HorSat2: A model checker for HORS based on SATuration

This is a Web interface for HorSat2: a saturation-based model checker for higher-order recursion schemes (HORS). HorSat2 is based on but a number of changes/optimizations (in particular, in the treatment of flow information) have been applied.
Enter a HORS and a tree automaton (in the TRecS format) in the box below, choose an option, and press the "submit" button. The property should be given either in the form of a trivial deterministic tree automaton (a top-down deterministic tree automaton with trivial acceptance conditions) or a trivial alternating tree automaton. Some examples are given below. More examples are available here and here as zip files. Note that on this web interface, only small examples can be tested (as the time-out is set to 3 seconds). The source code is available here.


Some examples are given below.

Example 1

%BEGING    /*** Rewring rules of a HORS. Non-terminal must start with a capital letter. ***/
S -> F c.  /*** The non-terminal of the first rule is interpreted as the start symbol. ***/
F x -> a x (F (b x)).  /*** Unbounded names ("a", "b" in this rule) are interpreted as terminals. ***/

%BEGINA    /*** Transition rules of a Buchi tree automaton (where all the states are final). ***/
q0 a -> q0 q0. /*** The first state is interpreted as the initial state. **/
q0 b -> q1.
q1 b -> q1.
q0 c -> .
q1 c -> .

Example 1'

The same grammar and property as above, but the automaton is written in the style of topdown alternating tree automaton.
S -> F c.  
F x -> a x (F (b x)).  

%BEGINR   /* arity of each tree constructor */
a -> 2.
b -> 1.
c -> 0.

%BEGINATA /* alternating transition rules */
q0 a -> (1,q0) /\ (2,q0).
q1 a -> false.
q0 b -> (1,q1).
q1 b -> (1,q1).
q0 c -> true.
q1 c -> true.

Example 2

The following HORS generates a huge tree, of the form a2225 c. The automaton describes the property that the number of "a" is even.
S -> F0 G2 G1 G0.
F0 f x z -> F1 (F1 f) x z.
F1 f x z -> F2 (F2 f) x z.
F2 f x z -> F3 (F3 f) x z.
F3 f x z -> F4 (F4 f) x z.
F4 f x z -> F5 (F5 f) x z.
F5 f x z -> G3 f x z.
G3 f x z -> f (f x) z.
G2 f x -> f (f x).
G1 x -> a x.
G0 -> c.

q0 a -> q1.
q1 a -> q0.
q0 c -> .

Example 3

/*** An example taken from POPL09 paper, which creates and accesses two files ***/
S -> Newr C1.
C1 x -> Neww (C2 x).
C2 x y -> F x y end.
F x y k -> br (Close x (Close y k)) (Read x (Write y (F x y k))).
I x y -> x y.
K x y -> y.
Newr k -> br (newr (k I)) (k K).
Neww k -> br (neww (k I)) (k K).
Close x k -> x close k.
Read x k -> x read k.
Write y k -> y write k.

q0 br -> q0 q0.
qr br -> qr qr.
qw br -> qw qw.
qrw br -> qrw qrw.
q0 newr -> qr.
qr read -> qr.
qr close -> qc.
q0 neww -> qw.
qw write -> qw.
qw close -> qc.
qw newr -> qrw.
qr neww -> qrw.
qrw read -> qrw.
qrw write -> qrw.
qrw close -> qrw.
qc end ->.
q0 end ->.
qrw end ->.