. t is a value.

Proof. By induction on the structure of t.

Lemma 5 (Subject expansion). Suppose ρ ⊢D t −→ t′, ∅ ⊢ ρ : ∆, and
∅,∆ ⊢ t′ : τ . Then, ∅,∆ ⊢ t : τ .

Proof. By induction on the structure of ρ ⊢D t −→ t′.

Higher-Order Model Checking in Direct Style 23

By using the progress and the subject expansion, the intersection type system
is sound and complete for the reachability in the case that there are no global
functions.

Lemma 6. Suppose ∅, ∅ ⊢ t : κ. Then, ∅, ∅ ⊢ t : fail ⇐⇒ ∅ ⊢D t −→∗ ϕℓ for
some error expression ϕ.

Proof. (⇒) Suppose ∅, ∅ ⊢ t : fail, from Lemma 4, there is a sequence t1, t2, . . .
such that t1 = t, ∅ ⊢∅ ti −→ ti+1, and ∅, ∅ ⊢ ti : fail for each i. Because t has
no recursive function and is simply-typed, the sequence is terminating. Let n be
the length of the sequence. Then, because tn has no redex, tn is either a value
or an error term. However, ∅, ∅ ⊢ tn : fail implies that tn cannot be a value.
Therefore, tn is an error term, and we have ∅ ⊢ t −→∗ ϕℓ for some ϕ.
(⇐) Suppose ∅ ⊢D t −→∗ ϕℓ, for some error expression ϕ. Then, we have ∅, ∅ ⊢
ϕℓ : fail by induction on the structure of ϕ. By using Lemma 5, ∅, ∅ ⊢ t : fail.

Finally, we prove Theorem 1 as follows.

Proof (Theorem 1). Let P = let rec D : K in t0 be a well-sorted program.

P is unsafe ⇐⇒ ∅ ⊢∅ [P]n −→∗ ϕℓ for some n (Lemma 3)

⇐⇒ ∅, ∅ ⊢ [P]n : fail for some n (Lemma 6)

⇐⇒ Γ, ∅ ⊢ t0 : fail ∧ Γ⊤
D ◁∗ Γ (Proposition 2)

C Proof of Lemma 1

First, we have the following propositions.

Proposition 4. (Ĉ, ρ̂) |=D eℓ1 ∧ Ĉ(ℓ1) ⊆ Ĉ(ℓ2) =⇒ (Ĉ, ρ̂) |=D eℓ2 .

Proposition 5. (Ĉ, δ̂) |=D,Γ (eℓ1 ,∆) =⇒ (Ĉ, δ̂) |=D,Γ (eℓ2 ,∆).

Proof. By case analysis.

Proposition 6. Let D be a global definition, Γ be a global type environment, δ̂
be a flow type environment, t be a term, and ∆,∆′ are local type environments
such that ∀x ∈ FV(t).∆(x) = ∆′(x). Then,

1. ∀τ. Γ,∆ ⊢δ̂ t : τ =⇒ Γ,∆′ ⊢δ̂ t : τ

2. (Ĉ, δ̂) |=D,Γ (t,∆) =⇒ (Ĉ, δ̂) |=D,Γ (t,∆′).

Proof. (1) is proved by straightforward induction on t. (2) we fix some Γ and δ̂.
We write ∆ ∼t ∆

′ for ∀x ∈ FV(t).∆(x) = ∆′(x). Let preposition P (t) be:

P (t) ≡ ∀∆ ∼t ∆
′.(Ĉ, δ̂) |=D,Γ (t,∆) =⇒ (Ĉ, δ̂) |=D,Γ (t,∆′)

We prove ∀t.P (t) by induction on the structure of term t. Suppose (Ĉ, δ̂) |=D,Γ

(t,∆) and ∆ ∼t ∆
′.

24 Taku Terao, Takeshi Tsukada, and Naoki Kobayashi

– Case t = f ℓ. From (Ĉ, δ̂) |=D,Γ (t,∆), we have (Ĉ, δ̂) |=D,Γ (t0, [x 7→ σ]) for

each σ ∈ δ̂(x), where D(f) = λx : κ. t0. Immediately, we have (Ĉ, δ̂) |=D,Γ

(t,∆′).

– Case t = (λx : κ. t0)
ℓ. We assume P (t0). From Ĉ, δ̂) |=D,Γ (t,∆), we have

(Ĉ, δ̂) |=D,Γ (t0,∆[x 7→ σ]) for each σ ∈ δ̂(x). Because ∆[x 7→ σ] ∼t0 ∆′[x 7→
σ], for each σ ∈ δ̂(x), we have (Ĉ, δ̂) |=D,Γ (t0,∆

′[x 7→ σ]) for each σ ∈ δ̂(x),

by using P (t0). Therefore, (Ĉ, δ̂) |=D,Γ (t,∆′).

– Case t = (eℓ11 t2)
ℓ. We assume P (eℓ11) and P (t2) . From (Ĉ, δ̂) |=D,Γ (t,∆),

we have (Ĉ, δ̂) |=D,Γ (eℓ11 ,∆) and (Ĉ, δ̂) |=D,Γ (t2,∆). Because ∆ ∼
e
ℓ1
1

∆′

and ∆ ∼t2 ∆′, by using P (eℓ11) and P (t2), we have (Ĉ, δ̂) |=D,Γ (eℓ11 ,∆′)

and (Ĉ, δ̂) |=D,Γ (t2, ∆). Assume λx : κ. t0 ∈ (Ĉ(ℓ1) ∪ {D(f) | f ∈ Ĉ(ℓ1) }).
Then, δ̂(x) ⊇ {σ | Γ,∆ ⊢δ̂ t2 : σ } = {σ | Γ,∆′ ⊢δ̂ t2 : σ } from (1). There-

fore, we have (Ĉ, δ̂) |=D,Γ (t,∆′).

– Case t = let x = t1 in t2. We assume P (t1) and P (t2). From (Ĉ, δ̂) |=D,Γ

(t,∆), we have (Ĉ, δ̂) |=D,Γ (t1,∆), which implies (Ĉ, δ̂) |=D,Γ (t1,∆
′) by

using P (t1) and ∆ ∼t1 ∆′. Assume Γ,∆′ ⊢δ̂ t1 : σ. From (1), Γ,∆ ⊢δ̂ t1 : σ.

Then, we have (Ĉ, δ̂) |=δ̂ (t2,∆[x 7→ σ]). (Ĉ, δ̂) |=δ̂ (t2,∆
′[x 7→ σ]) follows

from P (t2) and ∆[x 7→ σ′] ∼t2 ∆′[x 7→ σ′]. Therefore, (Ĉ, δ̂) |=D,Γ (t,∆′).
– The remaining cases are straightforward.

⊓⊔

Proof. (Lemma 1) Let Γ be a global type environment, D be a global definitions,

Ĉ be an abstract cache, ρ̂ be an abstract environment, and δ̂ be a flow type
environment. Assume Γ = GD(δ̂, Γ). Let P (ρ, t1, t2) be:

P (ρ, t1, t2) ≡
(
(Ĉ, ρ̂) |=D t1 ∧ (Ĉ, ρ̂) |=D ρ∧
(Ĉ, δ̂) |=D,Γ (t1,∆) ∧ (Ĉ, δ̂) |=D,Γ ρ ∧ Γ ⊢δ̂ ρ : ∆

)
=⇒

(
(Ĉ, ρ̂) |=D t2 ∧ (Ĉ, δ̂) |=D,Γ (t2, ∆)∧
∀τ. Γ,∆ ⊢δ̂ t2 : τ =⇒ Γ,∆ ⊢δ̂ t1 : τ

)
We prove ∀ρ ⊢D t1 −→ t2.P (ρ, t1, t2) by induction on the structure of the
derivation tree of ρ ⊢D t1 −→ t2.

Assume ρ ⊢D t1 −→ t2 and P (ρ, t1, t2), that is, (Ĉ, ρ̂) |=D t1, (Ĉ, ρ̂) |=D ρ,
(Ĉ, ρ̂) |=D,Γ (t1,∆) (Ĉ, ρ̂) |=D ρ and Γ ⊢δ̂ ρ : ∆. We prove (1) (Ĉ, ρ̂) |=D t2,

(2) (Ĉ, δ̂) |=D,Γ (t2, ∆), and (3) ∀τ.Γ,∆ ⊢δ̂ t2 : τ =⇒ Γ,∆ ⊢δ̂ t1 : τ by case
analysis on the derivation rule of ρ ⊢D t2 −→ t2.

– Case (Var). We have t1 = xℓ, t2 = wℓ and wℓ0 = ρ(x).
1. From (Ĉ, ρ̂) |=D xℓ, Ĉ(ℓ) ⊇ ρ̂(x). From (Ĉ, ρ̂) |=D ρ, ρ̂(x) ⊇ Ĉ(ℓ0) and

(Ĉ, ρ̂) |=D wℓ0 . Therefore, we have Ĉ(ℓ) ⊃ Ĉ(ℓ0). By using Proposition 4,
(Ĉ, ρ̂) |=D,Γ wℓ.

2. We have (Ĉ, δ̂) |=D,Γ (wℓ0 , ∅) from (Ĉ, δ̂) |=D,Γ ρ. By using Proposi-

tion 5, (Ĉ, δ̂) |=D (wℓ, ∅). Then, by using Proposition 6 and the fact

∅ ∼wℓ ∆, we have (Ĉ, δ̂) |=D,Γ (wℓ,∆).

Higher-Order Model Checking in Direct Style 25

3. Assume Γ,∆ ⊢δ̂ wℓ : τ . Because wℓ is a value, ∆ ∼wℓ ∅, and we have
Γ, ∅ ⊢δ̂ ρ(x) : τ . Such τ is unique, indeed, and is equal to ∆(x) because
Γ ⊢δ̂ ρ : ∆. Then, we have Γ,∆ ⊢δ̂ xℓ : τ .

– Case (Op-1). We have t1 = op(ṽ, t, t̃)ℓ, t2 = op(ṽ, t′, t̃) and ρ ⊢D t −→ t′.
First, we show the assumptions of P (ρ ⊢D t −→ t′). (Ĉ, ρ̂) |=D t follows from

(Ĉ, ρ̂) |=D t1, and (Ĉ, δ̂) |=D,Γ (t,∆), does from (Ĉ, δ̂) |=D (t1,∆). Then,

by using P (ρ ⊢D t −→ t′), we have (Ĉ, ρ̂) |=D t′, (Ĉ, ρ̂) |=D,Γ (t′,∆) and
∀τ.Γ,∆ ⊢δ̂ t′ : τ =⇒ Γ,∆ ⊢δ̂ t : τ . Then, we prove the three conditions.
1,2 Easily proved by their definitions.
3 Assume Γ,∆ ⊢δ̂ t2 : τ . There are two rules to derive it.

• If it is derived from (Op-F), τ = fail and Γ,∆ ⊢δ̂ ṽ, t′, t̃ : fail. We
note that Γ,∆ ⊢δ̂ ṽ : σ̃. If Γ,∆ ⊢δ̂ t′ : fail, then Γ,∆ ⊢δ̂ t : fail, and
Γ,∆ ⊢δ̂ ṽ, t′, t̃ : fail. Otherwise, Γ,∆ ⊢δ̂ ṽ, t : σ̃, σ. It also holds that
Γ,∆ ⊢δ̂ t : σ. Therefore Γ,∆ ⊢δ̂ ṽ, t′, t̃ : fail. By applying (Op-F),
we have Γ,∆ ⊢δ̂ t1 : τ .

• If it is derived from (Op), τ = [[op]](b̃) and Γ,∆ ⊢δ̂ ṽ, t′, t̃ : b̃. Then,

it holds that Γ,∆ ⊢δ̂ ṽ, t, t̃ : b̃. By applying (Op), we have Γ,∆ ⊢δ̂
t1 : τ .

– Case (Op-2). We have t1 = op(b̃)ℓ and t2 = [[op]](b̃). Ĉ(ℓ) ∋ bool follows

from (Ĉ, ρ̂) |=D t1. We have (Ĉ, ρ̂) |=D t2 and (Ĉ, δ̂) |=D (t2,∆) from their
definitions. Assume Γ,∆ ⊢δ̂ t2 : τ . Then τ = [[op]](b̃). It also holds that

Γ,∆ ⊢δ̂ t1 : [[op]](b̃). Therefore, we have Γ,∆ ⊢δ̂ t1 : τ .
– Case (Tuple). This case is similar to case (Op-1).
– Case (Proj-1). We have t1 = (πk

i (e
ℓ′

1))
ℓ, t2 = (πk

i (e
ℓ′

2))
ℓ, and ρ ⊢D eℓ

′

1 −→
eℓ

′

2 . (Ĉ, ρ̂) |=D eℓ
′

1 and Ĉ(ℓ) ⊇ πk
i (Ĉ(ℓ′)) follow from (Ĉ, ρ̂) |=D t1, and

(Ĉ, δ̂) |=D,Γ (eℓ
′

1 ,∆) does from (Ĉ, δ̂) |=D,Γ (t1, ∆). Therefore by using

P (ρ, eℓ
′

1 , e
ℓ′

2), we have (Ĉ, ρ̂) |=D eℓ
′

2 , (Ĉ, δ̂) |=D,Γ (eℓ
′

2 ,∆), and ∀τ.Γ,∆ ⊢δ̂

eℓ
′

2 : τ =⇒ eℓ
′

1 : τ . Then, we have (Ĉ, ρ̂) |=D t2 and (Ĉ, δ̂) |=D,Γ (t2,∆).
Assume Γ,∆ ⊢δ̂ t2 : τ . There are two rules to derive it.
• If it is derived from (Proj-F), τ = fail and Γ,∆ ⊢δ̂ eℓ

′

2 : fail. Then,

Γ,∆ ⊢δ̂ eℓ
′

1 : fail. By applying rule (Proj-F), we have Γ,∆ ⊢δ̂ t1 : fail

• If it is derived from (Proj), τ = σi and Γ,∆ ⊢δ̂ eℓ
′

2 : ⟨σ0, . . . , σk−1⟩.
Then, Γ,∆ ⊢δ̂ eℓ

′

1 : ⟨σ0, . . . , σk−1⟩. Therefore, we have Γ,∆ ⊢δ̂ t1 : σi.
Hence, Γ,∆ ⊢δ̂ t1 : τ .

– Case (Proj-2). We have t1 = (πk
i ⟨w

ℓ0
0 , . . . , w

ℓk−1

k−1 ⟩ℓ
′
)ℓ, and t2 = wℓ

i .

1. (Ĉ, ρ̂) |=D t1 implies (Ĉ, ρ̂) |=D wℓi
i . In addition, we have Ĉ(ℓ) ⊇

πk
i (Ĉ(ℓ′)) ⊇ πk

i (Ĉ(ℓ0)⊗ · · · ⊗ Ĉ(ℓk−1)) ⊇ Ĉ(ℓi). By using Proposition 4,

(Ĉ, ρ̂) |=D t2.
2. (Ĉ, δ̂) |=D,Γ (t1,∆) implies (Ĉ, δ̂) |=D,Γ (wℓi

i , ∆). By using Proposi-

tion 5, (Ĉ, δ̂) |=D,Γ (t2,∆).

3. Assume Γ,∆ ⊢δ̂ t2 : τ . Then, Γ,∆ ⊢δ̂ wi : τ . Because wℓ0
0 , . . . , w

ℓk−1

k−1

are value, we have Γ,∆ ⊢δ̂ wℓ0
0 . . . w

ℓk−1

k−1 : σ0 . . . σk−1 and σi = τ . By

applying (Tuple) and (Proj), we have Γ,∆ ⊢δ̂ πk
i (⟨w

ℓ0
0 , . . . , w

ℓk−1

k−1 ⟩) :
σi. Therefore, we have Γ,∆ ⊢δ̂ t1 : τ

26 Taku Terao, Takeshi Tsukada, and Naoki Kobayashi

– Case (Fun). In this case t1 = pℓ, t2 = close p in ρ′, and ρ′ = {x 7→ ρ(x) |
x ∈ FV(p)}. We remark that (Ĉ, ρ̂) |=D ρ′ and (Ĉ, δ̂) |=D,Γ ρ′ respectively

from (Ĉ, ρ̂) |=D ρ and (Ĉ, δ̂) |=D,Γ ρ.

1. We immediately derive (Ĉ, ρ̂) |=D t2 by applying (Close).
2. From definition of ρ′, we have ∆ ∼p [[ρ′]]Γ,δ̂. Then, by using Proposition 6

and (Ĉ, δ̂) |=D,Γ (pℓ,∆), (Ĉ, δ̂) |=D,Γ (pℓ, [[ρ′]]Γ,δ̂). Therefore, we have

(Ĉ, δ̂) |=D,Γ (t2,∆).
3. Assume Γ,∆ ⊢δ̂ t2 : τ . Then, we have Γ ⊢δ̂ ρ′ : ∆′ and Γ,∆′ ⊢δ̂ p : τ .

Because ∆′ ∼p ∆, we have Γ,∆ ⊢δ̂ p : τ . Therefore, we have Γ,∆ ⊢δ̂ t1 :
τ .

– Case (App-1). We have t1 = (eℓ
′

3 t4)
ℓ, t2 = (e′ℓ

′

3 t4)
ℓ, and ρ ⊢D eℓ

′

3 −→
e′ℓ

′

3 . First, we show the assumptions of P (ρ, eℓ
′

3 , e
′ℓ′
3). (Ĉ, ρ̂) |=D eℓ

′

3 follows

from (Ĉ, ρ̂) |=D t1, and (Ĉ, δ̂) |=D,Γ (eℓ
′

3 ,∆) does from (Ĉ, δ̂) |=D (t1,∆).

Therefore, by using P (ρ, eℓ
′

3 , e
′ℓ′
3), we have (Ĉ, ρ̂) |=D eℓ

′

3 , (Ĉ, ρ̂) |=D (e′ℓ
′

3 ,∆),
and ∀τ.Γ,∆ ⊢δ̂ e′ℓ

′

3 : τ =⇒ Γ,∆ ⊢δ̂ eℓ
′

3 : τ .

1. Because we have (Ĉ, ρ̂) |=D (eℓ
′

3 t4)
ℓ and (Ĉ, ρ̂) |=D e′ℓ

′

3 , (Ĉ, ρ̂) |=
(e′ℓ

′

3 t4)
ℓ is derived.

2. Because we have (Ĉ, δ̂) |=D,Γ (eℓ
′

3 t4)
ℓ and (Ĉ, δ̂) |=D (e′ℓ

′

3 ,∆), (Ĉ, δ̂) |=
((e′ℓ

′

3 t4)
ℓ,∆) is derived.

3. Assume Γ,∆ ⊢δ̂ (e′ℓ
′

3 t4)
ℓ : τ . This implies Γ,∆ ⊢δ̂ e′ℓ

′

3 tℓ4 : τ . There are
three cases to derive this judgment.
• If Γ,∆ ⊢δ̂ e′ℓ

′

3 : fail and τ = fail, we have Γ,∆ ⊢δ̂ eℓ
′

3 : fail. Then,
Γ,∆ ⊢δ̂ t1 : fail.

• If Γ,∆ ⊢δ̂ e′ℓ
′

3 : σ, Γ,∆ ⊢δ̂ t4 : fail, and τ = fail, we have Γ,∆ ⊢δ̂

eℓ
′

3 : σ. Therefore Γ,∆ ⊢δ̂ t1 : fail.

• If Γ,∆ ⊢δ̂ e′ℓ
′

3 :
∧

i(σi → τi), Γ,∆ ⊢δ̂ t4 : σj and τ = τj , we have

Γ,∆ ⊢δ̂ eℓ
′

3 :
∧

i(σi → τi). Then Γ,∆ ⊢δ̂ t1 : τj .
Hence, Γ,∆ ⊢δ̂ t1 : τ .

– Case (App-2). We have t1 = (eℓ
′

3 t4)
ℓ, t2 = (eℓ

′

3 t′4)
ℓ, and ρ ⊢D t4 −→ t′4.

First, we show the assumptions of P (ρ, t4, t
′
4). (Ĉ, ρ̂) |=D t4 follows from

(Ĉ, ρ̂) |=D t1, and (Ĉ, δ̂) |=D,Γ (t4,∆) does from (Ĉ, δ̂) |=D (t1,∆). There-

fore, by using P (ρ, t4, t
′
4), we have (Ĉ, ρ̂) |=D t′4, (Ĉ, ρ̂) |=D (t′4,∆), and

∀τ.Γ,∆ ⊢δ̂ t′4 : τ =⇒ Γ,∆ ⊢δ̂ t4 : τ .

1. (Ĉ, ρ̂) |=D (eℓ
′

3 t4)
ℓ and (Ĉ, ρ̂) |=D t′4 implies (Ĉ, ρ̂) |=D (eℓ

′

3 t′4)
ℓ.

2. We note that {σ | Γ,∆ ⊢δ̂ t4 : σ } ⊇ {σ | Γ,∆ ⊢δ̂ t′4 : σ }. Then, (Ĉ, δ̂) |=D,Γ

((eℓ
′

3 t4)
ℓ,∆) and (Ĉ, δ̂) |=D,Γ (t′4, ∆) implies (Ĉ, δ̂) |=D,Γ ((eℓ

′

3 t4)
ℓ,∆).

3. Assume Γ,∆ ⊢δ̂ ((eℓ
′

3 t4)
ℓ : τ . There are three cases to derive this judg-

ment.
• If Γ,∆ ⊢δ̂ eℓ

′

3 : fail and τ = fail, Then, immediately, Γ,∆ ⊢δ̂ t1 : fail.

• If Γ,∆ ⊢δ̂ eℓ
′

3 : σ, Γ,∆ ⊢δ̂ t′4 : fail, and τ = fail, we have Γ,∆ ⊢δ̂ t4 :
fail. Therefore Γ,∆ ⊢δ̂ t1 : fail.

• If Γ,∆ ⊢δ̂ eℓ
′

3 :
∧

i(σi → τi), Γ,∆ ⊢δ̂ t′4 : σj and τ = τj , we have

Γ,∆ ⊢δ̂ tℓ
′

4 : σj . Then Γ,∆ ⊢δ̂ t1 : τj .

Higher-Order Model Checking in Direct Style 27

Hence, Γ,∆ ⊢δ̂ t1 : τ .

– Case (App-3). This case is one of the most non-trivial part of this proof. We
have t1 = (cℓ1 v2)

ℓ, t2 = (bind ρ′[x 7→ v2] in t)ℓ, and c = close λx : κ. t in ρ′.
Let ℓ0 and ℓ2 be the label of t and v2, repectively.

1. From (Ĉ, ρ̂) |=D t1, we have (1) (Ĉ, ρ̂) |=D cℓ1 , which implies (2) Ĉ(ℓ1) ∋
λx : κ. t, (3) (Ĉ, ρ̂) |=D ρ′, and (4) (Ĉ, ρ̂) |=D t; (5) (Ĉ, ρ̂) |=D v2; and by
using (2), (6) ρ̂(x) ⊇ Ĉ(ℓ2) and (7) Ĉ(ℓ) ⊇ Ĉ(ℓ0). By using (5), (6), and
(3), (Ĉ, ρ̂) |=D ρ′[x 7→ v2]. Therefore, (4) and (7) imply (Ĉ, ρ̂) |=D t2.

2. We claim (Ĉ, δ̂) |=D,Γ ρ′[x 7→ v2]. From (Ĉ, δ̂) |=D,Γ (t1,∆), (8) (Ĉ, δ̂) |=D,Γ

(cℓ1 , ∆), which implies (9) (Ĉ, δ̂) |=D,Γ ((λx : κ. t)ℓ1 , [[ρ′]]Γ,δ̂) and (10)

(Ĉ, δ̂) |=D,Γ ρ′; and (11) (Ĉ, δ̂) |=D,Γ (v2,∆). Because Ĉ(ℓ1) ∋ λx :

κ. t, δ̂(x) ⊇ {σ | Γ,∆ ⊢δ̂ v2 : σ } = { [[v2]]Γ,δ̂ }, that is, (12) δ̂(x) ∋
[[v2]]Γ,δ̂. By using (11) and ∆ ∼v2 ∅, (13) (Ĉ, δ̂) |=D,Γ (v2, ∅). Then,
from (10) and (13), we have (Ĉ, δ̂) |=D,Γ ρ′[x 7→ v2]. We note that

[[ρ′[x 7→ v2]]]Γ,δ̂ = [[ρ′]]Γ,δ̂[x 7→ [[v2]]Γ,δ̂]. (9) and (12) implies (Ĉ, δ̂) |=δ̂

(t, [[ρ′]]Γ,δ̂[x 7→ [[v2]]Γ,δ̂]), that is, (Ĉ, δ̂) |=δ̂ (t, [[ρ′[x 7→ v2]]]Γ,δ̂). Therefore,

(Ĉ, δ̂) |=δ̂ (t2,∆).
3. Assume Γ,∆ ⊢δ̂ bind ρ′[x 7→ v2] in t : τ . Let ∆′ be such that Γ ⊢δ̂

ρ′ : ∆′. Then, Γ,∆′[x 7→ [[v2]]Γ,δ̂] ⊢δ̂ t : τ . We have Γ,∆′ ⊢δ̂ λx :

κ. t :
∧

i(σi → τi), and then, σi = [[v2]]Γ,δ̂ and τj = τ holds for some

j because δ̂(x) ∋ [[v2]]Γ,δ̂. Then, there is the following derivation tree of
Γ,∆ ⊢δ̂ t1 : τ .

Γ,∆′ ⊢δ̂ λx : κ. t :
∧

i(σi → τi) Γ ⊢δ̂ ρ′ : ∆′

Γ,∆ ⊢δ̂ cℓ :
∧

i(σi → τi) Γ,∆ ⊢δ̂ v2 : σj

Γ,∆ ⊢δ̂ t1 : τj

– (App-4). We have t1 = (f ℓ1 v2)
ℓ, t2 = (bind [x 7→ v2] in t)ℓ, and D(f) =

λx : κ. t. We have (Ĉ, ρ̂) |=D t2 and (Ĉ, δ̂) |=D,Γ (t2,∆) by the similar

discussion to (App-3). We note that δ̂(x) ∋ [[v2]]Γ,δ̂, which is also derived by

the similar discussion. Assume Γ,∆ ⊢δ̂ bind [x 7→ v2] in t : τ . Then, Γ, [x 7→
[[v2]]Γ,δ̂] ⊢δ̂ t : τ . By using (Fun), Γ, ∅ ⊢δ̂ λx : κ. t :

∧
i(σi → τj), and it holds

for some j that σj = [[v2]]Γ,δ̂ and τj = τ . Suppose Γ (f) =
∧

k(σ
′
k → τ ′k).

Because Γ (f) = G(δ̂, Γ)(f) = Γ (f) ∧
∧

i(σi → τj), it also holds for some n
that σ′

n = σj and τ ′n = τj . Then, Γ,∆ ⊢δ̂ t1 : τ is derived by the proof tree
below.

Γ,∆ ⊢δ̂ f ℓ :
∧

k(σ
′
k → τ ′k) Γ,∆ ⊢δ̂ v2 : σ′

n

Γ,∆ ⊢δ̂ t1 : τ ′n

– Case (Let-1). This case is straightforward induction.
– Case (Let-2). In this case t1 = (let x = v in t0)

ℓ and t2 = (bind ρ[x 7→
v] in t0)

ℓ. Let ℓ′ and ℓ0 be the label of v and t0, respectively.

28 Taku Terao, Takeshi Tsukada, and Naoki Kobayashi

1. From (Ĉ, ρ̂) |=D t1, we have ρ̂(x) ⊇ Ĉ(ℓ′), Ĉ(ℓ) ⊇ Ĉ(ℓ0), (Ĉ, ρ̂) |=D

v and (Ĉ, ρ̂) |=D t0. Then, (Ĉ, ρ̂) |=D ρ[x 7→ v]. Therefore, we have
(Ĉ, ρ̂) |=D (bind ρ[x 7→ v] in t0)

ℓ.

2. From (Ĉ, δ̂) |=D,Γ (t1,∆), we have (Ĉ, δ̂) |=D,Γ (v,∆) and (Ĉ, δ̂) |=D,Γ

(t0,∆[x 7→ [[v]]Γ,δ̂]). By using Proposition 6, (Ĉ, δ̂) |=D,Γ (v, ∅). There-
fore, (Ĉ, δ̂) |=D,Γ ρ[x 7→ v]. Hence, (Ĉ, δ̂) |=D,Γ ((bind ρ[x 7→ v] in t0)

ℓ,∆).
3. Assume Γ,∆ ⊢δ̂ t2 : τ . Then, Γ,∆[x 7→ [[v]]Γ,δ̂] ⊢δ̂ t0 : τ . We also have

Γ,∆ ⊢δ̂ v : [[v]]Γ,δ̂. Therefore Γ,∆ ⊢δ̂ let x = v in t0 : τ .

– Case (Br). We have t1 = (eℓ11 ⊕ eℓ22)ℓ and t2 = eℓi for some i ∈ { 1, 2 }.
1. (Ĉ, ρ̂) |=D t1 gives (Ĉ, ρ̂) |=D eℓii and Ĉ(ℓ) ⊇ Ĉ(ℓi). By using Proposi-

tion 4, (Ĉ, ρ̂) |=D eℓi .

2. (Ĉ, δ̂) |=D,Γ (eℓii ,∆) follows from (Ĉ, δ̂) |=D,Γ (t1,∆). By using Propo-

sition 5, (Ĉ, ρ̂) |=D eℓi .
3. Assume Γ,∆ ⊢δ̂ eℓi : τ . Then Γ,∆ ⊢δ̂ ei : τ . By using (Term) and (Br),

Γ,∆ ⊢δ̂ eℓ11 ⊕ eℓ22 : τ .
– Case (Assume-1). This case is straightforward induction.
– Case (Assume-2). We have t1 = assume trueℓ1 ; eℓ22 and t2 = eℓ22 .

1. (Ĉ, ρ̂) |=D t1 gives (Ĉ, ρ̂) |=D eℓ22 and Ĉ(ℓ) ⊇ Ĉ(ℓ2). By using Proposi-

tion 4, (Ĉ, ρ̂) |=D eℓ2.
2. We note that Γ,∆ ⊢δ̂ trueℓ1 : true. Then, (Ĉ, ρ̂) |=D,Γ (eℓ22 ,∆) follows

from (Ĉ, ρ̂) |=D,Γ (t1, ∆). By using Proposition 5, (Ĉ, δ̂) |=D,Γ (eℓ2, ∆).
3. Assume Γ,∆ ⊢δ̂ t2 : τ . Then, Γ,∆ ⊢δ̂ t1 : τ is derived as follows:

Γ,∆ ⊢δ̂ trueℓ1 : true Γ,∆ ⊢δ̂ eℓ22 : τ

Γ,∆ ⊢δ̂ assume trueℓ1 ; eℓ22 : τ

– Case (Bind-1). This case is straightforward induction.
– Case (Bind-2). We have t1 = bind ρ′ in wℓ1 and t2 = wℓ.

1. (Ĉ, ρ̂) |=D t1 gives (Ĉ, ρ̂) |=D wℓ1 and Ĉ(ℓ) ⊇ Ĉ(ℓ1). Then, by using
Proposition 4, (Ĉ, ρ̂) |=D wℓ.

2. (Ĉ, δ̂) |=D,Γ (t1, ∆) implies (Ĉ, δ̂) |=D,Γ (wℓ1 ,∆′) for some ∆′. Because

∆′ ∼wℓ1 ∆, (Ĉ, δ̂) |=D,Γ (wℓ1 , ∆). Then, (Ĉ, δ̂) |=D,Γ (wℓ,∆) by using
Proposition 5.

3. Assume Γ,∆ ⊢δ̂ wℓ : τ . Suppose Γ ⊢δ̂ ρ′ : ∆′. We remark that ∆′ ∼wℓ ∆.
By using Proposition 6, we have Γ,∆′ ⊢δ̂ wℓ1 : τ . Therefore Γ,∆ ⊢δ̂
(bind ρ′ in wℓ1)ℓ : τ .

D Explanation of Benchmark “Flow”

Figure 10 describes the template that generates instances of the benchmark with
the parameter n. Each instance checks (by using the assume statements) a certain
property of the complement function bnot over bit-vectors of size n. The Flow
benchmark has been designed to highlight the advantage of the direct approach.
The CPS-transformation transforms the unary function bnot : booln → booln

Higher-Order Model Checking in Direct Style 29

to a binary function bnot’ : booln → (booln → X) → X, and there are 2n

candidate types for both of booln and booln → X. Because saturation-based
higher-order model checkers for HORS (like HorSat [4]) try all the combina-
tions, the time cost is O(22n) = O(4n). On the other hand, since our algorithm
just checks all the possible arguments of bnot, it costs only O(2n) time.

(* the complement function over bit-vectors of size n *)

let rec bnot : bool^n -> bool^n =

fun (x_1, x_2, ..., x_n) -> (not x_1, not x_2, ... , not x_n);;

(* the main term *)

let x_1 = true <> false in (* a nondeterminisic choice *)

let x_2 = true <> false in

...

let x_n = true <> false in

let (y_1, y_2, ..., y_n) = bnot (x_1, x_2, ..., x_n) in

let eq : bool -> bool -> bool =

fun x y -> x && y || (not x && not y) in

assume x_1 || not x_1;

assume x_2 || not x_2;

...

assume x_n || not x_n;

assume eq x_1 y_1 || eq x_2 y_2 || ... || eq x_n y_n;

fail;;

Fig. 10. Testcase Flow-n

	Higher-Order Model Checking in Direct Style
	Introduction
	Call-by-value Reachability Problem
	Target Language
	Semantics
	Reachability Problem

	Intersection Type System
	The 0-CFA Guided Saturation Algorithm
	The -Guided Type System
	0-CFA
	The 0-CFA Guided Saturation Algorithm
	Correctness of the 0-CFA Guided Saturation Algorithm

	Implementation and Experiments
	Benchmarks and Environment
	Experimental Result

	Related Work
	Conclusion
	The Sort System of the Target Language
	Proof of Theorem 1
	Proof of Lemma 1
	Explanation of Benchmark ``Flow''

