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We propose a novel verification method for higher-order functional programs based on higher-
order model checking, or more precisely, model checking of higher-order recursion schemes (recur-
sion schemes, for short). The most distinguishing feature of our verification method for higher-
order programs is that it is sound, complete, and automatic for the simply-typed λ-calculus with
recursion and finite base types, and for various program verification problems such as reachability,
flow analysis, and resource usage verification. We first show that a variety of program verification
problems can be reduced to model checking problems for recursion schemes, by transforming a
program into a recursion scheme that generates a tree representing all the interesting possible
event sequences of the program. We then develop a new type-based model checking algorithm
for recursion schemes and implement a prototype recursion scheme model checker. To our knowl-
edge, this is the first implementation of a recursion scheme model checker. Experiments show
that our model checker is reasonably fast, despite the worst-case time complexity of recursion
scheme model checking being hyper-exponential in general. Altogether, the results provide a new,
promising approach to verification of higher-order functional programs.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

General Terms: Languages, Verification

Additional Key Words and Phrases: Type systems, model checking, higher-order recursion
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1. INTRODUCTION

Program verification techniques have been studied extensively, due to the increasing
importance of software reliability. There are still limitations in the current veri-
fication technology, however. Software model checking [Ball et al. 2001; Ball and
Rajamani 2002; Beyer et al. 2007] has been mainly applied to imperative programs
with first-order procedures, and applications to higher-order programs with arbi-
trary recursion have been limited. For higher-order programs, type systems have
been recognized as effective techniques for program verification. However, they of-
ten require explicit type annotations (as in dependent type systems), or suffer from
many false alarms. For example, ML type system [Damas and Milner 1982] allows
automated type inference, but rejects many type-safe programs.
This article proposes a novel verification technique for higher-order programs.

The most distinguishing feature of our new technique is that it is sound, complete,

1 c©ACM, 2013. This is the author’s version of the work. It is posted here by permission of ACM
for your personal use. Not for redistribution. The definitive version was published in Journal of
the ACM, 60(3), June 2013 and is available from http://dx.doi.org/10.1145/2487241.2487246.
This is a revised and extended version of the paper that appeared in Proceedings of POPL 2009
under the title “Types and Higher-Order Recursion Schemes for Verification of Higher-Order
Programs” and the paper that appeared in Proceedings of PPDP2009 under the title “Model-
Checking Higher-Order Functions”.
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and fully automatic for the class of programs written in the simply-typed λ-calculus
with recursion and finite base types, and for a variety of verification problems,
including reachability (“Does a given program reach a program point fail?”), flow
analysis (“Does a subterm e of a given program evaluate to a value generated at
program point l?”), and resource usage verification (“Does a given program access
resources such as files and memory in a valid manner?”).
Our verification technique is based on model checking of higher-order recursion

schemes (recursion schemes, for short) [Ong 2006], and consists of two main steps.
In the first step, a program verification problem is reduced to a problem of recursion
scheme model checking. In the second step, the problem of recursion scheme model
checking is solved by reduction to a type checking problem. Thus, our verification
method can be considered an integration of two main previous approaches to pro-
gram verification: model checking and type systems. A good consequence of the
integration is that as in ordinary type-based program verification, our method can
generate types as certificates when a given property is satisfied, and as in ordinary
model checking, it can generate an error path as a counter-example when a prop-
erty is violated. In the rest of this section, we first introduce higher-order recursion
schemes informally, and then give an overview of the two steps mentioned above.

1.1 Higher-Order Recursion Schemes

A higher-order recursion scheme [Knapik et al. 2002; Ong 2006] is a kind of tree
grammar for generating a single, possibly infinite, ranked tree. From a programming
language point of view, a recursion scheme may be regarded as a term of the simply-
typed λ-calculus with recursion and tree constructors (but without destructors). A
recursion scheme of order 0 is just a (deterministic) regular tree grammar that
generates a regular tree. For example, consider the following order-0 recursion
scheme:

S → aF F → bS S

Here, the capitalized symbols S and F denote non-terminals, and the non-
capitalized symbols a and b represent terminals (or tree constructors). The term
bS S should be interpreted as the tree whose root is labeled with b, having as chil-
dren two leaves labeled with S. The start symbol S is rewritten as follows (where
the redexes are underlined).

S −→ aF −→ a(bS S) −→ a(b (aF )S) −→ a(b (aF ) (aF )) −→ · · ·

Figure 1(a) shows the tree generated by the recursion scheme. In the case of
higher-oder recursion schemes, each non-terminal can take trees or higher-order
functions on trees (depending on the order of recursion schemes) as parameters.
The parameters must be trees in order-1 recursion schemes, while they can be
functions on trees (i.e. functions that take trees as input and return trees) in order
2, and functions on functions on trees (i.e. functions that take functions on trees as
input, and return trees) in order 3. The following is an example of order-1 recursion
scheme:

S → F c F x→ br x (a(F (b(x))))
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Fig. 1. The trees generated by recursion schemes

Here, the non-terminal F takes a tree parameter x. The start symbol S is rewritten
as follows.

S −→ F c −→ br c (a(F (b c))) −→ br c (a(br (b c) (a(F (b (b c)))))) −→ · · ·

The tree generated by the recursion scheme is shown in Figure 1(b). With the label
br being ignored, the tree consists of paths labeled by anbnc.
As the example above indicates, the trees generated by recursion schemes are

in general more complex than regular trees. Ong [2006], however, proved that
the modal μ-calculus model checking of the tree generated by a recursion scheme
(namely, the decision problem: “Given a recursion scheme G and a modal μ-calculus
formula ϕ, does the tree generated by G satisfy ϕ?”) is decidable.
The model checking of higher-order recursion schemes has the following attrac-

tive features. First, the class of recursion schemes is, to date, the most expressive
(generically-defined) class of infinite trees for which the modal μ-calculus model
checking problem is decidable. It subsumes the classes of regular trees, alge-
braic trees [Courcelle 1983], and the trees generated by higher-order pushdown
automata [Knapik et al. 2002]. Secondly, recursion schemes are high-level descrip-
tions of infinite trees. They are essentially typed higher-order functional programs
with recursion and tree constructors, so that it is easy to model higher-order pro-
grams by recursion schemes.
Recursion scheme model checking subsumes finite state model checking [Clarke

et al. 1999] and pushdown model checking [Schwoon 2002]. Indeed, model checking
of order-0 recursion schemes corresponds to finite state model checking: see Re-
mark 2.3. Similarly, model checking of order-1 recursion schemes corresponds to
pushdown model checking.

1.2 From Higher-Order Program Verification to Recursion Scheme Model Checking

In program verification, we are often interested in temporal properties and/or out-
puts of a program. For example, typical verification problems are: (i) “Can an
assertion failure occur?”, (ii) “Is an opened file eventually closed?”, (iii) “Can func-
tion g be called from a program point l?”, (iv) “Does function f always return a
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Fig. 2. A tree that represents possible resource access sequences

certain well-formed data structure?”, etc. The key idea of our verification method
is to transform a program into a recursion scheme that generates a tree representing
all the possible event sequences or outputs of interest.
For example, consider the following program (written in OCaml-like language),

where represents a non-deterministic boolean.

let rec g x = if _ then close(x) else (read(x); g(x)) in

let d = open_in "foo" in g(d)

The program first defines a recursion function g, which takes a file pointer x as
an argument, and accesses x recursively. It then opens a read-only file foo, and
then passes a file pointer to g. Suppose that we wish to verify that the file foo is
accessed according to the specification read∗close. We shall transform the above
program into a recursion scheme that generates a tree like the one in Figure 2,
which shows how the file is accessed by the program. In the figure, br and �
denote a non-deterministic branch and a program termination respectively. Once we
have obtained such a recursion scheme, it is sufficient to model-check the recursion
scheme to verify that every finite path of the tree generated by the recursion scheme
is labeled by read∗close (with br ignored), and that every infinite path is labeled
by a prefix of read∗close.2

The tree in Figure 2 can be generated by the following recursion scheme.

Gxk → br (closek) (read (Gxk))
S → G d �

Notice the similarity of this recursion scheme to the source program. The first
rule corresponds to the definition of function g, and the second rule corresponds
to the call of function g (with d being a dummy argument, which is not important
here; we will see a meaningful representation of file pointers in Section 3). The
non-terminal G corresponds to function g, but it takes an additional parameter k,
which represents how the file foo will be accessed after the call of G. The non-
terminal br corresponds to the conditional, with the part “close k” (meaning that

2Here, we do not check termination of the program, so there may be an infinite path that does
not contain close.
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the file is closed and then accessed according to k) corresponding to the then-part,
and the part “read (Gxk)” to the else-part. Thus, the recursion scheme above is
essentially a continuation-passing-style (CPS) representation of the definition of g.
As we will see in Section 3, CPS transformation [Plotkin 1975; Danvy and Filinski

1992; Appel 1992] with some additional tricks is indeed sufficient for systematically
constructing a recursion scheme that generates all the possible event sequences.
Thus, program verification problems can be automatically transformed to problems
of recursion scheme model checking.

1.3 Type-Based Model Checking of Recursion Schemes

Given that verification problems for higher-order programs can be reduced to recur-
sion scheme model checking, an important question is whether there is an efficient
algorithm to solve the model checking problems. There are a few existing model
checking algorithms for recursion schemes: Ong’s algorithm based on variable pro-
files [Ong 2006], and Hague et al.’s algorithm based on reduction to model checking
of collapsible pushdown automata [Hague et al. 2008]. Aehlig [Aehlig et al. 2005]
has also developed a model checking algorithm for recursion schemes for a restricted
class of properties, described by so called trivial automata (Büchi tree automata
where all the states are accepting states), which are sufficient for the verification
problems considered in this article.
All the algorithms above are, however, mainly of theoretical interest, and can-

not be directly applied in practice. The problem is that model checking of order-k
higher-order recursion schemes is k-EXPTIME complete in general [Ong 2006], and
that all the above algorithms almost always suffer from this k-EXPTIME bottle-
neck.
We thus develop a new model checking algorithm for recursion schemes, which is

based on types. We use tree automata (more precisely, the class of trivial automata
considered by Aehlig et al. [2005]) instead of modal μ-calculus formulas to express
tree properties.3 We then regard an automaton state q as the type of trees, accepted
by the automaton from state q. A function type q1 → q2 is then interpreted as
functions that take a tree of type q1 and return that of type q2. An intersection
type (q1 → q2) ∧ (q3 → q4) is interpreted as functions that return a tree of type
q2 if the argument has type q1, and return a tree of type q4 if the argument has
type q3. Based on this intuition, one can naturally construct an intersection type
system that is equivalent to model checking, i.e., a type system parameterized by
an automaton B, such that a recursion scheme is well-typed if, and only if, the tree
generated by the recursion scheme is accepted by B. This connection allows us to
reduce the recursion scheme model checking to the problem of type checking.
The type checking problem can be solved by using a standard fixed-point com-

putation algorithm. It suffices to enumerate all the possible types of non-terminal
symbols, and filter out invalid types until the fixed-point computation converges.
This algorithm has a few pleasant properties. First, it is very simple, so that it
is easy to prove the correctness of the algorithm (hence also easy to prove the de-

3The class of trivial automata is more restricted in terms of the expressive power of tree properties
than the class of modal μ-calculus formulas. The extension to deal with the full modal μ-calculus
model checking is discussed elsewhere [Kobayashi and Ong 2009].
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cidability of recursion scheme model checking). Secondly, the algorithm is efficient
from the viewpoint of complexity theory. It runs in time linear in the size of the
recursion scheme under the assumption that the largest size of the types (or sorts,
in the terminology of the present paper) of symbols and the specification size (i.e.
the size of the automaton) are fixed, although it is still k-EXPTIME in the size of
the automaton and the largest arity of symbols.
The simple algorithm mentioned above is, however, still too inefficient to be

applied in practice. The problem is that, although the algorithm runs in time
linear in the size of a recursion scheme, the constant factor is huge. It is hyper-
exponential in the specification size and the largest arity, and can be as large as
1010000000000000000000 even for order-3 recursion schemes. This is due to the fact
that the number of possible types of non-terminal symbols blows up very quickly
with an increase of the order of recursion schemes, and the algorithm must search
valid types of non-terminal symbols from such a huge set of candidates.
We thus develop a more sophisticated, hybrid algorithm, which runs much faster

for realistic inputs. As mentioned above, the main problem of the simple algorithm
is that the number of possible types of non-terminals is too large. The hybrid
algorithm obtains a much smaller set of candidates for the types of non-terminals,
by reducing a recursion scheme a finite number of steps and inspecting how each
non-terminal is used in the reduction. The algorithm then searches valid typings
from the set of candidate types by using a fixed-point computation. This makes
the search for valid typings terminate very quickly. The price to pay instead is
that completeness may be lost. By iteratively increasing the number of reduction
steps, however, we can actually guarantee the completeness of the algorithm; The
algorithm eventually terminates, and it reports either a success of verification or a
property violation correctly.
We have implemented a recursion scheme model checker based on the hybrid

algorithm above. According to experiments, our model checker is reasonably fast,
even though the recursion scheme model checking is hyper-exponential in general.

1.4 Contributions and Overview of Article

Contributions of this article are summarized as follows.

(1) A new program verification method based on reductions of program verifica-
tion problems to recursion scheme model checking. The method is sound and
complete for various verification problems for the simply-typed λ-calculus with
recursion and finite base types.

(2) Reduction of recursion scheme model checking to typability in an intersection
type system. The reduction yields a very simple algorithm for recursion scheme
model checking, which runs in time linear in the size of recursion schemes if
certain parameters are fixed.

(3) The first realistic algorithm for recursion scheme model checking. The algo-
rithm is based on a novel idea of inferring intersection types in an on-demand
manner.

(4) The first implementation of a recursion scheme model checker and experiments.
Despite the extremely high worst-case complexity, the model checker shows
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good performance for typical inputs, obtained from small but tricky program
verification problems.

This article is the archival version of two conference papers: [Kobayashi 2009b] and
[Kobayashi 2009a]. The first two contributions were first reported in [Kobayashi
2009b], and the latter two were reported in [Kobayashi 2009a]. From the conference
versions, we have polished various definitions and proofs, and expanded examples,
discussions, proofs, and experiments.
The rest of this article is structured as follows. Section 2 reviews the formal

definitions of higher-order recursion schemes and the model checking problem for
recursion schemes. Section 3 shows reductions from program verification problems
to recursion scheme model checking. Section 4 reduces recursion scheme model
checking to a type checking problem, and presents a naive model checking algo-
rithm based on the reduction. Section 5 presents a more practical model checking
algorithm. Section 6 reports the implementation of a prototype recursion scheme
model checker and experimental results. Section 7 discusses related work. Section 8
concludes this article, with discussion on future perspectives.

2. PRELIMINARIES

This section reviews the definition of higher-order recursion schemes and model
checking problems.

Notation 2.1. We write ṽ for a possibly empty sequence v1, . . . , vn. We write
dom(f) for the domain of a map f . A map is represented by a set of bindings of
the form x �→ v: {x1 �→ v1, . . . , xn �→ vn} denotes the map f such that dom(f) =
{x1, . . . , xn} and f(xi) = vi for i ∈ {1, . . . , n}. When dom(f) ∩ dom(g) = ∅, f ∪ g
denotes the map h such that dom(h) = dom(f)∪dom(g) with ∀x ∈ dom(f).h(x) =
f(x) and ∀x ∈ dom(g).h(x) = g(x). We often omit ∪ and write f{x �→ v} for
f ∪ {x �→ v}. For readability, we sometimes write {x1 : v1, . . . , xn : vn} for {x1 �→
v1, . . . , xn �→ vn} (especially when vi contains the symbol ‘→’).
We write N+ for the set of positive integers. For a set S, S∗ denotes the set of

sequences of elements of S.

We first define (possibly infinite, labeled) trees.

Definition 2.1 (ranked alphabet, trees). A ranked alphabet is a map from a finite
set of symbols to non-negative integers. When Σ is a ranked alphabet, Σ(a) is called
the arity of a. A non-empty subset S of N∗

+ is called a tree if {π, π1, . . . , π(j−1)} ⊆
S whenever πj ∈ S. An L-labeled tree is a map from a tree to L. Let Σ be
a ranked alphabet, and L be dom(Σ). An L-labeled tree T is called a ranked
Σ-labeled tree if, whenever T (π) = a, {i | πi ∈ dom(T )} = {1, . . . ,Σ(a)}. Let
⊥ be a special symbol of arity 0. For a ranked alphabet Σ with ⊥ 
∈ dom(Σ),
we write Σ⊥ for the ranked alphabet Σ{⊥ �→ 0}. We define the binary relation
� on ranked Σ⊥-labeled trees by: T1 � T2 iff (i) dom(T1) ⊆ dom(T2) and (ii)
∀π ∈ dom(T1).T1(π) = T2(π) ∨ T1(π) = ⊥. For a set S of ranked Σ⊥-labeled trees,
we write

⊔
S for the least upper-bound of S with respect to � if it exists.

We often write a for the labeled tree {ε �→ a}. When T1, . . . , Tn are labeled trees,
we write a T1 . . . Tn for the labeled tree T such that dom(T ) = {ε} ∪ {iπ | π ∈
dom(Ti), i ∈ {1, . . . , n}} with T (ε) = a and T (iπ) = Ti(π).

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Definition 2.2 (sorts). The set of sorts, ranged over by κ, is inductively defined
by:

κ ::= o | κ1 → κ2

The order and arity of κ, written order (κ) and arity(κ) respectively, are defined
by:

order (o) = 0 order (κ1 → κ2) = max (order (κ1) + 1, order (κ2))
arity(o) = 0 arity(κ1 → κ2) = arity(κ2) + 1

Intuitively, the sort o describes trees. The sort κ1 → κ2 describes a function that
takes a value of sort κ1 and returns a value of κ2.

Definition 2.3 (applicative terms). Let Σ be a ranked alphabet. The set of ap-
plicative terms is defined by:

t ::= a | x | t1t2
where a ranges over dom(Σ) and x ranges over a set of variables. A sort environ-
ment, written K, is a map from variables to sorts. The sort assignment relation
K �Σ t : κ is the least relation closed under the following rules:

K �Σ a : o → · · · → o︸ ︷︷ ︸
Σ(a)

→ o

K ∪ {x �→ κ} �Σ x : κ

K �Σ t1 : κ2 → κ1 K �Σ t2 : κ2

K �Σ t1t2 : κ1

When K �Σ t : κ holds, we say that t has sort κ under K.

We now review the definition of the syntax and the rewriting relation for higher-
order recursion schemes [Ong 2006].

Definition 2.4 (higher-order recursion schemes). A (deterministic) higher-order
recursion scheme, written G, is a quadruple (Σ,N ,R, S), where
(1) Σ is a ranked alphabet. The elements of dom(Σ) are called terminals.

(2) N is a map from a finite set of symbols called non-terminals to sorts. dom(Σ)
and dom(N ) must be disjoint.

(3) R is a map from the set of non-terminals (i.e. dom(N )) to terms of the form
λx1. · · ·λx�.t, where (i) t is an applicative term, (ii) N (F ) is of the form κ1 →
· · · → κ� → o, and (iii) N{x1 �→ κ1, . . . , x� �→ κ�} �Σ t : o (where non-terminals
are treated as variables).

(4) S is a non-terminal called the start symbol. We require that S ∈ dom(N ) and
N (S) = o.

The order of a non-terminal F , written order (F ), is the order of its sort, i.e.
order (N (F )). The order of a recursion scheme G = (Σ,N ,R, S), written order (G),
is the highest order of its non-terminals, i.e. max({order(F ) | F ∈ dom(N )}).
For a recursion scheme G, the rewriting relation −→G is defined inductively by:

ACM Journal Name, Vol. V, No. N, Month 20YY.
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(i) F s1 · · · s� −→G [s1/x1, . . . , s�/x�]t if R(F ) = λx1. · · ·λx�.t with t being an
applicative term.

(ii) If ti −→G t′i, then a t1 · · · t� −→G a t1 · · · ti−1 t
′
i ti+1 · · · t�.

Here, � may be 0, and [s1/x1, . . . , s�/x�]t is the term obtained by replacing each
occurrence of xi(1 ≤ i ≤ �) with si. We omit the subscript G whenever it is clear
from the context.

We review the definition of the value tree [Ong 2006], i.e., the (possibly infinite)
tree represented by a higher-order recursion scheme. Intuitively, the value tree is
the (possibly infinite) Σ⊥-labeled ranked tree obtained by infinitary, fair rewriting
of the start symbol S, where a rewriting sequence is fair if every redex is eventually
reduced. More formally, [[G]] is defined as follows.

Definition 2.5 (value trees). For an applicative term t, we define t⊥ inductively

by (i) (Fs1 · · · sn)⊥ = ⊥ and (ii) (as1 · · · sn)⊥ = a(s1
⊥) · · · (sn⊥) (where n ≥ 0).

The value tree of G, written [[G]], is
⊔
{t⊥ | S −→∗

G t}.
In the above definition,

⊔
{t⊥ | S −→∗

G t} is well-defined, as the reduction relation
is confluent. Note also that if t is a well-sorted applicative term, t⊥ is a ranked
Σ⊥-labeled finite tree. Thus, [[G]] is a ranked Σ⊥-labeled tree.

Notation 2.2. We often write:

R = {F1 x1,1 · · · x1,k1 → t1, . . . , Fm xm,1 · · · xm,km → tm}
when dom(R) = {F1, . . . , Fm} and R(F1) = λx1,1. · · ·λx1,k1 .t1, . . . ,R(Fm) =
λxm,1. · · ·λxm,km .tm.

Example 2.1. The example of order-1 recursion scheme given in Section 1.1 is
formally a quadruple G0 = (Σ,N ,R, S), where:

Σ = {br �→ 2, a �→ 1, b �→ 1, c �→ 0}
N = {S : o, F : o → o}
R = {S �→ F c, F �→ λx.(br x (a(F (b(x)))))}

�

Example 2.2. Let G1 be an order-2 recursion scheme (Σ,N ,R, S) where:
Σ = {br �→ 2, a �→ 1, c �→ 0}
N = {S : o, F : (o → o) → o → o, G : (o → o) → o}
R = {S �→ G a, F �→ λf.λx.f(f x), G �→ λf.(br (f c) (G (F f)))}

The start symbol S is reduced as follows.

S −→ G a −→ br (a c) (G (F a)) −→ br (a c) (br ((F a c) (G (F (F a)))))

−→ br (a c) (br (a (a c)) (G (F (F a)))) −→ · · ·

Since (Fm a)c reduces to a2
m

c (where ak c represents a(· · · (a︸ ︷︷ ︸
k

c) · · · )), the tree

generated by G1 consists of paths labeled by brma2
m−1

c(m ≥ 1). �

Ong [2006] showed the decidability of the modal μ-calculus model checking of
recursion schemes.
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Theorem 2.1 (Ong [2006]). The model checking problem: “Given an order-k
recursion scheme G, and a modal μ-calculus formula ψ, does [[G]] satisfy ψ?” is
k-EXPTIME complete.

Here, k-EXPTIME means DTIME(expk(p(x))) where x is the input size, p(x) is a
polynomial of x, and expk(x) is defined by exp0(x) = x and expi+1(x) = 2expi(x).
In this article, we use tree automata for describing tree properties, instead of

modal μ-calculus formulas, as that is convenient for discussing the model checking
algorithm. It is well known that alternating parity tree automata have the same
expressive power as the modal μ-calculus, and there are linear translations between
the two [Emerson and Jutla 1991; Thomas 1997; Kupferman et al. 2000]. In this
article, we use the following, more restricted class of tree automata called deter-
ministic trivial automata, which are deterministic Büchi tree automata where all
the states are final.

Definition 2.6 (trivial automaton). A deterministic trivial automaton B is a
quadruple:

(Σ, Q, δ, q0)

where Σ is a ranked alphabet, Q is a set of states, q0 ∈ Q is the initial state, and
δ, called a transition function, is a partial map from Q × dom(Σ) to Q∗ such that
if δ(q, a) = q1 · · · qk, then k = Σ(a). A Σ-labeled ranked tree T is accepted by B
if there is a Q-labeled tree R such that (i) dom(T ) = dom(R); (ii) R(ε) = q0; and
(iii) for every x ∈ dom(R), δ(R(x), T (x)) = R(x1) · · ·R(xm) where m = Σ(T (x)).
R is called a run tree of B over T .
For a trivial automaton B = (Σ, Q, δ, q0) where ⊥ 
∈ dom(Σ), we write B⊥ for the

trivial automaton B = (Σ⊥, Q, δ ∪ {(q,⊥) �→ ε | q ∈ Q}, q0).

Aehlig [2007] considered non-deterministic Büchi tree automata where all the
states are final, and called them trivial automata. In this article, we consider only
deterministic trivial automata, so that we often omit the adjective “deterministic”
and use the word trivial automata for deterministic trivial automata.

Example 2.3. Consider the automaton B0 = (Σ, {q0, q1}, δ, q0) where

Σ = {br �→ 2, a �→ 1, b �→ 1, c �→ 0}
δ(q0, br) = q0q0 δ(q1, br) = q1q1
δ(q0, a) = q0 δ(q0, b) = δ(q1, b) = q1 δ(q0, c) = δ(q1, c) = ε

B0 accepts Σ-labeled trees whose paths are labeled by elements of aω+a∗bω+a∗b∗c,
with br being ignored. The run tree of B0 over the tree generated by the recursion
scheme in Example 2.1 (i.e. the tree shown in Figure 1(b)) is shown in Figure 3. �

The following is an immediate corollary of Ong’s result (Theorem 2.1).

Corollary 2.2. Given a recursion scheme G and a trivial automaton B, it is
decidable whether [[G]] is accepted by B⊥.

Henceforth, recursion scheme model checking refers to this restricted class of
model checking problems. As discussed in Section 3, the restricted problems are
sufficient for verification of safety properties of programs.
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q0

q0 q0

q0

q0

q1

q0

q0

q0

q1

q1

q0

· · ·

Fig. 3. A run tree of B0 for the tree in Figure 1(b) (see Example 2.3)

Remark 2.1. The recursion scheme model checking problem for deterministic
trivial automata is (k − 1)-EXPTIME complete. The upper bound comes from
the facts that the complement of the language of trees accepted by a determin-
istic trivial automaton is accepted by a disjunctive alternating parity tree au-
tomaton [Kobayashi and Ong 2011] and that model checking of order-k recur-
sion schemes for disjunctive alternating parity tree automata is (k− 1)-EXPTIME.
The lower bound comes from (k− 1)-EXPTIME hardness of the reachability prob-
lem [Kobayashi and Ong 2011]. Please consult [Kobayashi and Ong 2011] about the
complexity of the recursion scheme model checking problem for various subclasses
of alternating parity tree automata and modal μ-calculus.

Remark 2.2. Note that we allow ⊥ to occur in [[G]]. In particular, a recursion
scheme that generates the tree consisting of a single node ⊥ is always accepted by
B⊥. This is not a problem for the purpose of verification of safety properties.
In the standard approach [Ong 2006], it is assumed that [[G]] does not contain ⊥.

This does not lose generality in the case of the modal μ-calculus model checking,
because, given a recursion scheme G and a modal μ-calculus formula ϕ, one can
always construct G′ and ϕ′ such that (i) [[G]] satisfies ϕ if and only if [[G′]] satisfies
ϕ′ (ii) [[G′]] does not contain ⊥.

Remark 2.3. Recursion scheme model checking introduced above may look quite
different from conventional, finite state model checking. The former is however
considered a generalization of the latter in the following sense. In finite state model
checking [Clarke et al. 1999], a finite state system is formalized as a Kripke structure
M = (States, I, R, L) where (i) States is a finite set of states, (ii) I ⊆ States is the
set of initial states, (iii) R ⊆ States × States is a transition relation that must be
total, and (iv) L ∈ States → 2AP is a function that maps a state to the set of
atomic propositions true in the state. We can assume without loss of generality
that I is a singleton set {s0}. Define a recursion scheme GM = (Σ,N ,R, Fs0 ) by:

Σ = {aP �→ w | P ∈ 2AP}
N = {Fs : o | s ∈ States}
R = {Fs �→ aP Fs1 · · · Fsw | L(s) = P, {s1, . . . , sw} = {s′ | (s, s′) ∈ R}}
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Here, w is the maximum branching factor, i.e. max s∈States |{s′ | (s, s′) ∈ R}|. In
the definition of R, the sequence s1, . . . , sw may contain duplicated states. GM

generates the computation tree [Clarke et al. 1999] of the Kripke structure M .
Thus, finite state model checking can be reduced to model checking of order-0
recursion schemes.
Using deterministic trivial automata, we can express the following fragment of

modal μ-calculus.

ϕ ::= p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | X | �ϕ | νX.ϕ

Here, p ranges over the set AP of atomic propositions. An important restriction
is that we do not have duals of � and ν. This fragment suffices to express safety
properties that “bad things do not happen”. Note however that for a formula of
the fragment above, the size of the corresponding deterministic trivial automaton
can be doubly exponential in the formula size. To avoid such (super) exponential
blow-up of the automaton size, we need to use alternating tree automata, as in
[Ong 2006; Kobayashi and Ong 2009].

3. FROM PROGRAM VERIFICATION TO RECURSION SCHEME MODEL CHECK-
ING

This section shows that a variety of program verification problems can be reduced to
recursion scheme model checking problems. We first show, in Sections 3.1–3.2, the
reduction for Igarashi and Kobayashi’s resource usage verification problem [Igarashi
and Kobayashi 2005] in detail, because the resource usage verification is challeng-
ing due to primitives for dynamic creating an unbounded number of resources, and
also because many other problems (such as reachability and flow analysis) can be
easily reduced to it. We then informally discuss reductions from a variety of other
verification problems to recursion scheme model checking problems in Section 3.3
in order to show the robustness of our approach. Together with decidability of
the recursion scheme model checking, the reductions shown in this section imply
that various program verification problems are decidable for the simply-typed λ-
calculus with recursion and finite base types. For programs having infinite base
types (such as integers), we can combine the methods presented below with tech-
niques of predicate abstraction [Graf and Säıdi 1997] and CEGAR [Clarke et al.
2003; Ball and Rajamani 2002]: see [Kobayashi et al. 2011] for such an extension.
For all the program verification problems considered in this section, we assume
that a whole program is given. For compositional verification of programs, model
checking problems need to be generalized, as briefly discussed in Section 8.

Remark 3.1. Throughout this section, we often assume that source programs are
represented as a system of top-level function definitions:

{f1 x̃1 = e1, . . . , fn x̃n = en},

where e1, . . . , en have the unit type unit and expressions are evaluated in call-by-
name. Programs of a call-by-value language can be transformed into the above form
by using a call-by-value CPS transformation [Plotkin 1975; Danvy and Filinski 1992;
Appel 1992], followed by λ-lifting [Johnsson 1985]. Consider terms of simply-typed
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call-by-value λ-calculus with recursion:

M ::= c | x | λx.M |M1M2 | rec(f, x,M) | if M1 M2 M3,

where c is a value of base type, rec(f, x,M) is a recursive function defined by
f(x) =M , and if M1 M2 M3 evaluatesM1, and then evaluatesM2 if the value ofM1

is true and evaluatesM3 otherwise. Then, the following simple CPS transformation
(·)† [Plotkin 1975] suffices.

c† = λk.k c
x† = λx.k x

(λx.M)
†
= λk.k(λx.M †)

(M1M2)
†
= λk.M1

†(λf.M2
†(λx.f x k))

(rec(f, x,M))
†
= λk.k(rec(f, x,M †))

(if M1 M2 M3)
†
= λk.M1

†λx.(if x (M2
†k) (M3

†k))

As noted by Meyer and Wand [1985], if M has type τ , then M † has type (τ† →
unit) → unit, where τ† is given by:

b† = b (if b is a base type) (τ1 → τ2)
† = τ1

† → (τ2
† → unit) → unit.

3.1 Resource Usage Verification

The goal of resource usage verification [Igarashi and Kobayashi 2005] is to statically
check that a given program accesses resources (which model stateful objects like
files, memory cells, and locks) in a valid manner. For example, we wish to guarantee
that a resource is initialized before being accessed, that an opened file should be
eventually closed and not accessed afterwards, and that an acquired lock should be
eventually released.
Igarashi and Kobayashi [2005] formalized this problem for a simply-typed call-

by-value λ-calculus with recursion and primitives for dynamically creating and ac-
cessing resources. Here we re-formalize it for a call-by-name λ-calculus, as it has
a more direct correspondence to recursion schemes. Note that call-by-value pro-
grams can be transformed into call-by-name programs by using the call-by-value
CPS transformation, as discussed in Remark 3.1.
We first introduce resource automata to specify how each resource should be

used.

Definition 3.1 (resource automaton). A resource automaton W is a finite-state
deterministic (word) automaton (L,Q, δ, q0, QF ), where L is a set of names of re-
source access primitives, Q is a set of states, δ is a partial function from Q × L to
Q, q0 ∈ Q is an initial state, and QF (⊆ Q) is a set of final states.

Intuitively, δ(q, a) = q′ means that a resource of state q goes to state q′ after it is
accessed by the primitive a. δ(q, a) is undefined if the operation a is disallowed in
state q. When a program terminates, all the resources must be in final states. We
fix a resource automaton W = (L,Q, δ, q0, QF ) below.

Definition 3.2. A program D is a set of function definitions {F1 x1,1 · · · x1,�1 =
e1, . . . , Fn xn,1 · · · xn,�n = en}, where Fi denotes a defined function symbol, and e
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ranges over the set of expressions, defined by:

e ::= � | x | F | e1e2 | if e1 e2 | newq e | acca x e

Here, q and a range over Q and L (of the resource automaton), respectively. We
require that the function names F1, . . . , Fn are different from each other, and that
any programD contains exactly one definition for S (which is the “main” function),
of the form S = e. Without loss of generality, we assume S = F1.

The expression � is the unit value. The expression e1e2 applies the function e1
to e2, and if e1 e2 non-deterministically executes e1 or e2. The expression newq e
creates a resource with initial state q, and passes it to e (which is a function that
takes a resource as an argument). The expression acca x e applies an operation
of name a to the resource x, and then evaluates e. The name a expresses resource
access primitives like read, write, and close.

Example 3.1. Recall the example given in Section 1.2:

let rec g x = if _ then close(x) else (read(x); g(x)) in

let d = open_in "foo" in g(d)

It can be transformed into the following program D0 by call-by-value CPS trans-
formation (with some optimization).

S = newqread only (G �)
Gk x = if (accclose x k) (accread x (Gk x))

Here, the argument k of G is a continuation parameter.
The resource automaton W is given by:

W = ({close, read}, {qread only, qclosed}, δ, qread only, {qclosed})

where

δ(qread only, read) = qread only δ(qread only, close) = qclosed

�

We consider only “well-typed” programs below.

Definition 3.3. The set of types is given by:

τ (types) ::= R | unit | τ1 → τ2

Here, R is the type of resources and unit is the type of the unit value �.
A type environment, denoted by Γ, is a map from variables (including function

names F1, . . . , Fn) to types. The type judgment relation Γ � e : τ for expressions
is the least relation closed under the following rules:

Γ � � : unit

Γ � e1 : τ1 → τ2 Γ � e2 : τ1

Γ � e1e2 : τ2

Γ � e : R → unit

Γ � newq e : unit

Γ{x : τ} � x : τ
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Γ � e1 : unit Γ � e2 : unit

Γ � if e1 e2 : unit

Γ � e1 : R Γ � e2 : unit

Γ � acca e1 e2 : unit

A program D = {F1 x1,1 · · · x1,k1 = e1, . . . , Fn xn,1 · · · xn,kn = en} is well-typed
under Γ, if Γ = F1 : τ1,1 → · · · → τ1,k1 → unit, . . . , Fn : τn,1 → · · · τn,kn → unit and
Γ ∪ {xi,1 : τi,1, . . . , xi,ki : τi,ki} � ei : unit holds for each i. Here, ki may be 0.

By the definition above, all the defined function symbols must have types of
the form τ1 → · · · → τk → unit. That condition can be enforced by the CPS
transformation, as mentioned in Remark 3.1.
We now define an operational semantics.

Definition 3.4. A run-time state is expressed by a pair (H, e), where e is the
current expression, and H maps each resource to its state (i.e. a state of the
resource automaton W ). We write [e1/x1, . . . , e�/x�]e for the expression obtained
by replacing every occurrence of xi with ei in e. The relation (H, e) −→D,W C,
where C is a run-time state or an error configuration Error (which means that a
resource access error has occurred), is the least relation closed under the following
rules.

(H,F e1 · · · e�) −→D∪{F x1 ··· x�=e},W (H, [e1/x1, . . . , e�/x�]e)

(H, if e1 e2) −→D,W (H, e1)

(H, if e1 e2) −→D,W (H, e2)

(H,newq e) −→D,W (H{x �→ q}, e x) (x 
∈ dom(H))

(H{x �→ q}, acca x e) −→D,W (H{x �→ q′}, e) (if q′ = δ(q, a))

(H{x �→ q}, acca x e) −→D,W Error (if δ(q, a) is undefined)

(H, �) −→D,W Error (if H(x) 
∈ QF for some x ∈ dom(H))

Here, δ and QF are the transition function and the set of final states of W , respec-
tively.

The last two rules ensure that a program is reduced to Error if a resource is
used in an invalid manner; the first of them treats the case where an invalid access
occurs, while the second one treats the case where a program has terminated but
a resource is not in a final state.

Example 3.2. Recall the program D0 in Example 3.1. It can be reduced as
follows.

(∅, S) −→D0,W (∅,newqread only (G �))
−→D0,W ({x �→ qread only}, G � x)
−→D0,W ({x �→ qread only}, if (accclose x �) (accread x (G � x)))
−→D0,W ({x �→ qread only}, accread x (G � x))
−→D0,W ({x �→ qread only}, G � x)
−→D0,W ({x �→ qread only}, if (accclose x �) (accread x (G � x)))
−→D0,W ({x �→ qread only}, accclose x �)
−→D0,W ({x �→ qclosed}, �)
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Let D1 be the program obtained from D0 by replacing the definition of G with:

Gk x = if (accread x k) (accclose x (Gk x))

Then, D1 can be reduced as follows.

(∅, S) −→D1,W (∅,newqread only (G �))
−→D1,W ({x �→ qread only}, G � x)
−→D1,W ({x �→ qread only}, if (accread x �) (accclose x (G � x)))
−→D1,W ({x �→ qread only}, accclose x (G � x))
−→D1,W ({x �→ qclosed}, G � x)
−→D1,W ({x �→ qclosed}, if (accread x �) (accclose x (G � x)))
−→D1,W ({x �→ qclosed}, accclose x (G � x))
−→D1,W Error

�

Remark 3.2. Note that the reduction is allowed only at the top-level; For exam-
ple, (H,F (if e1 e2)) −→D,W (H,F e1) is not allowed. This is not a limitation,
since a redex can occur only at the top-level in the result of CPS transformation.�

The following is the standard type soundness property, which means that the
evaluation does not get stuck. (Note that (∅, S) may be reduced to Error, i.e. a
resource access error may occur.)

Lemma 3.1. Let D be a well-typed program and W a resource automaton. If
(∅, S) −→∗

D,W (H, e), then either e is � or (H, e) −→D,W C for some C.

Proof. This follows by the standard argument, using the facts that the re-
duction preserves typing, and that a well-typed run-time state does not get stuck
immediately. �

We now define the problem of resource usage verification.

Definition 3.5 (resource safety, resource usage verification).
A (well-typed) program D is resource-safe (with respect to the resource automaton
W ) if (∅, S) 
−→∗

D,W Error. The resource usage verification is the problem of
deciding whether a given (well-typed) program is resource-safe or not.

Example 3.3. The program D0 in Example 3.1 is resource-safe. The program
D1 in Example 3.2 is not resource-safe. The following program, obtained from D0

by removing accclose, is not resource-safe either.

S = newqread only (G �) Gk x = if k (accread x (Gk x))

In fact, (∅, S) can be reduced to ({x �→ qread only}, �), but qread only is not a final
state. �

3.2 From Resource Usage Verification to Recursion Scheme Model Checking

The idea of reducing a resource usage verification problem to a model checking
problem for recursion schemes is to transform a program into a recursion scheme
that generates a tree describing all the possible resource access sequences.

ACM Journal Name, Vol. V, No. N, Month 20YY.



Model Checking Higher-Order Programs · 17

νqread only

br

close

�
read

br

close

�
read

· · ·

Fig. 4. A tree representing all the access sequences of the program in Example 3.1

The transformation is straightforward for a program manipulating a single re-
source. For example, recall the program in Example 3.1:

S = newqread only (G �)
Gk x = if (accclose x k) (accread x (Gk x))

The required tree is generated by the following recursion scheme:

S → newqread only (G �)
Gk x → if (accclose x k) (accread x (Gk x))

newqread only k → νqread only(k �)
if x y → brx y

accread x k → readk
accclose x k → closek

The first two rules are identical to the source program. We have just added rules
for resource access primitives and conditionals. The recursion scheme generates the
tree shown in Figure 4. Thus, the resource usage verification problem has been
reduced to the problem of checking whether every path of the tree generated by the
recursion scheme is labeled by an element of νqread only(read∗close �+readω) (with
br ignored).
An additional trick is required for a program that creates and accesses more than

one (possibly an infinite number of) resource. For example, consider the following
program twofiles:

let rec f x y =

if b then close(x);close(y) else (read(x);write(y);f x y) in

let z1 = open_in "foo" in let z2 = open_out "bar" in

f z1 z2

It is represented as the following program in our language.

S = newqread only G
G z1 = newqwrite only (F � z1)

F k x y = if (accclose x (accclose y k)) (accread x (accwrite y (F k x y)))

Since we need to verify that each of the two resources will be accessed in a valid
manner, we transform the program into a recursion scheme that generates a tree
that represents resource-wise access sequences.
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Fig. 5. A tree that represents access sequences for two resources

The recursion scheme that generates such a tree is given by:

S → newqread only G
Gz1 → newqwrite only (F � z1)

F k x y → if (accclose x (accclose y k)) (accread x (accwrite y (F k x y)))
newqread only k → br (kK) (νqread only(k I))
newqwrite only k → br (kK) (νqwrite only(k I))

accread x k → x read k accwrite x k → x writek accclose x k → x closek
I f k → f(k) K f k → k if x y → brx y

Again, the first three rules are the same as the function definitions in the source
program. The trick to handle multiple resources is in the rule for newq , where the
resource is non-deterministically instantiated to I or K, of sort (o → o) → o → o.4

I and K take a resource access operation f as an argument; I attaches f to the
access tree, while K just ignores f . Intuitively, I is a resource for which we should
keep track of access sequences, while K is a resource for which we should ignore
access sequences. A resource access acca x k is now transformed into x a k, which
is reduced to a(k) or k, depending on whether x is I or K.
Figure 5 shows the tree generated by the above recursion scheme. The four sub-

trees marked by dashed boxes express possible access sequences obtained by keeping
track of different resources. In t1, both the files are ignored. In t2, the write-only
file is tracked, while in t3, the read-only file is tracked. Both the files are tracked
in t4. For the purpose of resource usage verification, we need to check only t2 and
t3; The subtrees t1 and t4, which either contain no ν or more than one ν, can be
ignored.
We now formally define a transformation from a resource usage verification prob-

lem to a model checking problem for recursion schemes, i.e., a pair (G,B) such that
the source program is resource-safe if and only if the tree generated by G is accepted
by B.

4This trick was inspired from a technique used in finite state model checking [Cook et al. 2007].
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We first give a transformation of a program into a recursion scheme.

Definition 3.6. Let D be a program well-typed under Γ and W =
(L,Q, δ, q0, QF ) a resource automaton. The recursion scheme GD,W is (Σ,N ,R, S),
where:

Σ = {a �→ 1 | a ∈ L} ∪ {br �→ 2, � �→ 0} ∪ {νq �→ 1 | q ∈ Q}
N = {F : (Γ(F ))� | F ∈ dom(Γ)}

∪{acca : ((o → o) → o → o) → o → o | a ∈ L}
∪{newq : (((o → o) → o → o) → o) → o | q ∈ Q}
∪{if : o → o → o, I : (o → o) → o → o,K : (o → o) → o → o}

R = {F �→ λx̃.e | F x̃ = e}
∪{newq �→ λk.(br (kK) (νq (k I))) | q ∈ Q}
∪{if �→ λx.λy.(br x y), I �→ λf.λk.f(k), K �→ λf.λk.k}
∪{acca �→ λx.λk.(xa k) | a ∈ L}

Here, (·)� is a translation from types (of our programming language) to sorts, given
by:

R� = (o → o) → o → o unit� = o (τ1 → τ2)
� = τ �1 → τ �2

The following lemma guarantees that GD,W is indeed a higher-order recursion
scheme.

Lemma 3.2. If W is a resource automaton and D is a well-typed program, then
GD,W is a higher-order recursion scheme.

Proof. It suffices to check that all the rewriting rules are well-sorted. It is easy
to see that if Γ � e : τ , then e is a term of sort τ � under the sorting context Γ�

(where (x1 :τ1, . . . , xn :τn)
� = x1 :τ

�
1 , . . . , xn :τ

�
n), which implies that all the rewriting

rules are well-sorted. �

Next we give a transformation of a resource automaton to a trivial automaton
for recognizing trees representing valid event sequences.

Definition 3.7. Let W = (L,Q, δ, q0, QF ) be a resource automaton. The trivial
automaton BW is (Σ, Q′, δ′, quntracked), where:

Σ = {a �→ 1 | a ∈ L} ∪ {br �→ 2, � �→ 0} ∪ {νq �→ 1 | q ∈ Q}
Q′ = Q ∪ {quntracked, qany} (where quntracked, qany 
∈ Q)
δ′ = δ ∪ {(q, br) �→ q q | q ∈ Q′}

∪{(q, �) �→ ε | q ∈ QF ∪ {quntracked, qany}}
∪{(quntracked, νq) �→ q | q ∈ Q}
∪{(q, νq′ ) �→ qany | q, q′ ∈ Q}
∪{(qany, a) �→ qany | a ∈ L}

The 3rd set of δ describes transitions for the program termination. The transi-
tions are defined if the tracked resource (i.e., the resource that has been instantiated
to I) has been used up (i.e. if q ∈ QF ), if no resource has been instantiated to I
(i.e., if q = quntracked), or if more than one resource has been instantiated to I (i.e.,
if q = qany). The 4th set of δ describes transitions for the case where a tracked
resource has been created for the first time, while the 5th set describes transitions
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for the case where more than one tracked resource has been created. In the latter
case, all the following accesses are ignored by the last set of transition rules of δ.

Example 3.4. Let W be a resource automaton:

({read, write, close}, Q, δ, qread only, {qclosed}),

where Q = {qread only, qwrite only, qclosed} and

δ(qread only, read) = qread only δ(qread only, close) = qclosed
δ(qwrite only, write) = qwrite only δ(qwrite only, close) = qclosed

BW has states: Q′ = Q ∪ {quntracked, qany}. The transition function δ′ of BW has
the following rules, in addition to the same rules as δ above.

δ′(q, br) = q q (for each q ∈ Q′)
δ′(quntracked, �) = δ′(qany, �) = δ′(qclosed, �) = ε

δ′(quntracked, νq) = q (for each q ∈ Q) δ′(q, νq
′
) = qany (for each q, q′ ∈ Q)

δ′(qany, a) = qany (for each a ∈ {read, write, close})
�

The correctness of the transformation is stated as follows.

Theorem 3.3. Let D be a (well-typed) program and W a resource automaton
(for D). Then, D is resource-safe with respect to W if and only if [[GD,W ]] is

accepted by BW
⊥.

Note that the theorem above holds for programs that create an arbitrary number
of resources. To prove the theorem, we just need to relate a reduction sequence of
the program D to a run of the automaton BW over a path of the tree generated by
GD,W . Since the proof of the above theorem is tedious but not difficult, we defer
the proof to Appendix A.
The following is an immediate corollary of Corollary 2.2 and Theorem 3.3.

Corollary 3.4. The resource usage verification problem is decidable.

Remark 3.3. We have so far considered programs having only the unit value �
as a base value. Other finite base types such as booleans can be encoded by using
the standard Church encoding. An element vi of a finite base type consisting of
{v1, . . . , vn} can be represented by the function:

λx1. · · ·λxn.xi : o → · · · → o︸ ︷︷ ︸
n

→ o.

A case expression: case x of v1 ⇒ e1 | · · · | vn ⇒ en can be encoded into
x e1 · · · en. Here, in the case expressions above, we assume that e1, . . . , en have
type unit (which can be enforced by CPS transformation), so that they have type
o after the encoding. Thus, the decidability of resource usage verification remains
valid for the language extended with finite base types.

Remark 3.4. Instead of generating a single recursion scheme and a trivial au-
tomaton from a program, we can also generate a pair of a recursion scheme and a
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trivial automaton for each occurrence of newq. Then, the resource usage verifica-
tion problem is reduced to a set of model checking problems for recursion schemes.
For instance, recall the program accessing two resources:

S = newqread only G
Gz1 = newqwrite only (F � z1)
F k x1 x2 = if (accclose x1 (accclose x2 k)) (accread x1 (accwrite x2 (F k x1 x2)))

It can be transformed into the following two recursion schemes

R1 = {S → newqread only G1, G z1 → F � z1K,
F k x1 x2 → if (accclose x1 (accclose x2 k))

(accread x1 (accwrite x2 (F k x1 x2))), . . .}
R2 = {S → G2 K, G2 z1 → newqwrite only (F � z1)),

F k x1 x2 → if (accclose x1 (accclose x2 k))
(accread x1 (accwrite x2 (F k x1 x2))), . . .}

This alternative approach may be preferable in practice, as the size of the corre-
sponding trivial automaton is kept small. �

Remark 3.5. We can extend the encoding to verify some inter-dependency be-
tween the uses of different resources. Suppose that resources should be used in a
LIFO manner, in the sense that the most recently created resource should be closed
first. To verify that property, we can change the encoding of resource primitives as
follows:

newq k → br (kK) (br (νq1 (k I1)) (ν
q
2 (k I2)))

I1 x k → first(x(k)) I2 x k → second(x(k))

Then, it suffices to check that, for every path of the form s0ν
q
1s1ν

q
2s2 where s0s1s2

does not contain νqi , a subsequence first · close occurs only after second · close.
This property can be expressed by a trivial automaton.

3.3 Other Verification Problems

This subsection discusses reductions of other verification problems to model check-
ing problems for recursion schemes, in order to show the robustness of our approach
to program verification. The discussion is brief and rather informal; The formal-
ization and correctness proofs of the reductions would be tedious but not difficult.

3.3.1 Reachability. The language we consider here is a sub-language of the one
considered in Section 3.1, obtained by removing resource primitives newq e and
acca x e. The operational semantics for this sub-language is obtained by just
removing the “H” component from run-time states. The evaluation is thus call-by-
name.
The reachability is the problem of checking whether the main function S is re-

duced to Fail , which is a special function symbol of type o.
Given a program D well-typed under Γ, construct the following recursion scheme

GD and automaton B:
GD = ({fail �→ 0, � �→ 0, br �→ 2},Γ�,R, S)
R = {F x̃→ e | F x̃ = e ∈ D, and F 
= Fail} ∪ {Fail → fail, if x y → brx y}
B = ({fail �→ 0, � �→ 0, br �→ 2}, {q0}, {(q0, br) �→ q0q0, (q0, �) �→ ε}, q0)
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It is trivial that S is reduced to Fail if and only if [[GD]] contains fail. Thus, S is
reduced to Fail if and only if [[GD]] is not accepted by B⊥. The reachability problem
is therefore decidable.

Example 3.5. Consider the following program in a call-by-value language.

let repeatEven f x = if _ then x else f (repeatOdd f x) in

let repeatOdd f x = f (repeatEven f x) in

if (repeat_even not true) then () else fail

The function repeatEven takes two arguments f and x, and applies f to x an even
number of times.
It can be transformed into the following program in our language.

S = RepeatEven C Not True C b = If b � Fail
RepeatEven k f x = if (k x) (RepeatOdd (f k) f x)
RepeatOdd k f x = RepeatEven (f k) f x
Not k b = If b (k False) (k True)
If b x y = b x y True x y = x False x y = y

Here, we have applied CPS transformation and used Church encoding for booleans.
The corresponding recursion scheme can be obtained by just adding the rules for
Fail and if , as described above. The resulting recursion scheme generates a tree
containing fail if and only if the original program reaches Fail . We can use
recursion scheme model checking to show that the former is not the case, which
implies that the original program does not reach Fail . �

3.3.2 Call Relation Analysis and Control Flow Analysis. We consider the same
language as above. Given a program D = {F1 x̃ = e1, . . . , Fn x̃ = en} (with the
main function S), we define the call relation CallD by:

CallD = {(Fi, Fj) | S −→∗
D Fi t̃ −→D (

if−→D)∗Fj ũ}.

Here, the relation (
if−→D)∗ represents a (possibly empty) sequence of reductions

of if-expressions. We define the call relation analysis as the problem of, given
D,Fi, Fj , to decide whether (Fi, Fj) ∈ CallD. Note that solving the problem is
not obvious syntactically, as our language is higher-order, and the head term of the
body of the definition of Fi may be a variable.
The call relation analysis above can be easily reduced to recursion scheme model

checking. The idea is to transform a program into a recursion scheme that generates
a tree representing all the possible call sequences. For each function Fi in a program
D, prepare a terminal symbol calli, and transform a function definition Fi x̃ = e
to

Fi x̃→ calli(e)

and add the rule if x y → brx y for if-expressions. Then, it is obvious that
(Fi, Fj) ∈ CallD if and only if the tree generated by the recursion scheme has a
path of the form · · · callibr∗callj · · ·. Since the latter is a recursion scheme model
checking problem, the call relation analysis is decidable.
The call relation analysis above is strongly related to a control flow analysis

problem [Nielson et al. 1999] of computing, for each function application M1M2,
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the set of (syntactic occurrences of) λ-abstractions thatM1 may evaluate to. Given
a call-by-value program, apply the CPS transformation given in Remark 3.1. Recall
that a function application M1M2 is transformed to:

λk.M1
†(λf.M2

†(λx.f x k)).

Thus, the value of M1 will be assigned to f and called in the expression f x k. Let
Fi be the name of the continuation function λx.f x k. Then, the call relation for the
program in CPS contains (Fi, Fj) if and only if, in the source program, the value
of M1 evaluates to a closure corresponding to Fj and is called in M1M2.

Example 3.6. Let us consider the following call-by-value program, taken from
Might and Shivers [2008].

let lam = fun x->... in let lam’ = fun x->... in

let id x = x in let unused = id lam in let f = id lam’ in

f()

Suppose we are interested in whether f in the call f() may be bound to lam.
By applying CPS transformation (with some simplification), we obtain the fol-

lowing program D in our language.

S = Id Lam C1 C1 unused = Id Lam′ C2 C2 f = f �
Id x k = k x Lam x = · · · Lam′ x = · · ·

The problem has been reduced to the call relation problem of whether (C2, Lam) ∈
CallD holds. The program above can be further transformed to the following
recursion scheme:

S → call0(Id Lam C1) C1 unused → call0(Id Lam′ C2) C2 f → call1(f �)
Id x k → call0(k x) Lam x→ call2(· · · ) Lam′ x→ call0(· · · )

Here we have assigned the label call0 to irrelevant functions. The tree generated
by the recursion scheme does not have call1 · call2 as a subpath. Thus, we know
(C2,Lam) 
∈ CallD.

�

Remark 3.6. Another way to reduce the flow analysis problem into recursion
scheme model checking is to first reduce flow analysis into a resource usage verifi-
cation problem. Given a functional program, we can transform every λ-abstraction
into a pair consisting of the λ-abstraction and a resource. The resource is used to
keep track of uses of the function. We can also transform every function applica-
tion e1e2 into an access to the resource followed by the function application (i.e.
let (f, r) = e1 in let y = e2 in acca r (f y)). We can then check which λ-abstraction
is called at each functional call site by solving resource usage verification problems.

3.3.3 Exception Analysis. The goal of exception analysis [Yi 1994; Leroy and
Pessaux 2000; Nielson et al. 1999] is to check whether there is an uncaught ex-
ception. If a program uses only finitely many exceptions that carry base values,
we can transform out exception primitives by representing exception handlers as
alternative continuations, following Blume et al. [2008], and reduce the exception
analysis problem to the reachability problem, which can be further reduced to a
model checking problem as discussed in Section 3.3.1.
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For example, consider the following OCaml program, taken from Leroy and Pes-
saux [2000]:

let failwith msg = raise (Failure msg)

let f x = if ... then x else failwith (true)

let g x = try f x with Failure true -> ()

let main() = g()

By representing exception handlers as alternative continuations, we get the follow-
ing program in our language.

S = G � Uncaught End
F x h k = if (k x) (Failwith True h) Gxhk = F x (Handle h k) k
Failwith x h = hx Handle h k x = If x (k �) (h x)
Uncaught x = Fail End x = end

Here, If and True are defined as in Example 3.5. The functions F and G take
a handler h and a continuation k as additional parameters. The program above
evaluate to Fail if and only if the original program raises an uncaught exception.
Thus, the exception analysis has been reduced to the reachability problem.

3.3.4 Strictness Analysis. The goal of strictness analysis [Mycroft 1980; Burn
et al. 1986] is to check whether a function argument can be eagerly evaluated
without changing the semantics of a lazy functional language. For that purpose,
it suffices to check whether the function argument is used in any non-divergent
execution of the program. Thus, for our language, strictness can be defined as
follows.

Definition 3.8. A function F is strict in the i-th argument in a program D if in
every finite reduction sequence of the form:

S −→∗
D F t1 · · · tn −→∗

D �,
ti occurs in a head position5 in the reduction sequence F t1 · · · tn −→∗

D �.
Remark 3.7. Note that the above definition is slightly different from the stan-

dard definition of strictness, where a function f(x1, . . . , xn) is strict in xi if
f(v1, · · · , vi−1,⊥, vi+1, · · · , vn) = ⊥ for all v1, . . . , vi−1, vi+1, . . . , vn. In our def-
inition, the arguments v1, . . . , vi−1, vi+1, . . . , vn are restricted to actual arguments
that F is applied to in reduction sequences from S.

We can reduce the strictness analysis problem above to a recursion scheme model
checking problem, by replacing the definition F x1 · · · xn = e with the following
rules:

F x1 · · · xn → br (F ′ x1 · · · xn) (tracked(F ′ x1 · · · xi−1 (Mark xi)xi+1 · · · , xn))
F ′ x1 · · · xn → e
Mark x ỹ → used(x ỹ).

The idea is the same as that of the reduction of resource usage verification problems;
We just non-deterministically focus on a function call for F , and keep track of a use

5More precisely, a copy of ti that originates from the i-th argument of F occurs in a head position.
We assume that each term is implicitly labeled to indicate the origin of the term.
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of the i-th argument. Then, a function F is strict in the i-th argument if, and only
if, in every finite path of the tree generated by the recursion scheme, used occurs
whenever tracked occurs.

Example 3.7. Let us consider the following program:

let f x y g = if x then g y else f _ y g in

let g y = y in f false true g

It is expressed in our language as follows.

S = F False True G C
F x y g k = If x (G y k) (if (F True y g k) (F False y g k))

G y k = k y
C b = b � �

To check whether F is strict in the second argument, it suffices to transform the
program into the following recursion scheme:

S → F False True G C
F x y g k → br (F ′ x y g k) (tracked(F ′ x (Mark y) g k))
F ′ x y g k → If x (G y k) (br (F True y g k) (F False y g k))

Mark y z w → used(y z w)
G y k → k y

· · ·

For every finite path p of the tree generated by the recursion scheme above, p
contains used whenever p contains tracked. Thus, we know that F is strict in the
second argument.

�

4. FROM RECURSION SCHEME MODEL CHECKING TO TYPE CHECKING

We have seen in the previous section that various verification problems for higher-
order programs can be reduced to recursion scheme model checking. As the re-
cursion scheme model checking is decidable [Ong 2006], we can, in principle, solve
those program verification problems by appealing to a model checking algorithm for
recursion schemes. There remains however an important question from a practical
point of view: Is the resulting verification method feasible? Since the reduction
to recursion scheme model checking can be efficiently performed (as we have seen,
it essentially amounts to performing CPS transformation and λ-lifting), the main
question is whether there is an efficient algorithm for recursion scheme model check-
ing.
Unfortunately, the modal μ-calculus model checking of an order-k recursion

scheme is k-EXPTIME complete in general. Even for the class of deterministic
trivial automata considered in this article, the recursion scheme model checking is
(k − 1)-EXPTIME complete [Kobayashi and Ong 2011]. Furthermore, from the
complexity of recursion scheme model checking, we can also easily deduce that the
verification problems we have considered in the previous section are also (k − 1)-
EXPTIME hard [Kobayashi and Ong 2011]. Thus, from the viewpoint of complexity
theory, our verification method is infeasible.
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There is still a hope, however, that our verification method may work well in
practice. First, k-EXPTIME hardness is the worst-case complexity: It may be the
case that recursion scheme model checking problems can be efficiently solved for
typical inputs. As an analogy, ML typability is DEXPTIME-complete [Mairson
1990; Kfoury et al. 1990], but the exponential behavior is rarely seen in practice.
Secondly, k-EXPTIME completeness is in the combined size of a recursion scheme
and a property (expressed by either a modal μ-calculus formula or a tree automa-
ton). If the time complexity is polynomial in the size of the recursion scheme,
then model checking of order-k recursion schemes may scale for simple properties
and small k. Unfortunately, the previous algorithms for recursion scheme model
checking [Ong 2006; Aehlig 2007; Hague et al. 2008] gave no hint about whether
this is the case. Those algorithms suffer from k-EXPTIME bottleneck for almost
all inputs, not just for the worst-case input.
To circumvent the situation, we introduce new, type-based model checking algo-

rithms for recursion schemes in the present and next sections. This section shows
that recursion scheme model checking can be reduced to the typability problem in
an intersection type system: The tree generated by a recursion scheme satisfies a
given property if, and only if, the recursion scheme is well-typed in the intersection
type system. As discussed in Section 4.3, the reduction to the typability prob-
lem yields a naive fixed-point computation algorithm for model checking recursion
schemes. Remarkably, despite its simplicity, the algorithm runs in time linear in
the size of the recursion scheme, under the assumption that the sizes of sorts and
properties are bounded by a constant. As the naive algorithm is still impractical
due to a huge constant factor (that is k-fold exponential in the size of a property
and the largest arity of non-terminals), Section 5 gives a more elaborate model
checking algorithm that runs much faster for typical inputs.

4.1 Type System for Recursion Schemes

Let B = (ΣB, QB, δB, qB,0) be a trivial automaton. We omit the subscript B when
it is clear from the context. We shall construct a type system for higher-order
recursion schemes, such that a recursion scheme G has type qB,0 if and only if [[G]]
is accepted by B⊥.
The idea is to refine the tree sort o to an intersection type [Coppo et al. 1979;

Barendregt et al. 1983; van Bakel 1995] of the form q1 ∧ · · · ∧ qk. Intuitively, qi de-
scribes trees that are accepted by B from state qi (i.e., accepted by (ΣB, QB, δB, qi)).
The type q1 ∧· · ·∧ qk denotes the intersection of the sets of trees accepted from the
initial states q1, . . . , qk. The types of function terms are also refined accordingly.
The type q1 → q0 describes functions that take a tree accepted from state q1, and
return a tree accepted from state q0. For instance, in Example 2.3, b has type
(q1 → q0) ∧ (q1 → q1). The terminal br has type

∧
{q → q → q | q ∈ {q0, q1}}.

We now introduce the formal syntax of types. Following van Bakel [1992], we
impose the restriction that intersection type constructors occur only on the lefthand
side of function type constructors. For each sort κ, we introduce two kinds of
intersection types: arrow types and intersection types.

Definition 4.1 (intersection types). Let B = (ΣB, QB, δB, qB,0) be a trivial au-
tomaton. For each sort κ, the set ATypesκ,B of arrow types and the set ITypesκ,B
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of intersection types are defined as follows by induction on κ.

ATypeso,B = QB
ATypesκ1→κ2,B = {σ → θ | σ ∈ ITypesκ1,B, θ ∈ ATypesκ2,B}

ITypesκ,B = {
∧
S | S ⊆ ATypesκ,B}

We use meta-variables θ and σ for arrow types and intersection types, respec-
tively. We often write θ1 ∧ · · · ∧ θn or

∧
i∈{1,...,n} θi for the intersection type∧

{θ1, . . . , θn}, and write � for
∧
∅. Since S in the intersection type

∧
S is a set,

the order of elements and the number of occurrences of elements in S are irrelevant.
Thus, for example, θ1 ∧ θ2, θ2 ∧ θ1, and θ1 ∧ θ1 ∧ θ2 are the same types.
We shall construct below a type system to reason about the type of the tree

generated by a higher-order recursion scheme.

Definition 4.2 (type environment). A type environment is a set of bindings of
the form x : θi, which may contain multiple bindings for the same variable. We
write dom(Γ) for the set {x | ∃θ.x : θ ∈ Γ}. Let K be a map from variables to
sorts. We say Γ respects K, written Γ ::B K, if (i) dom(Γ) ⊆ dom(K), and (ii)
θ ∈ ATypesK(x),B for every x : θ ∈ Γ.

Note that each variable may occur more than once in a type environment; Such
type environments have been used in some intersection or polymorphic type sys-
tems [Damas 1984; Coppo et al. 1981]. Intuitively, {x : θ1, x : θ2} means that x has
the intersection type θ1 ∧ θ2. In the definition of Γ ::B K, a variable bound in K but
not in Γ can be considered to have type �, i.e.

∧
∅.

We next introduce type judgment for λ-terms. Non-terminal symbols of a recur-
sion scheme are treated as variables below.

Definition 4.3 (typing for terms). Let B = (Σ, QB, δB, qB,0) be a trivial automa-
ton. The type judgment relation Γ �B t : θ, where Γ is a type environment, t is
a λ-term, and θ is an arrow type, is the least relation closed under the following
rules:

Γ ∪ {x : θ} �B x : θ (T-Var)

δB(q, a) = q1 · · · qn
Γ �B a : q1 → · · · → qn → q

(T-Const)

Γ �B t1 :
∧

i∈{1,...,n} θi → θ Γ �B t2 : θi (for each i ∈ {1, . . . , n})
Γ �B t1t2 : θ

(T-App)

Γ ∪ {x : θ1, . . . , x : θn} �B t : θ x 
∈ dom(Γ)

Γ �B λx.t :
∧

i∈{1,...,n} θi → θ
(T-Abs)

Above are standard typing rules for an intersection type system, except that the
type of a terminal is determined by the transition function of B. In T-App, if t1
has type

∧
i∈{1,...,n} θi → θ, then the argument t2 should have type θi for every

i ∈ {1, . . . , n}. In the rule, n may be 0, in which case t2 need not be typed. For
example, x :� → q0 �B x (z z) : q0 holds.
We now define typing for recursion schemes.
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Rewriting rules of recursion scheme G0:

S → F c F x → br x (a(F (b(x))))

Transition rules of automaton B0:

δ(q0, br) = q0q0 δ(q1, br) = q1q1
δ(q0, a) = q0 δ(q0, b) = δ(q1, b) = q1 δ(q0, c) = δ(q1, c) = ε

Fig. 6. A running example: recursion scheme G0 (Example 2.1) and trivial automaton B0 (Exam-
ple 2.3).

Definition 4.4 (typing for higher-order recursion schemes).
Let B = (Σ, QB, δB, qB,0) be a trivial automaton and G = (Σ,N ,R, S) a higher-
order recursion scheme. We write �B G : Γ if (i) Γ ::B N and (ii) Γ �B R(F ) : θi
holds for every F : θi ∈ Γ. (G, t) has type θ under Γ, written Γ �B (G, t) : θ if
�B G : Γ and Γ �B t : θ. We write �B (G, t) : θ if Γ �B (G, t) : θ for some Γ. A
recursion scheme G is well-typed if �B (G, S) : qB,0 holds.

The first condition Γ ::B N for �B G : Γ above says that the type environment
Γ for non-terminals should be a refinement of sort environment N . For a given
sort environment N , there are only finitely many Γ that satisfy Γ ::B N . Thus,
the condition ensures that, for type inference, it suffices to search a valid type
environment from only a finite number of candidates.

Example 4.1. Recall the recursion scheme G0 in Example 2.1 and the automa-
ton B0 in Example 2.3, which have the rewriting rules R and the transition function
δ shown in Figure 6. We shall use the model checking problem of whether [[G0]] is
accepted by B0

⊥ as a running example in the present and next sections. Let Γ be
{S : q0, F : q0 ∧ q1 → q0}. Then, we have

Γ �B0 F c : q0 Γ �B0 λx.(br x (a(F (b(x))))) : q0 ∧ q1 → q0.

The former is derived by:

Γ �B0 F : q0 ∧ q1 → q0 Γ �B0 c : q0 Γ �B0 c : q1
Γ �B0 F c : q0

The latter is derived by:

Γ1 �B0 br : q0 → q0 → q0 Γ1 �B0 x : q0

Γ1 �B0 br x : q0 → q0

· · ·
Γ1 �B0 a(F (b(x))) : q0

Γ1 �B0 br x (a(F (b(x)))) : q0

Γ �B0 λx.(br x (a(F (b(x))))) : q0 ∧ q1 → q0

where Γ1 = Γ ∪ {x : q0, x : q1}. Thus, we have Γ �B0 (G0, S) : q0. �

Remark 4.1. The type system above can be easily extended to deal with non-
deterministic trivial automata [Aehlig 2007] (ΣB, QB,ΔB, qB,0) where ΔB is a map
from Q × dom(Σ) to 2Q

∗
. It suffices to replace rule T-Const with the following

rule:

ΔB(q, a) � q1 · · · qn
Γ �B a : q1 → · · · → qn → q
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4.2 Soundness and Completeness

We use syntactic proof techniques to show that the type system above is sound and
complete with respect to the model checking problem, i.e., that [[G]] is accepted by
B⊥ if and only if G is well-typed in the type system. The meta-variables t and u
range over applicative terms (that do not contain λ-abstractions) below.
We first prove the soundness.

Theorem 4.1 (soundness). Let G be a recursion scheme and
B = (ΣB, QB, δB, qB,0) a trivial automaton. If �B (G, S) : qB,0, then [[G]] is accepted
by B⊥.

The proof of the theorem above is similar to standard syntactic proofs of type
soundness [Wright and Felleisen 1994]. We first prove that typing is preserved by
substitutions and reductions.

Lemma 4.2 (weakening). If Γ′ �B t : θ and Γ′ ⊆ Γ, then Γ �B t : θ.

Proof. This follows by straightforward induction on the derivation of Γ′ �B t : θ.
�

Lemma 4.3 (substitution). If Γ ∪ {x : θ1, . . . , x : θm} �B t : θ and Γ �B u : θi
for every i ∈ {1, . . . ,m} with x 
∈ dom(Γ), then Γ �B [u/x]t : θ.

Proof. This follows by straightforward induction on the derivation of Γ ∪ {x :
θ1, . . . , x : θm} �B t : θ. �

Lemma 4.4 (type preservation). If �B (G, t) : q and t −→G t′, then �B
(G, t′) : q.

Proof. Suppose �B (G, t) : q, i.e., there exists Γ such that Γ �B (G, t) : q.
It suffices to show Γ �B t′ : q by induction on the derivation of t −→G t′. As

the induction step is easy, we show only the base case, where t = F u1 · · · uk and
t′ = [u1/x1, . . . , uk/xk]s with RG(F ) = λx1. · · ·λxk.s. By the condition Γ � t : q,
we have:

(F :
∧

j∈{1,...,n1} θ1,j → · · · →
∧

j∈{1,...,nk} θk,j → q) ∈ Γ

Γ �B ui : θi,j (for each i ∈ {1, . . . , k}, j ∈ {1, . . . , ni})

By the condition Γ �B (G, t) : θ, it must be the case that:

Γ �B λx1. · · ·λxk.s :
∧

j∈{1,...,n1} θ1,j → · · · →
∧

j∈{1,...,nk} θk,j → q,

which implies

Γ ∪ {xi : θi,j | i ∈ {1, . . . , k}, j ∈ {1, . . . , ni}} � s : q.

By applying Lemma 4.3, we obtain Γ � [u1/x1, . . . , uk/xk]s : q (i.e. Γ � t′ : q) as
required. �

Next, we show that if (G, t) is well-typed, then the “concretized” part of t, i.e.,
the part of t that has been already evaluated to tree nodes, is accepted by the
automaton. The “concretized” part of t is expressed by t⊥ (recall Definition 2.5).

Lemma 4.5. If Γ �B t : q, then t⊥ is accepted by B⊥ from state q.
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Proof. The proof proceeds by induction on the structure of t⊥. If t⊥ = ⊥, the
result follows immediately. Otherwise, t⊥ is of the form a t′1 · · · t′n. In this case,
t must be of the form a t1 · · · tn with ti

⊥ = t′i for i = 1, . . . , n. By Γ �B t : q,
we have Γ �B a : q1 → · · · → qn → q and Γ �B ti : qi (i = 1, . . . , n) for some
q1, . . . , qn. By the induction hypothesis, ti

⊥ must be accepted by B⊥ from state qi.
Γ �B a : q1 → · · · → qn → q implies that δB(q, a) = q1 · · · qn. Thus, t⊥ must be
accepted by B⊥ from state q. �

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Suppose �B (G, S) : qB,0. Since [[G]] =
⊔
{t⊥ | S −→∗

G
t}, it suffices to show that t⊥ is accepted by B⊥ for every t such that S −→∗

G t.
(In fact, if Rt is a run-tree of B⊥ over t⊥, then

⋃
S−→∗

Gt
Rt is a run-tree of B⊥ over

[[G]].) If S −→∗
G t, then by Lemma 4.4, we have �B (G, t) : qB,0, which implies that

Γ �B t : qB,0 holds for some Γ. By Lemma 4.5, t⊥ is accepted by B⊥. �

Next, we prove the completeness of the type system.

Theorem 4.6 (completeness). Let G be a recursion scheme and B =
(ΣB, QB, δB, qB,0) be a trivial automaton. If [[G]] is accepted by B⊥, then �B (G, S) :
qB,0.

We prepare a few lemmas before proving the theorem. We first note the rela-
tion between sort assignment and type assignment (c.f. Definition 2.3 and Defini-
tion 4.3).

Lemma 4.7. Let B = (ΣB, QB, δB, qB,0) be a trivial automaton. If K �ΣB t : κ
and Γ �B t : θ with Γ ::B K, then θ ∈ ATypesκ,B.

Proof. This follows by straightforward induction on the structure of t. �

Next, we show that typing is preserved by the inverse of substitutions and reduc-
tions (c.f. Lemmas 4.3 and 4.4).

Lemma 4.8 (inverse substitution). Suppose K �ΣB u : κ and Γ ::B K.
If Γ �B [u/x]t : θ and x 
∈ dom(Γ), then there exist n (≥ 0) and θ1, . . . , θn ∈
ATypesκ,B such that Γ ∪ {x : θ1, . . . , x : θn} �B t : θ and Γ �B u : θi for each
i ∈ {1, . . . , n}.

Proof. This follows by induction on the structure of t. If t is a terminal or a
variable y(
= x), then [u/x]t = t. Thus, the required condition holds for n = 0.
If t = x, then we have Γ �B u : θ. The required condition holds for n = 1 and
θ1 = θ. Note that we have θ ∈ ATypesκ,B by Lemma 4.7. If t = t1t2, then
[u/x]t = ([u/x]t1)([u/x]t2). By the condition Γ �B [u/x]t : θ, we have:

Γ �B [u/x]t1 :
∧

i∈{1,...,m} θ
′
i → θ

Γ �B [u/x]t2 : θ
′
i (for each i ∈ {1, . . . ,m})

where m may be 0. By the induction hypothesis, we have:

Γ ∪ {x : θ0,1, . . . , x : θ0,�0} �B t1 :
∧

i∈{1,...,m} θ
′
i → θ

Γ ∪ {x : θi,1, . . . , x : θi,�i} �B t2 : θ′i for each i ∈ {1, . . . ,m}
Γ �B u : θi,j and θi,j ∈ ATypesκ,B for each i ∈ {0, . . . ,m}, j ∈ {1, . . . , �i}
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Let {θ1, . . . , θn} be the set {θi,j | i ∈ {0, . . . ,m}, j ∈ {1, . . . , �i}} and n be the
size of the set. We can use Lemma 4.2 to derive Γ ∪ {x : θ1, . . . , x : θn} �B t1 :∧

i∈{1,...,m} θ
′
i → θ and Γ ∪ {x : θ1, . . . , x : θn} �B t2 : θ′i for each i ∈ {1, . . . ,m},

from which Γ ∪ {x : θ1, . . . , x : θn} �B t1t2 : θ follows. Thus we have the required
conditions. �

Lemma 4.9 (type preservation by inverse reduction). Let G =
(Σ,N ,R, S) be a recursion scheme and B be a trivial automaton. If �B (G, t′) : q
and t −→G t′ with N �Σ t : o, then �B (G, t) : q.

Proof. This follows by induction on the derivation of t −→G t′. Since the
induction step is trivial, we show only the base case, where t = F u1 · · · uk and
t′ = [u1/x1, . . . , uk/xk]s, with RG(F ) = λx1. · · ·λxk.s. We have:

N (F ) = κ1 → · · · → κk → o

N �ΣB ui : κi for each i ∈ {1, . . . , k}

Suppose �B (G, t′) : q, i.e., Γ �B (G, t′) : q for some Γ. By Γ �B t′ : q and Lemma 4.8,
we have:

Γ ∪ {xi : θi,j | i ∈ {1, . . . , k}, j ∈ {1, . . . , ni}} �B s : q
Γ �B ui : θi,j for each i ∈ {1, . . . , k}, j ∈ {1, . . . , ni}.
θi,j ∈ ATypesκi,B

Let θ′ be
∧

j∈{1,...,n1} θ1,j → · · ·
∧

j∈{1,...,nk} θk,j → q and Γ′ be Γ ∪ {F : θ′}. Then

we have θ′ ∈ ATypesN (F ),B and Γ′ ::B N , with Γ′ �B t : q and Γ′ �B λx̃.s : θ′.
Thus, we have Γ′ �B (G, t) : q as required. �

Following is a converse property of Lemma 4.5.

Lemma 4.10. If t⊥ is accepted by B⊥ from state q, then ∅ �B⊥ t⊥ : q.

Proof. The proof proceeds by induction on the structure of t⊥. If t⊥ = ⊥,
the result follows immediately: Note that, by the definition of B⊥ (Definition 2.6)
and rule T-Const, ∅ �B⊥ ⊥ : q holds for every q. Otherwise, t⊥ is of the form
a t′1 · · · t′n. In this case, t is of the form a t1 · · · tn with ti

⊥ = t′i for i = 1, . . . , n.
By the assumption that t⊥ is accepted by B⊥ from state q, there must be states
q1, . . . , qn such that (i) δB(q, a) = q1 · · · qn, and (ii) t′1, . . . , t

′
n are accepted by B⊥

from states q1, . . . , qn respectively. By the induction hypothesis and condition (ii),
we have ∅ �B⊥ t′i : qi for each i. The condition (i) implies ∅ �B a : q1 → · · · → qn →
q. Thus, we have ∅ �B⊥ t⊥ : q as required. �

Next, we give a fixed-point characterization of the typability of a recursion
scheme.

Definition 4.5. Let G = (Σ,N ,R, S) be a recursion scheme and B =
(Σ, QB, δB, qB,0) be a trivial automaton. We define the set T EG,B of type envi-
ronments by:

T EG,B = {Γ | Γ ::B N}.
We write Γmax for the greatest element of T EG,B, i.e., {F : θ | F ∈ dom(N ), θ ∈
ATypesN (F ),B}.
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We define a map FG,B from T EG,B to T EG,B by:

FG,B(Γ) = {F : θ ∈ Γ | Γ �B R(F ) : θ}.

Note that, for given G and B, T EG,B and Γmax defined above are finite sets. The
function FG,B checks, for each type assumption F : θ ∈ Γ, whether the body of F
indeed has type θ, and removes F :θ from Γ if that is not the case. FG,B is monotonic
(i.e., Γ1 ⊆ Γ2 implies FG,B(Γ1) ⊆ FG,B(Γ2)) and contractive (i.e., Γ ⊇ FG,B(Γ) for
every Γ).
The following lemma gives a characterization of the typability in terms of a fixed-

point of FG,B.

Lemma 4.11. Let Γ be an element of T EG,B. Then, there exists m(≤ |Γ|) such
that Fm

G,B(Γ) is a fixed-point of FG,B, i.e., FG,B(Fm
G,B(Γ)) = Fm

G,B(Γ). Furthermore,
Fm

G,B(Γ) is the largest Γ
′ such that �B G : Γ′ and Γ′ ⊆ Γ. In particular, if Γ = Γmax,

then �B (G, S) : qB,0 if and only if S : qB,0 ∈ Fm
G,B(Γ).

Proof. The first part is a special case of Knaster’s fixed-point theorem [Knaster
1927], restricted to functions on finite sets: Since FG,B is monotonic and contractive,
F0

G,B(Γ),F1
G,B(Γ),F2

G,B(Γ), . . . is a decreasing sequence consisting of subsets of Γ,
which must converge in at most |Γ| steps.
For the second part, we first note that �B G : Fm

G,B(Γ) and Fm
G,B(Γ) ⊆ Γ follow

immediately from FG,B(Fm
G,B(Γ)) = Fm

G,B(Γ) and the fact that FG,B is contractive.
Suppose �B G : Γ′′ and Γ′′ ⊆ Γ. From the first condition, we have Γ′′ ⊆ FG,B(Γ′′).
Thus, by the monotonicity of FG,B, we have:

Γ′′ ⊆ FG,B(Γ′′) ⊆ · · · ⊆ Fm
G,B(Γ

′′) ⊆ Fm
G,B(Γ).

If Γ = Γmax and �B (G, S) : qB,0, then there exists Γ1 such that S : qB,0 ∈ Γ1 and
�B G : Γ1, which implies S : qB,0 ∈ Γ1 ⊆ Fm

G,B(Γmax). The converse is trivial. �

We are now ready to prove Theorem 4.6.

Proof of Theorem 4.6. Suppose that [[G]] is accepted by B⊥. By Lemma 4.11,
there exists m such that Fm+1

G,B (Γmax) = Fm
G,B(Γmax).

From G = (Σ,N ,R, S), we define a higher-order recursion scheme G(m) without
recursion by:

G(m) = (Σ⊥,N (m),R(m), S(m))

N (m) = {F (j) : κ | F : κ ∈ N , j ∈ {0, . . . ,m}}
R(m) = {F (j) x̃→ t(j−1) | F x̃→ t ∈ R, j ∈ {1, . . . ,m}}

∪{F (0) x̃→ ⊥ | F x̃→ t ∈ R}

Here, t(j) is the term obtained from t by replacing each non-terminal F ′ with F ′(j).
By the definition, it is easy to show by induction on m that [[G(m)]] is an approx-
imation of [[G]], i.e. [[G(m)]] � [[G]] (recall Definition 2.1). So, [[G(m)]] is accepted
by B⊥. Because G(m) does not contain recursion, by the strong normalization of
the simply-typed λ-calculus, [[G(m)]] must be a finite tree and S −→∗

G(m) [[G(m)]].

Thus, by Lemma 4.10, we have �B⊥ [[G(m)]] : qB,0. By Lemma 4.9, we have
Γ �B⊥ (G(m), S(m)) : qB,0 for some Γ.

ACM Journal Name, Vol. V, No. N, Month 20YY.



Model Checking Higher-Order Programs · 33

Let us define Γ0, . . . ,Γm by:

Γk = {F : θ | F (j) : θ ∈ Γ, j ≥ k}.
We first show that Γk+1 ⊆ FG,B⊥(Γk) holds for each k ∈ {0, . . . ,m−1}. Suppose

F : θ ∈ Γk+1. Then, we have F (j) : θ ∈ Γ and Γ �B⊥ R(m)(F (j)) : θ for some

j ≥ k + 1. Since R(m)(F (j)) contains only non-terminals of the form F ′(j−1)
, we

have Γ′
k �B⊥ R(m)(F (j)) : θ for Γ′

k = {F ′(�) : θ′ ∈ Γ | � ≥ k}. By renaming each

F ′(�) to F ′ in the derivation of Γ′
k �B⊥ R(m)(F (j)) : θ, we obtain Γk �B⊥ R(F ) : θ.

Thus, we have F : θ ∈ FG,B⊥(Γk).
By the above property and the monotonicity of FG,B⊥ , we have:

Γm ⊆ FG,B⊥(Γm−1) ⊆ · · · ⊆ Fm
G,B⊥(Γ0) ⊆ Fm

G,B⊥(Γmax) = Fm
G,B(Γmax).

(The rightmost equality uses the fact that ⊥ is not contained in G.) Thus, S :qB,0 ∈
Fm

G,B(Γmax). By Lemma 4.11, we have �B (G, S) : qB,0 as required. �

4.3 A Naive Type Checking Algorithm and Complexity Results

Lemma 4.11 gives the following type checking algorithm:

(1) Compute F1
G,B(Γmax),F2

G,B(Γmax), . . ., and find m such that either

Fm
G,B(Γmax) = Fm+1

G,B (Γmax) or S : qB,0 
∈ Fm
G,B(Γmax).

(2) Answer whether S : qB,0 ∈ Fm
G,B(Γmax).

The first step must terminate by Lemma 4.11, and m is bounded by |Γmax| =∑
F∈dom(N ) |ATypesN (F ),B|.
Example 4.2. Consider the running example in Figure 6.

Γmax = {S : q0, S : q1, F :� → q0, F :� → q1, F : q0 → q0, F : q0 → q1,
F : q1 → q0, F : q1 → q1, F : q0 ∧ q1 → q0, F : q0 ∧ q1 → q1}.

By repeated applications of FG0,B0 , we obtain:

FG0,B0(Γmax) = {S : q0, S : q1, F : q0 → q0, F : q0 ∧ q1 → q0}
F2

G0,B0
(Γmax) = {S : q0, F : q0 ∧ q1 → q0}

F3
G0,B0

(Γmax) = {S : q0, F : q0 ∧ q1 → q0} = F2
G0,B0

(Γmax)

Thus, {S : q0, F : q0 ∧ q1 → q0} is the greatest fixed-point. Since it contains S : q0,
we know �B0 (G0, S) : q0, i.e. [[G0]] is accepted by B0

⊥. �

We now discuss the time complexity of the above algorithm. Let G = (Σ,N ,R, S)
be an order-k higher-order recursion scheme, and B be a deterministic trivial au-
tomaton B = (Σ, Q, δ, q0). Let |G| be the size of G, i.e.,

∑
F∈dom(N ) size(R(F ))

(where the size size(t) of a term t is defined as usual). Let A be the largest arity of
terminals, non-terminals, and variables in G. We shall show below that the naive
algorithm given above runs in time O(|G|2expk((A × |Q|)1+ε)) for any ε > 0 if
k (≥ 1) is fixed.
We first restrict the shape of the recursion scheme G. A recursion scheme is in nor-

mal form if each rule of the recursion scheme is of the form F x̃→ f(f1x̃1) · · · (f�x̃�),
where f, f1, . . . , f� are non-terminals, terminals, or variables. (Note that � can be
0.) We assume below that the recursion scheme G is in normal form. Otherwise, G
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can be transformed to a normal form as follows. For a rule F x̃→ f t1 · · · t� where
ti is not of the form fi x̃i, replace the body of F with f t1 · · · ti−1 (G x̃i) ti+1 · · · t�
and add the rule G x̃i ỹ → ti ỹ, where G is a fresh non-terminal symbol, and
{x̃i}(⊆ {x̃}) is the set of variables in ti. Repeated application of this transforma-
tion yields a recursion scheme in normal form. The order, size, and largest arity of
the resulting recursion scheme (in normal form) G′ can be estimated as follows.

(1) The order of G′ is the same as that of G.
(2) The size of G′ is O((1+A)×|G|). (Note that each transformation step increases

the size of a recursion scheme only by O(1 +A).)

(3) The largest arity of G′ is at most 2 × A. (Note that the arity of the fresh
non-terminal symbol G introduced above is bounded by |x̃i| + |ỹ|, where |x̃i|
and |ỹ| are both bounded by A.)

Thus, the transformation does not affect the time complexity O(|G|2expk((A ×
|Q|)1+ε)).
Next, we estimate the size of the set ATypesκ,B. If κ has order k, |ATypesκ,B|

is bounded by ak, given by:

a0 = |Q| ak+1 = 2ak × · · · × 2ak︸ ︷︷ ︸
A

×ak = 2A×ak log ak

Thus, ak = O(expk((A× |Q|)1+ε)) for any ε > 0.
We now estimate the cost for computing FG,B(Γ). For each F : θ ∈ Γ, whether

Γ �B R(F ) : θ holds can be checked as follows. By the assumption that the
recursion scheme is in normal form, R(F ) must be of the form λx̃.f(f1x̃1) · · · (f�x̃�).
Thus, θ is of the form

∧
j∈J1

θ1,j → · · · →
∧

j∈J�
θ�,j → q. We just need to

enumerate the set S of all the possible types of f(f1x̃1) · · · (f�x̃�) under Γ∪{xi :θi,j |
i ∈ {1, . . . , �}, j ∈ Ji}, and check whether q ∈ S. Given the set of types of t1 (whose
size is at most ak) and the set of types of t2 (whose size is at most ak−1), the set
of types of t1t2 can be computed in time O(ak × ak−1): For each type

∧
j∈J θj → θ

of t1, it suffices to check whether the set of types of t2 contains every θj .
6 As

f(f1x̃1) · · · (f�x̃�) contains at most 2A applications, its types can be enumerated in
time 2A×O(ak × ak−1) = O(A× a2k). Thus, Γ �B R(F ) : θ can be checked in time
O((1 + A)× a2k). As the size of Γ is at most |G| × ak, the time cost for computing
FG,B(Γ) is O(|G| × (1 +A)× a3k) = O(|G| × expk((A × |Q|)1+ε)).
Finally, the number m of iterations is bounded by |Γmax| = |ATypesN (F1),B|+

· · · + |ATypesN (Fn),B| = O(|G| × ak). Thus, the algorithm runs in time O(|G|2 ×
expk((A× |Q|)1+ε)) for a fixed k (≥ 1).
The algorithm above can actually be optimized to yield an O(|G| × expk((A ×

|Q|)1+ε)) algorithm (for k ≥ 1), by using the standard method for solving con-
straints over finite semi-lattices [Rehof and Mogensen 1999]. (The idea is, at each
iteration for computing F j

G,B(Γmax), instead of recomputing ΓF = {F : θ ∈ Γ |
Γ �B R(F ) : θ} for every F , to compute ΓF only for F such that the types of the

6Here, we have assumed that a set is implemented as an array, and the membership is computed
in time O(1). For the overall complexity result, it suffices to just assume that set operations can
be performed in time polynomial in the size of sets.
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non-terminals in R(F ) have changed in the previous step.) Thus, the algorithm
runs in time linear in the size of the recursion scheme, provided that k,A and |Q|
are fixed. On the parameters A and |Q|, Kobayashi and Ong [2011] give tighter
complexity bounds: recursion scheme model checking for the class of deterministic
trivial automata is (k − 1)-EXPTIME complete (recall Remark 2.1).

5. A HYBRID TYPE CHECKING ALGORITHM

The naive type checking algorithm described in Section 4.3 is impractical. Al-
though it runs in time linear in the size of recursion schemes, the constant factor is
expk((A× |Q|)1+ε), which is prohibitively large. This section therefore describes a
more realistic type checking (i.e. model checking) algorithm for recursion schemes.
The worst-case complexity of the new algorithm is actually even worse, but it is
faster for typical inputs than the naive algorithm, as confirmed by the experiments
described in Section 6.
For understanding how and why the new algorithm works better, it would be

helpful to consider why the naive algorithm is so slow. As is clear from the discussion
in Section 4.3, the huge constant factor of the naive algorithm comes from the size
of the set ATypesκ,B of types. The following table shows the size of ATypesκ,B
for various sorts.

sort κ |ATypesκ,B| (|Q| = 2) |ATypesκ,B| (|Q| = 4)

o → o 22 × 2 = 8 24 × 4 = 64
(o → o) → o 28 × 2 = 512 264 × 4 ≈ 6.4× 1019

((o → o) → o) → o 2512 × 2 = 2513 ≈ 10154 22
66 × 4 > 1010000000000000000000

Here, the second and third columns respectively show the cases for |Q| = 2
and |Q| = 4. The naive algorithm always starts the fixed-point computation
Γ,F1

G,B(Γ),F2
G,B(Γ), . . . from Γ = Γmax that contains all the possible types, and

checks whether each type is valid at each iteration of the fixed-point computation.
Thus, the naive algorithm cannot be run at least for recursion schemes of order 3
or higher.
The analysis above suggests that if the fixed-point computation can be started

from a type environment Γ that is much smaller than Γmax, then the fixed-point
may be efficiently computed. To keep the completeness, Γ should contain type
bindings required for typing the given recursion scheme. Thus, for example, Γ = ∅
is inappropriate. The type environment Γ, however, need not necessarily contain
all the possibly valid typings. For the running example in Figure 6, for example,
we can exclude out S : q1 from Γ beforehand, as we are only interested in whether
S has type q0. How can we find such Γ in general?
The key observation to address the question above is that types of a function

describe how that function is used in the recursion scheme. Therefore, information
about the types of a function can be obtained by actually reducing the recursion
scheme, and observing how the function is used. Actually, the completeness proof
of Kobayashi and Ong’s type system for the modal μ-calculus model checking of
recursion schemes [Kobayashi and Ong 2009] (which is an extension of the type
system in Section 4) gives a “procedure” for extracting the types of each function
from an infinite reduction sequence of a recursion scheme. By modifying the “pro-
cedure”, we can obtain an algorithm for extracting partial information about the
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Step 1: Expand 
the configuration graph

Recursion scheme G
Property A (automaton)

Property violated?

yes

The property is not satisfied.
(Error path)

Step 2:
Compute a set of
intersection types

Step 3:
Is G typable

using ?

no

no

yes

The property is satisfied.
(Type information)

Fig. 7. The overview of the hybrid algorithm

types of functions from a finite reduction sequence of a recursion scheme. From
the partial type information, we can construct a type environment Γ that is often
much smaller than Γmax, and run the fixed-point computation from it.
The overall structure of the resulting algorithm (which we call a hybrid algorithm)

is shown in Figure 7. As in the previous section, we fix a trivial automaton B =
(ΣB, QB, δB, qB,0), and omit the subscript B when it is clear from the context. We
also fix a recursion scheme G = (ΣB,N ,R, S) below. First, we reduce (the initial
symbol of) the recursion scheme G a finite number of steps and run the automaton
B for the partially generated tree. A configuration graph is constructed (Step 1
in Figure 7), which represents how G has been reduced, and how the partially
generated tree has been recognized by B. If a property violation is found (i.e., the
run of B over the partially generated tree gets stuck) during the reduction, then
an error path is reported. Otherwise, a set Γ of type bindings is computed from
the configuration graph (Step 2). In Step 3, it is checked whether the recursion
scheme is typed by using only the types in Γ. If the recursion scheme is well-typed,
then the property is satisfied (by the soundness of the type system, Theorem 4.1).
Otherwise, go back to Step 1 and expand the configuration graph to get a larger set
of types. As we show later, the procedure eventually terminates and either proves
or disproves the property. In the former case, a type environment for the recursion
scheme is output as a certificate of the property satisfaction, while in the latter
case, an error path is output as a witness of the property violation.
Pseudo code for the overall algorithm is shown in Figure 8. We explain each step

in more detail below.

5.1 Initialization and Step 1

In Step 1, we reduce the given recursion scheme a finite number of steps and con-
struct a configuration graph.

Definition 5.1 (configuration graphs). A configuration graph is a labeled di-
rected graph, where the label of each edge is a non-negative integer, and the label of
each node is of the form 〈t, q, f〉. In 〈t, q, f〉, t is an applicative term of sort o, q is a
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Init: (* Section 5.1 *)
C := the initial configuration graph;
Γ := ∅
goto Step 1;

Step 1: (* Section 5.1 *)
count := 0;
while(count<MAX and an open node exists) do
{ N := an open node;

if C can be expanded wrt N then {
C := expand(C, N);

count := count+1}
else {

error path := the path from the root to N ;
raise PROPERTY VIOLATED(error path)}

};
goto Step 2;

Step 2: (* Section 5.2 *)
Γ := Γ ∪ ElimTE(ΓC);
goto Step 3;

Step 3: (* Section 5.3 *)
while(Γ �= FG,B(Γ)) do Γ := FG,B(Γ); (* FG,B is given in Definition 4.5 *)
if S : qB,0 ∈ Γ then

raise PROPERTY SATISFIED(Γ)
else

goto Step 1;

Fig. 8. A hybrid model checking algorithm to check whether [[G]] is accepted by B⊥

state of the automaton B, and f is either open or closed. The initial configuration
graph is a graph consisting of just a single node (called the root node), labeled by
〈S, qB,0, open〉.
Let C be a configuration graph, and N a node of C, labeled by 〈t, q, open〉. Then,

an expansion of C with respect to N is the graph C′ obtained from C by replacing
the flag of N with closed, and adding nodes and (directed) edges as follows.

(1) Case t = a t1 · · · tm and δ(q, a) = q1 · · · qm: For each i ∈ {1, . . . ,m}, (i) if a node
labeled with 〈ti, qi, fi〉 (for some fi) does not exist, add a new node 〈ti, qi, open〉;
and (ii) add a directed edge from N to the node labeled by 〈ti, qi, fi〉 and label
the edge with i.

(2) Case t = F t1 · · · tm and R(F ) = λx1. · · ·λx�.t: Since t has sort o, we have
m = �. If a node labeled with 〈[t1/x1, . . . , tm/xm]t, q, f〉 does not exist, add
a new node 〈[t1/x1, . . . , tm/xm]t, q, open〉. Add a directed edge from N to the
node labeled by 〈[t1/x1, . . . , tm/xm]t, q, f〉, and label the edge with 0.

The configuration graphs of a recursion scheme are those obtained from the
initial configuration graph by applying (a possibly infinite number of) expansion
operations. A configuration graph is finitely expanded if it is obtained by a finite
number of expansions. A configuration graph is closed if it contains no open node
(i.e. node which is labeled by 〈t, q, open〉).
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Recursion scheme G0:

S → F c

F x → br x (a(F (b(x))))

Transition rules of automaton B0:

δ(q0, br) = q0q0
δ(q1, br) = q1q1
δ(q0, a) = q0
δ(q0, b) = δ(q1, b) = q1
δ(q0, c) = δ(q1, c) = ε

[S, q0]

[F c, q0]

[br c (a (F(b c))), q0]

[c, q0]

[F(b c), q0]

[br (b c) (a (F(b (b c)))), q0]

[b c, q0] [a(F(b (b c))), q0][c, q1]

1 2

1 2
1

[a (F(b c)), q0]
1

(F(b (b c)), q0)

1

N0

N1

N2

N3

N4
N5

N6

Fig. 9. A configuration graph for the running example (Figure 6). N0, N1, . . . are node names.

Note that for a recursion scheme, a closed configuration graph is uniquely deter-
mined (up to the graph isomorphism), and it may be an infinite graph. We often
write [t, q] for 〈t, q, closed〉 and (t, q) for 〈t, q, open〉.
Figure 8 shows the pseudo code for Step 1. Several nodes are expanded and the

resulting configuration is passed to Step 2. A graph cannot be expanded wrt N
if N is labeled by 〈a t1 · · · tm, q, open〉 but δ(q, a) is undefined. In that case, the
property is violated, and the path from the root to the node is output as an error
path. The selection of the node N on line 3 of Step 1 must be fair, in the sense that
every open node (i.e. a node labeled with open) must be eventually selected. (The
fairness can be easily ensured, for example, by maintaining a FIFO queue of open
nodes.)

Example 5.1. Figure 9 shows a configuration graph for the running example in
Figure 6. The only open node is (F (b(b c)), q0). �

Example 5.2. Consider the recursion scheme G2 given by the following rewriting
rules:

S → F (F c) F x→ a x (b(F x)),

and the automaton ({a �→ 2, b �→ 1, c �→ 0}, {q0, q1}, δ, q0) where

δ(a, q0) = q0q0 δ(b, q0) = q1 δ(b, q1) = q1 δ(c, q0) = δ(c, q1) = ε.

Figure 10 shows a configuration graph obtained by several expansions. The node
at the bottom of the figure cannot be expanded, as δ(q1, a) is undefined. The error
path is 0 : 0 : 2 : 1 : 0 (where “:” denotes the string concatenation). In fact, the
path 2 : 1 (obtained by ignoring 0) of the tree generated by the recursion scheme
is labeled by aba, which violates the property expressed by B0, that a should not
occur after b. �
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[S, q0]

[F(F c), q0]

[a (F c) (b(F (F c))), q0]

(F c, q0) [b(F (F c)), q0]
1 2

1
[F (F c), q1]

(a (F c) (b(F (F c))), q1)

Fig. 10. A Configuration Graph Containing an Error Node

5.2 Step 2

We now describe the most important part of the algorithm: Step 2 for extracting
type information from a configuration graph.
As a configuration graph carries only partial type information, we extend the

syntax of arrow types with type variables, which express unknown (sets of) types.

τ (extended types) ::= q |
∧
{τ1, . . . , τm} → τ |

∧
({τ1, . . . , τm} ∪ α) → τ

By abuse of notation, we often write τ1 ∧ · · · ∧ τm → τ and τ1 ∧ · · · ∧ τm ∧ α → τ
for

∧
{τ1, . . . , τm} → τ and

∧
({τ1, . . . , τm} ∪ α) → τ respectively.

As mentioned in Section 1, the algorithm for extracting type information de-
scribed below has been inspired from the proof of the completeness of Kobayashi
and Ong’s type system for the modal μ-calculus model checking of recursion
schemes [Kobayashi and Ong 2009]. We call a term t′ a prefix of t if t is of the
form t′ s̃, where s̃ is a possibly empty sequence of terms. As defined below, for each
node N labeled with 〈t, q, f〉, we assign a type τt′,N to each prefix t′ of t. We then
define ΓC as a collection of bindings F : τF,N .

Definition 5.2 (type environment ΓC). Let C be a configuration graph, and let
N be a node labeled with 〈t, q, f〉, and t′ a prefix of t. The type τt′,N is defined by
induction on the sort of t′:

(1) Case t′ has sort o: N must have a label of the form 〈t′, q, f〉. Define τt′,N as q.

(2) Case t′ has sort κ1 → κ2: N must have a label of the form 〈t′ s0 s̃, q, f〉, where
s0 and t′ s0 have sorts κ1 and κ2 respectively. Let {N1, . . . , N�} be the set
of nodes that are reachable from N , and have labels of the form 〈s0 ũ, q′, f ′〉
(where s0 must originate from the occurrence of s0 in the node N ; thus we
assume implicitly that a configuration graph has a link to show the origin of
each term). If s0 occurs in an open node reachable from N (including N itself),
then let S be {τs0,N1 , . . . , τs0,N�

} ∪ αs0,N where αs0,N is a fresh type variable
(which indicates that the type can be further refined by further expansion of the
configuration graph). Otherwise, let S be {τs0,N1, . . . , τs0,N�

}. Finally, define
τt′,N as (

∧
S) → τt′ s0,N . (Note that since the sorts of t′s0 and s0 are κ2 and

κ1 respectively, τt′ s0,N and τs0,Ni are determined by the induction.)
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Given a configuration graph C, the type environment ΓC is defined by:

ΓC = {F : τF,N | N has a label of the form 〈Ft1 · · · tm, q, f〉}.

Example 5.3. Consider the following fragment of a configuration graph:

[F G, q0]

[a (G c) (G c), q0]

[G c, q0] [G c, q1]

1 2

[c, q1][c, q0]

N0

N1

N2

N3

N4

Here, superscripts N0, N1, . . . show the names of nodes. τF,N0 is computed as
follows.

τF,N0 =
∧
{τG,N1 , τG,N3} → τF G,N0

=
∧
{τc,N2 → τG c,N1 , τc,N4 → τG c,N3} → q0

=
∧
{q0 → q0, q1 → q1} → q0

�

The type environment ΓC above may contain type variables, which are eliminated
by the procedure ElimTE below. As we will see later (in Section 5.4), if G is typable
and a finite configuration graph C is sufficiently large, then ElimTE(ΓC) contains
all the type bindings required to type G.

Definition 5.3 (ElimTE). The function Elim , which takes an extended arrow
type as input and returns a set of arrow types, is defined by:

Elim(q) = {q}
Elim(τ1 ∧ · · · ∧ τm → τ) = Elim(τ1 ∧ · · · ∧ τm ∧ α→ τ) =

{θ1 ∧ · · · ∧ θm → θ | θi ∈ Elim ′(τi), θ ∈ Elim(τ)}

Elim ′(τ) =
{
Elim(τ) ∪ {�} if τ contains a type variable
Elim(τ) otherwise

ElimTE is a pointwise extension of the operation Elim , defined by:

ElimTE(Γ) = {F : θ | F : τ ∈ Γ, θ ∈ Elim(τ)}

In the definition above, the auxiliary function Elim ′ may return a set consisting
of arrow types and a special type �. We treat � as the unit on ∧, i.e. we identify∧
{τ1, . . . , τn,�} → τ with

∧
{τ1, . . . , τn} → τ . In the definition of Elim(τ1 ∧ · · · ∧

τm → τ), if an argument type τi contains a type variable, Elim may choose � from
Elim ′(τi) (intuitively, because τi may express incomplete information that should
be ignored). For example, we have:

Elim((q0 ∧ q1 → q2) ∧ (q0 ∧ α→ q2) → q)
= {θ1 ∧ θ2 → q | θ1 ∈ Elim ′(q0 ∧ q1 → q2), θ2 ∈ Elim ′(q0 ∧ α→ q2)}
= {θ1 ∧ θ2 → q | θ1 ∈ {q0 ∧ q1 → q2}, θ2 ∈ {q0 → q2,�}}
= {(q0 ∧ q1 → q2) → q, (q0 ∧ q1 → q2) ∧ (q0 → q2) → q}
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Remark 5.1. The completeness is lost if we simply replace all the type variables
in Γ with �, instead of applying the operation ElimTE above. For example, suppose
Γ = {F : (q0 ∧ q1 → q2) ∧ (q0 ∧ α → q2) → q}. If we replace α with �, we obtain
the type environment {F : (q0 ∧ q1 → q2) ∧ (q0 → q2) → q}. However, the actual
type of F required to type the recursion scheme may be (q0 ∧ q1 → q2) → q.

Example 5.4. Consider the configuration graph C of Figure 9, for the running
example. We have:

τS,N0 = q0
τF,N1 =

∧
({τc,N2 , τc,N5} ∪ α1) → τF c,N1 = (q0 ∧ q1 ∧ α) → q0

τF,N3 =
∧
({τb c,N4} ∪ α2) → τF (b c),N3

= (q0 ∧ α2) → q0
τF,N6 = α3 → τF (b (b c)),N6

= α3 → q0

Here, the type variables α1, α2, α3 denote the types of c b c, and b (b c), respectively,
in the open node N6.
ΓC and ElimTE(ΓC) are given by:

ΓC = {S : q0, F : (q0 ∧ q1 ∧ α1) → q0, F : (q0 ∧ α2) → q0, F : α3 → q0}
ElimTE(ΓC) = {S : q0, F : q0 ∧ q1 → q0, F : q0 → q0, , F :� → q0}.

�

5.3 Step 3

Step 3 takes a type environment Γ as an input, and checks whether there exists a
subset Γ′ of Γ such that Γ′ �B (G, S) : qB,0. For that purpose, we use Lemma 4.11.
The first line of Step 3 in Figure 8 computes the largest Γ′ ⊆ Γ such that �B G : Γ′.
Then, S : qB,0 ∈ Γ′ is checked on the second line.

Example 5.5. Recall the result of Step 2 (Example 5.4) for the running example
in Figure 6:

Γ = {S : q0, F : q0 ∧ q1 → q0, F : q0 → q0, F :� → q0}.
As F1

G,B(Γ) = F2
G,B(Γ) = {S :q0, F :q0∧q1 → q0}, we obtain Γ1 = {S :q0, F :q0∧q1 →

q0} as a fixed-point of FG,B. Since S :q0 ∈ Γ1, the algorithm terminates and outputs
Γ1. �

5.4 Correctness of the Algorithm

This section proves the correctness of the algorithm:

Theorem 5.1. Given a recursion scheme G, and a deterministic trivial automa-
ton B, the algorithm eventually terminates. Furthermore, if the algorithm outputs
a type environment Γ, then G is well-typed under Γ (hence [[G]] is accepted by B⊥).
If the algorithm reports an error path, then [[G]] is not accepted by B⊥.

The most difficult part is to show that the algorithm eventually terminates when
[[G]] is accepted by B⊥. To prove it, we first show that if a closed (possibly infinite)
configuration graph is given, we can extract enough type information from it.

Theorem 5.2. Suppose that [[G]] is accepted by B. If C is a closed (possibly
infinite) configuration graph of G over B, then G is well-typed under ΓC, i.e., ΓC �B
(G, S) : qB,0.
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The theorem above can also be deduced from the proof of the completeness of
Kobayashi and Ong’s type system [Kobayashi and Ong 2009].7 We give a direct
proof in Appendix B.
By the theorem above, it suffices to show that from a sufficiently large, finitely

expanded graph C′, we can extract all the necessary type information, i.e.,
ElimTE(ΓC′) ⊇ ΓC holds for the closed configuration graph C (c.f. Lemma 5.5
below).
We prepare a few definitions and lemmas before proving the property mentioned

above. Let π be a sequence over {0, 1, . . . ,m} where m is the largest arity of
terminals. We write C(π) for the node N such that a path from the root to N is
labeled by π.

Definition 5.4. Let C be a closed configuration graph and C′ a finitely expanded
graph of a recursion scheme. Suppose that the node C(π) is labeled by [t s̃, q]. The
relation C′ �π,t C is defined by induction on the structure of the sort of t, as follows.

(1) If t has sort o, and τt,C′(π) = q, then C′ �π,t C.
(2) Suppose t has sort κ1 → κ2. Then, s̃ must be of the form s0s̃

′, and τt,C(π) is of
the form τ1 ∧ · · · ∧ τm → τts0,C(π). C′ �π,t C holds if the following conditions
are satisfied:
(i) C′ �π,t s0 C;
(ii) for each τi, there exists a path πi such that τs0,C(ππi) = τi and C′ �ππi,s0 C.

Intuitively, C′ �π,t C means that C′ provides enough information about the type
τt,C(π), as stated by the following lemma.

Lemma 5.3. Let C be the closed configuration graph. If C′ �π,t C, then the
following conditions hold.

(1 ) If C′′ is obtained from expansions of C′, then C′′ �π,t C.
(2 ) τt,C(π) ∈ Elim(τt,C′(π)).

Proof. Let the label of C(π) be [t s̃, q]. The proof proceeds by induction on the
sort of t. If the sort of t is o, then by the definition of the relation C′ �π,t C, we have
τt,C′(π) = q. By the definitions of expansions and τt,N , we have τt,C′(π) = τt,C′′(π) =
τt,C(π) = q. Thus, we have C′′ �π,t C and Elim(τt,C′(π)) = {q} � τt,C(π) as required.
If the sort of t is κ1 → κ2, then by the condition C′ �π,t C, we have:

(i) s̃ = s0s̃
′;

(ii) τt,C(π) = τ1 ∧ · · · ∧ τm → τ ;

(iii) C′ �π,ts0 C; and
(iv) for each τi, there exists πi such that τs0,C(ππi) = τi and C′ �ππi,s0 C.

By the induction hypothesis (1), we have C′′ �π,ts0 C and C′′ �ππi,s0 C, which imply
(1). By the induction hypothesis (2), we also have τts0,C(π) ∈ Elim(τts0,C′(π)) and

7More precisely, Kobayashi and Ong [Kobayashi and Ong 2009] considered a run tree corre-
sponding to the closed configuration graph, gave the definition of τF,N , and proved a theorem
corresponding to Theorem 5.2. They did not consider how to extract type information from a
finitely expanded configuration graph.
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τs0,C(ππi) ∈ Elim(τs0,C′(ππi)). By the definition of τt,C′(π), it is of the form:

τs0,C′(ππ1) ∧ · · · ∧ τs0,C′(ππm) ∧ τ ′1 ∧ · · · ∧ τ ′k → τts0,C′(π).

By the definition of Elim , we can construct τt,C(π) as an element of Elim(τt,C′(π))
as follows:

(i) choose τi from Elim ′(τs0,C′(ππi)); and

(ii) from Elim ′(τ ′j), choose � when τ ′j contains a type variable; otherwise choose
τ ′j (in which case we have τ ′j ∈ {τ1, . . . , τm}).

Thus, we have τt,C(π) ∈ Elim(τt,C′(π)) as required. �

The next lemma says that for every node of the closed configuration graph, the
corresponding node of a sufficiently large, finitely expanded graph carries enough
type information.

Lemma 5.4. Let N = C(π) be a node of a closed configuration graph C, and
suppose that N is labeled with [t s̃, q]. Then, there exists a finitely expanded graph
C′ such that C′ �π,t C.

Proof. The proof proceeds by induction on the sort of t. If the sort is o, then
the result follows immediately: just expand the initial graph until N is expanded,
and let C′ be the resulting graph.
If the sort is κ1 → κ2, then τt,N is of the form τ1 ∧ · · · ∧ τm → τ , and s̃ = s0s̃

′.
By the induction hypothesis, there exists a finitely expanded graph C′

0 such that
C′
0 �π,ts0 C. By the definition of τt,N , for each i ∈ {1, . . . ,m}, there exists πi such

that τs0,C(ππi) = τi. By the induction hypothesis, there exists a finitely expanded
graph C′

i such that C′
i �ππi,s0 C. Thus, the union of C′

0, C′
1, . . . , C′

m satisfies the
required condition by Lemma 5.3 (1). (By the “union” of graphs, we mean the graph
obtained by merging the corresponding nodes into one node, where its flag is set
to closed if one of the nodes is closed. In other words, the union of configuration
graphs C1, . . . , Cm is obtained from the initial graph by expanding all the closed
nodes of Ci’s.) �

Now we are ready to prove the key lemma.

Lemma 5.5. Suppose that [[G]] is accepted by B⊥, and let C be the closed configu-
ration graph for G and B. Then, there exists a finitely expanded graph C′ such that
ΓC ⊆ ElimTE(ΓC′′) for every finite expansion C′′ of C′.

Proof. For each Fi :τi,j ∈ ΓC , pick a node Ni,j = C(πi,j) such that τFi,Ni,j = τi,j .
By Lemma 5.4, there exists a finitely expanded graph Ci,j such that Ci,j �πi,j ,Fi C.
Let C′ be the union of all such Ci,j ’s, and C′′ be a finite expansion of C′. By
Lemma 5.3 (1), C′′ �πi,j ,Fi C for every i, j. Thus, by Lemma 5.3 (2), we have
ΓC ⊆ ElimTE(C′′) as required. �

We now prove the main theorem.

Proof of Theorem 5.1. If the algorithm terminates, then the soundness of
the output follows immediately from the definition of Step 1 and Lemma 4.11.
Thus, it remains to show that the algorithm eventually terminates.
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Suppose that [[G]] is not accepted by B⊥. Then an error path is eventually found,
by the construction of the configuration graph in Step 1 and the fairness assumption
on the selection of nodes.
Suppose that [[G]] is accepted by B⊥, but that the algorithm does not terminate.

Let Ci be the configuration graph constructed by the i-th iteration of Step 1, and
C the union of all Ci’s. Then, by the fairness of node selection, C must be a closed
configuration graph. By Lemma 5.5, there exists i such that ΓC ⊆ ElimTE(ΓCi).
By Lemma 4.11, Step 3 generates the largest type environment Γ such that �B G : Γ
and Γ ⊆ ElimTE(ΓCi). By Theorem 5.2, �B G : ΓC and ΓC ⊆ ElimTE(ΓCi) with
S : qB,0 ∈ ΓC . Thus, we have S : qB,0 ∈ ΓC ⊆ Γ, which implies that the algorithm
must terminate at the i-th iteration, hence a contradiction.
�

5.5 Discussion

This section discusses some properties, optimizations and limitations of the hybrid
algorithm.

5.5.1 A Minimality Property. A main difference between the naive algorithm
in Section 4.3 and the hybrid algorithm is that the former computes the set of all
the valid types of non-terminals, while the latter tries to find, in a demand-driven
manner, a smaller set of valid types that are just sufficient for typing the given
recursion scheme. We show that the certificate found by the hybrid algorithm is
indeed minimal in a certain sense.
Suppose that B accepts the tree generated by a recursion scheme G. We define a

binary relation � [Tsukada and Kobayashi 2010] on types inductively by:8

q � q
θ � θ′ ∀i ∈ {1, . . . , k}.∃j ∈ {1, . . . , �}.θi � θ′j∧

{θ1, . . . , θk} → θ �
∧
{θ′1, . . . , θ′�} → θ′

For example, q1 → q0 � q1 ∧ q2 → q0 and (q1 → q0) → q0 � (q1 ∧ q2 → q0) ∧
(q3 → q1) → q0 hold. Note that � is not a subtype relation: function types are
covariant in argument types. The relation is extended to the binary relation on
type environments by: Γ � Γ′ ⇐⇒ ∀(x : θ) ∈ Γ.∃(x : θ′) ∈ Γ′.θ � θ′. Note that �
is a preorder (i.e. satisfies the transitivity and reflexivity). By definition, Γ ⊆ Γ′

implies Γ � Γ′, but not vice versa.
We show that if the hybrid algorithm outputs Γh, then Γh � Γ holds for every

Γ such that Γ �B (G, S) : qB,0; in other words, the hybrid algorithm outputs a
minimal valid type environment with respect to the partial order induced by � (i.e.
the quotient of � by (� ∪ �)∗).
First, by Lemma 5 of Tsukada and Kobayashi [2010], the type environment ob-

tained from the closed configuration graph is a minimal valid type environment:

Lemma 5.6 [Tsukada and Kobayashi 2010]. Suppose Γ �B (G, S) : qB,0. If
C is a closed configuration graph, then ΓC � Γ.

Suppose that Γh is obtained from a configuration graph C′. Then by the defini-
tion of Step 3, Γh ⊆ ElimTE(ΓC′). By the construction of ElimTE(ΓC′), we have

8Tsukada and Kobayashi [2010] defined the relation co-inductively, as they considered infinite
trees as types.
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ElimTE(ΓC′) � ΓC . (Note that ΓC is obtained from ΓC′ by replacing type vari-
ables with certain types.) Thus, we have Γh � ElimTE(ΓC′) � ΓC . By using the
lemma, we have Γh � Γ for any Γ such that Γ �B (G, S) : qB,0. Furthermore, since
Γh �B (G, S) : qB,0, the above lemma also implies ΓC � Γh. Thus, Γh is equivalent
to ΓC up to the equivalence relation (� ∪ �)∗.
Although Γh is not necessarily the smallest with respect to the subset relation,

the above result indicates that the hybrid algorithm is likely to output a much
smaller type environment than the naive algorithm.

5.5.2 Optimizations. Here we discuss a few optimizations of the algorithm,
which have been applied to the implementation of our model checker TRecS (see
Section 6). The optimizations preserve the completeness of the algorithm. We only
provide hints for proofs of the correctness of optimizations. More formal proofs are
tedious but not difficult, and can be obtained by modifying the correctness proof
of the unoptimized algorithm.

Optimization of Elim. The operation Elim used in Step 2 (Definition 5.3) may
cause a combinatorial explosion of the number of types. The following optimizations
reduce the number of arrow types without losing the completeness of the algorithm.

(1) Use canonical representation of function types. Here, a function type
∧n

i=1 τi →
τ is canonical if for each i, there is no j 
= i such that τj ≤ τi, where ≤ is the
subtyping relation defined by:

q ≤ q
θ ≤ θ′ ∧ ∀i ∈ {1, . . . ,m}.∃j ∈ {1, . . . , �}.θ′j ≤ θi∧

{θ1, . . . , θm} → θ ≤
∧
{θ′1, . . . , θ′�} → θ′

Accordingly, we need to extend the type system used in Step 3 with the sub-
sumption rule:

Γ �B t : θ′ θ′ ≤ θ

Γ �B t : θ

The correctness of this optimization follows from the soundness of the type
system extended with subtyping, and the fact that if τ ∈ Elim(τt,N ) then there
exists τ ′ ∈ Elimopt1(τt,N ) such that τ ′ ≤ τ and τ ≤ τ ′, where Elimopt1 is the
optimized version of the function Elim . Ong and Ramsay [2009] discuss this
optimization in more detail and prove the correctness.

(2) In the definition of Elim(τ1 ∧ · · · ∧ τm → τ), choose τ ′i = � from Elim ′(τi) only
if τi is subsumed by τj for some j, i.e. if there is a substitution ρ such that
ρτi ∈ Elim(τj) for some j. The correctness of this optimization follows from
the fact that Lemma 5.3 remains valid after the optimization. Note that in the
construction of τt,C(π) in the proof of Lemma 5.3, each τ ′j must be subsumed
by some τi, which is in turn subsumed by τs0,C′(ππi). Thus, � can be chosen
from Elim ′

opt2(τ
′
j) where Elim ′

opt2 is the optimized version of Elim ′.

Example 5.6. Let τ1 be:

(q0 ∧ q1 → q2) ∧ (q1 ∧ α0 → q2) ∧ (q0 ∧ α1 → q2) ∧ (α2 → q2) → q.
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Elim(τ) generates the following set of types:

{
∧

(S ∪ {q0 ∧ q1 → q2}) → q | S ⊆ {q1 → q2, q0 → q2,� → q2}},

consisting of 23 types. With the first optimization, Elim(τ1) generates:

{(q0 ∧ q1 → q2) → q, (q1 → q2) → q, (q0 → q2) → q,
(q1 → q2) ∧ (q0 → q2) → q, (� → q2) → q},

which consists of 5 types.
Let τ2 be:

(q0 ∧ α0 → q2) ∧ (q1 ∧ α1 → q2) → q.

(The unoptimized version of) Elim(τ) generates the following set of types:

{
∧
S → q | S ⊆ {q0 → q2, q1 → q2}},

which consists of 4 types. With the second optimization, Elim(τ) generates a
singleton set:

{(q0 → q2) ∧ (q1 → q2) → q}.
�

Pruning Nodes by Using Type Information. In Step 1, we can suppress the ex-
pansion of a node labeled with a term that is known to be well-typed. Let Γ be
the type environment output by Step 3 of the previous iteration. Suppose that a
node N is labeled with 〈t, q, open〉 and that there is a type derivation tree Π for
Γ �B t : q. Then, we need not reduce t, intuitively because we already have enough
type information about t. Instead of reducing t, for each node Γ �B si : τi of the
derivation tree Π, add special (closed) nodes Ni labeled with [si, τi] to the configu-
ration graph, and add edges from N to those nodes. In Step 2, define τsi,Ni to be
τi if Ni is labeled with [si, τi]. The rest of the algorithm remains the same.
To observe the correctness of this optimization, it suffices to see that Theorem 5.2

can be modified to:

Suppose that [[G]] is accepted by B and that �B G : Γ holds. If C is
an (extended version of) closed configuration graph of G constructed by
using G, then ΓC ∪ Γ �B (G, S);

and that the other properties used in the proof of Theorem 5.1 (in particular,
Lemma 5.3) remain valid.

Example 5.7. Consider the following recursion scheme G3:

S → br (F a c) (F b c) F f x→ br (f x) (F f (f x))

The lefthand side of Figure 11 shows a configuration graph for the recursion scheme
G3 and the automaton B0 in Example 2.3. There are two open nodes, labeled by
(F a (a c), q0) and (F b c, q0). By running Steps 2 and 3 for this configuration
graph, we obtain a type environment Γ = F : (q0 → q0) → q0 → q0.
Using the type environment, the term F a (a c) is typed as follows.

Γ �B F : (q0 → q0) → q0 → q0 Γ �B a : q0 → q0

Γ �B a : q0 → q0 Γ �B c : q0
Γ �B a c : q0

Γ �B F a (a c) : q0
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[F, ] [a, q0 q0] [a c, q0]

[S, q0]

[br (F a c) (F b c), q0]

[F a c, q0]

[a c, q0] (F a (a c), q0)

1 2

1 2

(F b c, q0)

[br (a c) (F a (a c)), q0]

[c, q0]
1

[S, q0]

[br (F a c) (F b c), q0]

[F a c, q0]

[a c, q0] [F a (a c), q0]

1 2

1 2

(F b c, q0)

[br (a c) (F a (a c)), q0]

[c, q0]
1 [c, q0]

Fig. 11. Configuration Graphs Before/After Pruning (θ = (q0 → q0) → q0 → q0).

Thus, the node (F a (a c), q0) can be pruned as shown on the righthand side of
Figure 11.

�

5.5.3 Limitations. The main limitation of the algorithm described in Section 5
(especially from a theoretical point of view) is that the worst-case time complex-
ity is not optimal. According to the result of Section 4.3, the time complexity of
recursion scheme model checking (with respect to deterministic trivial automata)
is linear in the size of recursion schemes, provided that the sizes of sorts and the
trivial automaton are bounded above by a constant. The worst-case time com-
plexity of the hybrid algorithm is, however, at least k-fold exponential under the
same assumption. For example, consider the following order-1 recursion scheme for
generating a word (or, a monadic tree) a2

m

c.

S → F0G,
F0 x→ F1(F1 x), F1 x→ F2(F2 x), . . . , Fm−1 x→ Fm(Fm x), Fm x→ a x,
G→ c

Since S is reduced to a2
m

G, and then to a2
m

c, the algorithm needs to expand the
initial configuration graph O(2m) times in Step 1 to extract type information of G.
In general, even without recursion, we can construct an order-k recursion scheme

of size m for which O(expk(m)) expansions of configuration graphs are required.
Consider the following recursion scheme Gk,m:

S → F0 Gk−1 · · · G2 G1 G0,
F0 f x̃→ F1 (F1 f) x̃, . . . , Fm−1 f x̃→ Fm (Fm f) x̃, Fm f x̃→ Gk f x̃,
Gk f z x̃→ f (f z) x̃, . . . , G2 f z → f (f z), G1 z → a z, G0 → c

Here, Fi’s have sort κk and Gj has sort κj , where κj is defined by:

κ0 = o κj+1 = κj → κj .

Note that the largest sort κk is independent ofm. S is reduced to aexpk(m)(G0) and
then to aexpn(m)(c). (Notice that with η-conversion, S can be reduced as: S −→∗

G2m

n Gk−1 G2 G1 G0 −→∗ G22
m

n−1 Gk−2 G2 G1 G0 −→∗ · · · −→∗ G
expk(m)
1 G0.) Thus,
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our algorithm requires O(expk(m)) expansions to extract the type information
about G0.

Remark 5.2. λ-terms corresponding to Gk,m have been previously used to show
lower bounds of various problems about λ-calculus [Henglein and Mairson 1994;
Mairson 1992; Beckmann 2001].

Let us discuss an upper bound of the minimum number of expansions required
by our algorithm. Beckmann [2001] showed that the length of a reduction sequence
of a typed λ-term of order-k is bounded by expk(m), where m is the size of the
term. Using this result, we can obtain an upper bound expk+1(|G|) for order-
k recursion schemes without recursion. (The reason for the exponential blow-up
with respect to the bound for λ-terms is that an order-(k + 1) λ-term is required
for representing an order-k recursion scheme without recursion; for instance, the
recursion scheme above is represented by (λF0.F0 · · · )((λF1.λf.λx̃.F1(F1 f) x̃) · · · ),
where the subterm λF0.F0 · · · has order k + 1.)
For general recursion schemes, an upper bound of O(expk+1(|G|2 ×

expk((A|Q|)1+ε))) is obtained as follows. Let m be |Γmax| + 1, which is O(|G| ×
expk((A × |Q|)1+ε)) (recall Section 4.3). Let G(m) be the (recursion-free) recur-
sion scheme constructed in the proof of Theorem 4.6. Let C be the closed con-
figuration graph for G(m). By the strong normalization of the simply-typed λ-
calculus, C is finite and obtained in a finite number of expansions. By Theorem 5.2,
ΓC �B⊥ (G(m), S(m)) : q0. Let Γ�(� ∈ {0, . . . ,m}) be: {F : θ | F (j) : θ ∈ ΓC , j ≥ �}.
Then, we have:

Γm ⊆ Γm−1 ⊆ · · · ⊆ Γ1 ⊆ Γ0.

As Γ0 ⊆ Γmax and m > |Γmax|, there must exist j such that Γj = Γj+1. By the
condition ΓC �B (G(m), S(m)) : q0, we have Γj �B (G, S) : q0.
Now, let C′ be the configuration graph of G corresponding to C, obtained by

expanding exactly the nodes whose corresponding nodes in C are expanded. Then,
Γj ⊆ ElimTE(ΓC′), hence the algorithm terminates at this point. The number of
expansions to obtain C′ is the same as the one to obtain C, which is bounded by
O(expk+1(|G(m)|)) = O(expk+1(|G|2 × expk((A|Q|)1+ε))) by using the result of
Beckmann [2001]. Obtaining a tighter upper bound is left for future work.

6. EXPERIMENTS

We have implemented a model checker TRecS (Types for RECursion Scheme,
http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/) for recursion schemes. To
our knowledge, this is the first implementation of a recursion scheme model checker.
The implementation is based on the algorithm described in Section 5. Following

are some details.

- In Step 1, nodes are expanded in a depth-first manner, except that the expansions
of nodes corresponding to deeply nested recursive function calls are delayed.

- In Step 3, Rehof and Mogensen’s algorithm [Rehof and Mogensen 1999] is used
for the fixed-point computation.

- All the optimizations discussed in Section 5.5.2 are applied. In particular, before
expanding a node (t, q) in Step 2, it is checked whether t is well typed under the
type environment found so far.
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Recursion schemes O R S Q result E time

Example 2.1 1 2 8 2 YES 90 1

Example 2.2 2 3 11 2 YES 301 2

Example 3.1 4 7 27 4 YES 20 1

Example 3.3 4 7 25 4 NO 7 1

Example 3.5 4 10 36 1 YES 88 2

Example 3.6 3 6 18 3 YES 13 1

Section 3.3.3 3 10 31 1 YES 10 1

Example 3.7 3 9 48 2 YES 96 2

Example 5.2 1 2 8 2 NO 9 1

Twofiles 4 11 47 5 YES 67 1

TwofilesWrong 4 11 45 5 NO 38 1

TwofilesExn 4 12 56 5 YES 75 2

FileOcamlc 4 23 111 4 YES 200 3

Lock1 4 12 46 3 YES 48 2

Lock2 4 11 45 4 YES 313 9

Order5 5 11 52 5 YES 58 1

Order5-2 5 9 40 5 YES 117 6

Table I. Experimental results (time is in milliseconds).

We have tested the model checker for a number of hand-written and machine-
generated recursion schemes. The experiment reported below was conducted on an
(unloaded) machine with an Intel(R) Xeon(R) CPU with 3Ghz and 8GB memory.
The times shown in the tables are the maximum running times for 5 runs.
Table I shows the result for several hand-written recursion schemes. Most of

them were obtained from program verification problems, based on the reductions
discussed in Section 3. The columns O, R, S, and Q show the order of the recur-
sion scheme, the number of rewriting rules, the size of rewriting rules (which are
measured by the number of occurrences of symbols in the righthand side of the
rewriting rules) and the number of automaton states respectively. The column “re-
sult” shows whether the property is satisfied (YES) or not (NO). The column “E”
shows the number of expansions of the configuration graph. The column “time”
shows the running time, measured in milliseconds. In this experiment, we have set
the number of iterations in Step 1 (the value of MAX in Figure 8) to 200.
The first 10 recursion schemes were taken from earlier sections of this paper,

indicated by the names of the programs. For Examples 2.1 and 2.2, the specification
is given by the automaton in Example 2.3.
The rest of the programs were obtained from resource usage verification problems

by using the reduction discussed in Section 3. Twofiles is the recursion scheme
generated from the program twofiles discussed in Section 3.2. TwofilesWrong is
the recursion scheme obtained from a wrong variant of Twofiles, where close(x)
has been removed.
The program FileOcamlc is based on a part of the source code of Objective Caml

compiler 3.11.0 [Oca ], bytecomp/symtable.ml, which is the most interesting and
complex use of input files we found in the compiler source code. Following is a
simplified version of the code:

let rec readloop x = if _ then () else (readloop x; read x) in
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let read_sect() =

let fp = open "foo" in

{readc = fun x -> readloop fp; closec = fun x -> close fp} in

let rec loop s = if _ then s.closec() else (s.readc(); loop s) in

let s = read_sect() in loop s

The function read_sect opens a file and returns a record consisting of closures for
accessing the file recursively. The main body obtains such a record, and uses it
inside recursion. This kind of program could not be handled by previous (incom-
plete) methods for the resource usage verification [Igarashi and Kobayashi 2005;
Iwama et al. 2006]. The original source code consists of about 60 lines of code. We
obtained the recursion scheme from it by manually slicing irrelevant parts, applying
CPS transformation, and then applying the reduction described in Section 3.2.
The recursion scheme Lock2 has been obtained from the following program, where

the resource usage specification is that every lock should be used according to
(lock · unlock)∗.
let l1 = newlock() in

let rel1 x = unlock(l1) in let acq1 x = lock(l1) in

let rec f g =

if _ then g() else

let l2 = newlock() in

let rel2 x = unlock(l2) in let acq2 x = lock(l2) in

(acq2(); f rel2; g())

in (acq1(); f rel1)

Analyzing the above program is tricky, as (i) infinitely many locks are created, and
(ii) locks are stored in closures and accessed through them.
Order5 is an order-5 recursion scheme obtained from the following program.

let rec loop use finish x =

if _ then finish x else use x; loop use finish x in

let gencon gen use finish =

let x = gen() then loop use finish x in

let genr () = open_in "foo" in let genw () = open_out "bar" in

gencon genr read close; gencon genw write close

The function gencon takes a generator and a consumer of a resource as an argu-
ment, creates a new resource by invoking the generator, and then uses it. In the
corresponding recursion scheme, gencon has order 5, and loop (at which recursion
occurs) has order 4.
The other examples are explained in Appendix C.
Our model checker could correctly verify all the recursion schemes (or reject,

in case the property is not satisfied) in less than a second. This is remarkably
fast, considering that model checking of order-k recursion schemes is (k − 1)-
EXPTIME in general. Note that all the previous model checking algorithms [Ong
2006; Kobayashi 2009b; Kobayashi and Ong 2009] are simply non-executable for
the recursion schemes of orders 4 or 5, because of huge requirement for time and
space (recall the discussion in Section 5.3).
Following are further observations from the experiments.
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- The node selection strategy in Step 1 can significantly affect the overall perfor-
mance of the model checker. For example, for FileOcamlc, model checking timed
out when we used pure breadth-first search.

- Without the optimizations described in Section 5.2, the model checker ran out of
stack space in Step 2 for the programs “FileOcamlc” and “Lock2”. That is due to
the combinatorial explosion of the number of atomic types, introduced by Elim
(recall Example 5.6). After the optimizations, however, the number of atomic
types is kept small.

Table II shows the result of experiments for larger recursion schemes, automati-
cally generated from program verification tools [Kobayashi et al. 2010; Kobayashi
et al. 2011] constructed on top of TRecS. In the experiments, the parameter MAX
was set to 400. The column “time” again shows the running time, measured in
milliseconds. The recursion schemes repeat and mc91 were generated from the
following functional programs.

let rec repeat f n s = if n=0 then s else f(repeat f (n-1) s) in

let succ x = x+1 in assert (repeat succ n 0 >= 0)

let rec mc91 x = if x>100 then x-100 else mc91(mc91(x+11))

in if n<=101 then assert(mc91 n = 91)

The goal of the verification is to check that an assertion failure never occurs. The
programs above have been transformed to recursion scheme model checking by a
combination of techniques for predicate abstraction and the reduction of reachabil-
ity problem (recall Section 3.3.1): see [Kobayashi et al. 2011] for more details. Note
that the order of the recursion scheme repeat is very high. The type of repeat
in the source program is (int → int) → int → int → int, but the order of the
program is raised by CPS transformation to translate a call-by-value program to a
recursion scheme.
The recursion schemes gapid, . . ., xhtmlf-m were generated from verification

problems for XML processing programs [Tozawa 2006; Frisch and Hosoya 2007],
based on the reduction described by [Kobayashi et al. 2010]. The source programs
for the recursion schemes xhtmlf-* take an XHTML document as input, and output
another XHTML document; the goal of the verification is to check that the output
is a valid XHTML document. Although the order of recursion schemes is not high,
the number of states is large.
The verification tools mentioned above actually generate recursion schemes ex-

tended with finite data domains (such as booleans) [Kobayashi et al. 2010]. For the
experiments above, we have encoded values of finite data domains into functions
by using Church encoding: the value ai of a finite data domain {a1, . . . , an} is
represented by λx1, . . . , xn.xi. The actual verification tools [Kobayashi et al. 2010;
Kobayashi et al. 2011] use an extension of TRecS that directly supports finite data
domains, which is several times faster for xhtmlf-id and xhtmlf-m.
To confirm the limitation discussed in Section 5.5.3, we have also tested TRecS

for model checking of the recursion scheme Gk,m given in Section 5.5.3. The checked
property is that the tree contains only terminals a and c, which holds trivially.
Table III shows the running time for the model checking of Gk,m. In the experiments,
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Table II. Result for machine-generated recursion schemes.
Recursion schemes O R S Q result E time (msec.)

repeat 8 40 191 1 YES 184 5

mc91 4 49 358 1 YES 998 54

gapid 3 24 182 9 YES 154 8

xhtmlf-id 2 52 2889 50 YES 800 1,800

xhtmlf-div 2 64 3003 50 NO 75 51

xhtmlf-m 2 64 3027 50 YES 1099 894

Table III. Verification time for Gk,m (in seconds).

m=1 m=2 m=3 m=4 m=5 m=10 m=15

k=1 0.002 0.002 0.002 0.002 0.003 0.036 2.866

k=2 0.002 0.002 0.011 228.412 – – –

k=3 0.002 394.267 – – – – –

the parameter MAX was set to 20, 000. The cell marked by “–” indicates that the
model checker did not terminate in 10 minutes. As expected, the model checking
of Gk,m rapidly slows down with an increase of k.

7. RELATED WORK

Model checking of higher-order recursion schemes. Higher-order grammars,
where non-terminals can take functions as parameters, have been introduced in
early 70s [Turner 1972; Wand 1974], and actively studied in 80s [Damm 1982]. To
our knowledge, it is Knapik et al. [2001; 2002] who first formalized the modal μ-
calculus model checking problems for higher-order recursion schemes in the present
form. Knapik et al. [2001] showed that the problem is decidable for order-2 safe
higher-order recursion schemes (where “safety” is a certain syntactic condition), and
later extended the result to safe recursion schemes of any order [Knapik et al. 2002].
Their proof reduces a model checking problem for an order-k safe recursion scheme
to that for an order-(k− 1) safe recursion scheme. Knapik et al. [2005] and Aehlig
et al. [2005] then independently showed that the model checking problem is de-
cidable for order-2 recursion schemes, without the safety assumption. Finally, Ong
[2006] has shown that the problem is decidable for recursion schemes of arbitrary or-
der. He used game semantics to reduce the model checking problem to parity games
over variable profiles. Hague et al. [2008] and Kobayashi and Ong [2009] later gave
alternative proofs of the decidability of the modal μ-calculus model checking of re-
cursion schemes. The former [Hague et al. 2008] used the equi-expressivity between
higher-order recursion schemes and collapsible higher-order pushdown automata,
and reduced the model checking problem to a parity game over the configuration
graph of a collapsible pushdown automaton. The latter [Kobayashi and Ong 2009]
extended the type system in Section 4 and reduced the model checking problem
to a type checking problem in the extended type system. For the class of triv-
ial automata, Aehlig [2007] gave a simpler decidability proof of recursion scheme
model checking, based on a set-theoretic interpretation of tree functions. Our type
system is similar to his approach; in fact, the semantics of our intersection types
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can be given in terms of set-theoretic functions. All the decidability proofs above
are constructive in the sense that they all provide algorithms for model checking re-
cursion schemes. As already mentioned, however, all the algorithms almost always
suffer from k-EXPTIME bottleneck. As a natural consequence, there has been no
implementation of a model checker for recursion schemes.
Kobayashi [2011] recently proposed yet another practical algorithm for recur-

sion scheme model checking. Unlike the hybrid algorithm, his new algorithm runs
in time linear in the size of higher-order recursion schemes if the largest size of
types and the size of the automaton are fixed. For Gk,m discussed in Section 5.5.3,
the new algorithm runs much faster than the hybrid algorithm. For the recursion
schemes obtained from program verification algorithms, however, the current im-
plementation of the new algorithm [Kobayashi 2011] is significantly slower than
the hybrid algorithm. Thus, further investigation is necessary to obtain a better
(fixed-parameter) linear time algorithm.
The complexity of the modal μ-calculus model checking of order-k recursion

schemes was shown to be k-EXPTIME complete by Ong [2006]. His proof of the
lower bound is based on Cachat and Walukiewicz’s result on k-EXPTIME hard-
ness of the reachability game on a higher-order pushdown system [Cachat and
Walukiewicz 2007]. As mentioned in Remark 2.1, Kobayashi and Ong [2011] stud-
ied the complexity of model checking of recursion schemes for subclasses of the
modal μ-calculus.
Despite the theoretical interests in recursion scheme model checking, there has

been little work on its application to program verification, probably due to the
extremely high worst-case complexity. To our knowledge, Kobayashi [2009b] was
the first to show concrete applications of recursion scheme model checking to veri-
fication of higher-order functional programs. Succeedingly, recursion scheme model
checking has been applied to various verification or analysis problems of functional
programs [Kobayashi et al. 2010; Ong and Ramsay 2011; Kobayashi et al. 2011;
Tobita et al. 2012].

Software model checking. Model checking has been recently applied to software
verification [Ball et al. 2001; Ball and Rajamani 2002; Beyer et al. 2007; Henzinger
et al. 2002]. Dillig et al. [2008] has also developed a closely related technique for
sound and complete path-sensitive analysis that is scalable to million lines of code.
We are not, however, aware of previous model checkers that can verify higher-
order recursive functions in a sound and complete manner. Most of the existing
software model checkers [Ball et al. 2001; Beyer et al. 2007] are based on either finite
state or pushdown model checking; some approximation is necessary for encoding
higher-order recursive functions into finite state or pushdown systems, so that the
completeness is lost. For example, SLAM [Ball et al. 2001] deals with function
pointers by replacing them with non-deterministic jumps to the functions they
may point to.
Bakewell and Ghica [2008] proposed a model checker called MAGE, based on

game semantics. Although game semantics has been studied for higher-order func-
tional languages, their model checking algorithm and implementation deal with
neither higher-order functions nor recursion.
Many of the techniques for model checking, especially techniques for predicate
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abstraction and CEGAR [Graf and Säıdi 1997; Ball et al. 2001; Clarke et al. 2003;
Henzinger et al. 2002; McMillan 2006], are useful also in the context of higher-
order model checking, and some of them have been applied already [Kobayashi
et al. 2011].

Relationship between model checking and type systems. Naik and Palsberg [2003;
2005] studied type systems equivalent to model checking for an imperative language
and an interrupt calculus. Their type systems and ours have some similarity: a state
or a value is represented by an atomic type, and the effect of a statement is expressed
by an intersection of function types (each of which represents a state transition).
A major difference is that they consider only types of order 1, while we consider
types of higher-orders to deal with higher-order functions. Naik and Palsberg [2003;
2005] use union types in addition to intersection types. The combination of union
and intersection types would be useful also in the context of recursion scheme
model checking, to enable more compact representation of types. For example, the
intersection type

∧
{θ1 → θ2 → o | θ1, θ2 ∈ {q0, q1}} can be compactly represented

as (q0 ∨ q1) → (q0 ∨ q1) → o.

Type-based program analysis. Type systems have been a popular technique for
program analysis and verification [Palsberg 2001]. Various type systems for the re-
source usage verification problem considered in Section 3.1 or its variants have been
proposed [Igarashi and Kobayashi 2005; Foster et al. 2002; DeLine and Fähndrich
2001; Iwama et al. 2006]. Unlike our method based on higher-order model check-
ing, those type systems are not complete, and some of them [DeLine and Fähndrich
2001] require type annotations.
Connections between types and tree automata have been studied in the context of

languages for XML processing [Hosoya et al. 2005; Benzaken et al. 2003]. They deal
with finite trees, while our type system deals with infinite trees. Type annotations
for recursive functions are required in their languages.

Intersection types and their variants have been used for various program analy-
ses [Jensen 1991; Henglein and Mossin 1994; Freeman and Pfenning 1991; Mossin
2003]. Mossin [2003] developed an intersection type system for exact flow analysis,
which provides a sound and complete algorithm for flow analysis of the simply-typed
λ-calculus with recursion and finite base types. Like previous model checking algo-
rithms for recursion schemes, his algorithm is inefficient and mainly of theoretical
interest. Jensen [1992] also gave an intersection type system that is equivalent to
Burn, Hankin, and Abramsky’s strictness analysis for higher-order programs [Burn
et al. 1986]. Freeman and Pfenning [1991] introduced refinement types as a re-
finement of ML type system to infer precise properties of ML data types. Our
development of the type system and the naive type inference algorithm in Section 4
is similar to this line of work; A key principle shared by this line of research is that
there are only finitely many intersection types that refine each standard type, so
that one can use a fixed-point computation to infer intersection types, as in our
naive algorithm discussed in Section 4.3. The most important difference of our work
from those previous studies is invention of the hybrid type inference algorithm. The
algorithms used in previous studies (and our naive algorithm) are based on a fixed-
point computation. They are not feasible for higher-order programs, as they try to
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enumerate all the valid types. Instead, our hybrid algorithm tries to infer minimal
types just enough to type a given program, so that it does not immediately suffer
from the explosion of the number of refinements. This difference is analogous, in
the context of ML type inference, to the difference between the standard ML type
inference algorithm W, which tries to assign the most general type scheme to each
function, and Bjørner’s algorithm to find minimal typing derivations, which tries to
assign the most specific type to each function (though the motivation is different).
Another difference from previous studies on type-based program analysis is that

our type system for recursion scheme model checking can be used for a general
purpose, in the sense that various problems can be reduced to model checking
problems, which can be solved by using our type system.

Inference of Intersection Types. Since our model checking algorithm is a type in-
ference algorithm for the intersection type system presented in Section 4, there may
be some connection between our algorithm and type inference algorithms for in-
tersection types [Coppo et al. 1980; Ronchi Della Rocca and Venneri 1984; Kfoury
and Wells 2004; Boudol 2008]. In particular, earlier algorithms for intersection
type inference [Coppo et al. 1980; Ronchi Della Rocca and Venneri 1984] first find
a normal form, and then obtain a principal typing for the normal form; this is
somewhat similar to Steps 1 and 2 of our hybrid algorithm, which first reduces a
given recursion scheme, and then extracts type information. There are, however,
several important differences. First, the intersection type inference algorithms aim
to infer a principal typing, while our algorithm does not. Secondly, our type system
is decidable, while the intersection type systems studied in the literature are usu-
ally undecidable (as the typability coincides with strong normalization). Thirdly
(and most importantly), the intersection type systems studied in [Coppo et al.
1980; Ronchi Della Rocca and Venneri 1984; Kfoury and Wells 2004; Boudol 2008]
guarantee that typable terms (possibly with certain additional conditions) have the
strong normalization property, while our type system does not. That is why our
algorithm is hybrid: type information is extracted after a finite number of reduc-
tion steps, and then another algorithm is used for deciding whether the recursion
scheme is typable using extracted type information. Despite the differences above,
it would be interesting to study the relationship between our algorithm and their
algorithms in more detail, to see whether some of their techniques can be used for
optimizing our type inference algorithm.

8. CONCLUSION

We have proposed a novel framework for program verification based on model check-
ing of higher-order recursion schemes. We have also developed new algorithms for
recursion scheme model checking, and implemented the first practical model checker
for recursion schemes.
It is too early to judge how much impact our program verification framework has

in practice. There are, however, a number of reasons to believe that our approach
is promising and worthy of further investigation:

- As already mentioned, our verification method is sound, complete, and fully au-
tomatic for the simply-typed λ-calculus with recursion and finite base types.
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- Higher-order model checking can be considered an extension of finite state and
pushdown model checking, which have already achieved certain success in software
verification [Beyer et al. 2007; Ball and Rajamani 2002].

- The model checking algorithm is actually a type checking algorithm, so that it can
take the best of model checking and type-based analysis. In particular, as in other
type-based approach, our algorithm generates type information as a certificate of
successful verification, and as in model checking, the algorithm generates an error
trace as a counterexample.

- Our verification method can be integrated with testing. Recall that our hybrid
algorithm gathers type information by actually running a program (or reducing
a recursion scheme). Such type information can be collected during testing.

Because of the extremely high worst-case complexity of recursion scheme model
checking, obtaining a more scalable model checker remains a major challenge. There
is however a good reason to hope that recursion scheme model checking may scale for
realistic inputs, if we come up with a proper model checking algorithm. According
to the discussion of the worst-case behavior of our hybrid algorithm in Section 5.5.3,
the algorithm can be very slow in two cases. One is the case where we have to unfold
recursive definitions very deeply to extract enough type information. The other is
the case where, even without recursion, a term has a very long reduction sequence.
The first case does not happen if higher-order functions are used in a uniform
manner so that they have only a small number of different types. The second
case happens because of the ability of higher-order functions to express a long
computation very compactly, which should actually be regarded as an advantage of
higher-order functions, rather than as a limitation of higher-order model checking.
For example, consider an order-0 recursion scheme G0:

S → H0, H0 → aH1, H1 → aH2, · · · H2m−1 → aH2m , H2m → c,

and an order-1 recursion scheme G1:

S → F0(c), F1 x→ F2(F2 x), · · · Fm−1 x→ Fm(Fm x), Fm x→ a x.

The two recursion schemes generate the same tree a2
m

(c), but the former is ex-
ponentially larger than the latter. Thus, an exponential algorithm for the latter
recursion scheme is in fact as good as a polynomial time algorithm for the former
recursion scheme. Furthermore, the naive model checking algorithm in Section 4.3
and the algorithm in [Kobayashi 2011] run in time linear in the size of recursion
schemes, so that the model checking of the latter recursion scheme can be performed
exponentially faster than the model checking of the former recursion scheme. This
indicates that our verification method can be faster for well-structured programs
that use higher-order functions in an appropriate manner, than for unstructured
programs that do not use higher-order functions.
We conclude this article with discussion of future work.

- More efficient implementation of a recursion scheme model checker. The current
implementation of TRecS is reasonably fast considering the worst-case com-
plexity, but it will not scale to verification of very large programs. It would be
interesting to investigate a combination of the hybrid algorithm and the fixed-
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parameter linear time algorithm recently proposed in [Kobayashi 2011]. BDD-like
implementation techniques would be important for the scalability.

- Dealing with a larger class of programs. Higher-order model checking is sound and
complete only for the simply-typed λ-calculus with recursion and finite base types.
Although predicate abstraction techniques can be used for dealing with infinite
data domains such as integers, it remains a challenge to deal with other features
supported in programming languages, such as recursive types, polymorphism,
references, and concurrency.

- Compositional verification. In Section 3, we have discussed only verification of
closed programs, where all the definitions of functions are given at the time
of verification. To enable compositional verification, we need to extend recur-
sion schemes so that the start symbol of a recursion scheme can take parame-
ters f1, . . . , fk (which represent unknown functions), and need to solve questions
like “assuming f1, . . . , fk satisfy certain conditions, does the tree generated by
S f1 . . . , fk satisfy a given condition?” and “what are sufficient conditions on
f1, . . . , fk, in order for the tree generated by S f1 . . . , fk to satisfy a given condi-
tion?”
Fortunately, our type-based model checking method seems suitable for such ex-
tensions. If the conditions of parameters are expressed by using types, the naive
type checking algorithm can be used to answer both types of questions.9 The
hybrid algorithm can also be used to answer the first type of question, and in
combination with testing, it can also be used to partially answer the second type
of question.

- Dealing with a larger class of properties. In this article, we have restricted our
attention to the class of properties expressed by deterministic trivial automata.
Based on the result of Kobayashi and Ong [2009], it is not difficult to extend
our hybrid algorithm to deal with the full modal μ-calculus model checking. Im-
plementing an efficient model checker that supports the full modal μ-calculus
remains a challenge, however. On the theoretical side, it would be a challenge to
identify a class of non-regular properties (such as counting properties) for which
recursion scheme model checking is decidable. At the moment, we have only a
negative result [Kobayashi 2010] on this issue.
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Graf, S. and Säıdi, H. 1997. Construction of abstract state graphs with PVS. In Proceedings
of CAV 97. Lecture Notes in Computer Science, vol. 1254. Springer, 72–83.

Hague, M., Murawski, A., Ong, C.-H. L., and Serre, O. 2008. Collapsible pushdown automata
and recursion schemes. In Proceedings of 23rd Annual IEEE Symposium on Logic in Computer
Science. IEEE Computer Society, 452–461.

Henglein, F. and Mairson, H. G. 1994. The complexity of type inference for higher-order typed
lambda calculi. Journal of Functional Programming 4, 4, 435–477.

Henglein, F. and Mossin, C. 1994. Polymorphic binding-time analysis. In Proceedings of 5th
European Symposium on Programming (ESOP’94). Lecture Notes in Computer Science, vol.
788. Springer, 287–301.

Henzinger, T. A., Jhala, R., Majumdar, R., and Sutre, G. 2002. Lazy abstraction. In Pro-
ceedings of ACM SIGPLAN/SIGACT Symposium on Principles of Programming Languages
(POPL). ACM Press, 58–70.

Hosoya, H., Vouillon, J., and Pierce, B. C. 2005. Regular expression types for XML. ACM
Trans. Program. Lang. Syst. 27, 1, 46–90.

Igarashi, A. and Kobayashi, N. 2005. Resource usage analysis. ACM Transactions on Pro-
gramming Languages and Systems 27, 2, 264–313.

Iwama, F., Igarashi, A., and Kobayashi, N. 2006. Resource usage analysis for a functional
language with exceptions. In Proceedings of ACM SIGPLAN 2006 Workshop on Partial Eval-
uation and Program Manipulation (PEPM 2006). ACM Press, 38–47.

Jensen, T. P. 1991. Strictness analysis in logical form. In Functional Programming Languages
and Computer Architecture (FPCA 91). Lecture Notes in Computer Science, vol. 523. Springer,
352–366.

Jensen, T. P. 1992. Abstract interpretation in logical form. Ph.D. thesis, Imperial College.

Johnsson, T. 1985. Lambda lifting: Treansforming programs to recursive equations. In Proceed-
ings of FPCA 85. Lecture Notes in Computer Science, vol. 201. Springer, 190–203.

Kfoury, A. J., Tiuryn, J., and Urzyczyn, P. 1990. ML typability is DEXTIME-complete. In
Proceedings of CAAP ’90. Lecture Notes in Computer Science, vol. 431. Springer, 206–220.

ACM Journal Name, Vol. V, No. N, Month 20YY.



60 · N. Kobayashi

Kfoury, A. J. and Wells, J. B. 2004. Principality and type inference for intersection types

using expansion variables. Theor. Comput. Sci. 311, 1-3, 1–70.

Knapik, T., Niwinski, D., and Urzyczyn, P. 2001. Deciding monadic theories of hyperalgebraic
trees. In TLCA 2001. Lecture Notes in Computer Science, vol. 2044. Springer, 253–267.

Knapik, T., Niwinski, D., and Urzyczyn, P. 2002. Higher-order pushdown trees are easy. In
FoSSaCS 2002. Lecture Notes in Computer Science, vol. 2303. Springer, 205–222.

Knapik, T., Niwinski, D., Urzyczyn, P., and Walukiewicz, I. 2005. Unsafe grammars and
panic automata. In ICALP 2005. Lecture Notes in Computer Science, vol. 3580. Springer,
1450–1461.
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Appendix

A. PROOF OF THEOREM 3.3

This section gives a proof of Theorem 3.3. We fix a program D and a re-
source automaton W = (L,Q, δW , q0, QF ) below (hence GD,W and BW = (Σ, Q ∪
{quntracked, qany}, δ′, quntracked) is also fixed).
The idea of the proof is to match a reduction sequence of the program D with

a run of the automaton BW over a path of the tree generated by GD,W . For that
purpose, we introduce alternative reduction semantics for programs and recursion
schemes.
An extended run-time state is a triple (H, e,R), where H is a finite map from

variables to Q ∪ {quntracked}, e is an expression, and R is either the empty set
∅ or a singleton set {x}. Intuitively, R is the set of resources that are currently
tracked. An extended reduction relation (H, e,R) �D,W C, where C is either a
triple (H ′, e′, R′) or Error, is defined by:

(H,F ẽ′, R) �D∪{F x̃=e},W (H, [ẽ′/x̃]e,R)

(H, if e1 e2, R) �D,W (H, e1, R)

(H, if e1 e2, R) �D,W (H, e2, R)

(H,newq e,R) �D,W (H{x �→ quntracked}, e x,R) (x 
∈ dom(H))

(H,newq e, ∅) �D,W (H{x �→ q}, e x, {x}) (x 
∈ dom(H))

(H{x �→ q}, acca x e,R) �D,W (H{x �→ δ′W (q, a)}, e, R) (if x 
∈ dom(H))

(H{x �→ q}, acca x e,R) �D,W Error (if x 
∈ dom(H) and δ′W (q, a) is undefined)

(H{x �→ q}, �, R) �D,W Error (if x 
∈ dom(H) and q 
∈ QF ∪ {quntracked})

Here, δ′W = δW ∪ {(quntracked, a) �→ quntracked | a ∈ L}. The main change from
the original reduction rules is in the rules for newq e. When R is empty, it is non-
deterministically decided whether the fresh resource x should be tracked (i.e. put
into R). Untracked resources have the special state quntracked, and all following
accesses to them are ignored.
The alternative semantics is equivalent to the original semantics in the sense that

a program is reduced to Error in the former if and only if it is so in the latter.

Lemma A.1. Let D be a (well-typed) program and W be a resource automaton
for D. Then, (∅, S) −→∗

D,W Error if and only if (∅, S, ∅) �∗
D,W Error.

Proof. Suppose (∅, S) −→∗
D,W Error. Then the reduction sequence must be of

the form

(∅, S) −→∗
D,W (H1,new

q e1) −→D,W (H1{x �→ q}, e1 x)
−→∗

D,W (H2, e2) −→D,W Error,
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where either e2 = acca x e3 with δW (H(x), a) being undefined, or e2 = � with
H(x) 
∈ QF . In either case, one can construct (by straightforward induction on the
length of the reduction sequence) a corresponding reduction sequence:

(∅, S, ∅) �∗
D,W (H1,new

q e1, ∅) �D,W (H1{x �→ q}, e1 x, {x})
�∗

D,W (H2, e2, {x}) �D,W Error.

The converse is similar. �

We now introduce an alternative reduction semantics for recursion schemes. Let
G = (Σ,N ,RG , S) be a recursion scheme and B = (Σ, Q, δB, q0) be a trivial au-
tomaton. The relation (q, t) �G,B C, where C is of the form (q′, t′) or Error, is the
least relation closed under the following rules.

(q, F ũ) �G,B (q, [ũ/x̃]t) (if RG(F ) = λx̃.t)

(q, a ũ) �G,B (qi, ui) (if δB(q, a) = q1 · · · qm with 1 ≤ i ≤ m)

(q, a ũ) �G,B Error (if δB(q, a) is undefined)

The reduction relation �G,B expresses the process of running the automaton B
along a path while expanding a term lazily.
Using the new semantics, the acceptance of the tree generated by a recursion

scheme is characterized as follows.

Lemma A.2. Let G = (Σ,N ,RG , S) be a recursion scheme and B =
(Σ, Q, δB, q0) be a trivial automaton. Then, B⊥ does not accept [[G]] if and only
if (q0, S) �

∗
G,B Error.

Proof. We write (q, t) �′B (q′, t′) if (q, t) �G,B (q′, t′) is derived without using
the first rule. We first note the following commutativity properties, which follow
immediately from the definitions of the reduction relations.

(i) If t −→G t′ and (q, t′) �G,B (q′, t′′), then (q, t) �∗G,B (q′, t′′) or (q, t) �G,B (q′, u)
with u −→G t′′ for some u.

(ii) If (q, t)�′B (q′, t′) and t′ −→G t′′, then t −→G u with (q, u)�′G,B (q′, t′′) for some
u.

If [[G]] is rejected by B⊥, then there is a term t such that S −→∗
G t and t⊥ is

rejected by B⊥. Since t⊥ is rejected by B⊥, we have (q0, t) �
′∗
G,B Error. By the

property (i) above and S −→∗
G t, we have (q0, S) �

∗
G,B (q, u) and u −→∗

G u′, with
(q, u′) �G,B Error. We can assume without loss of generality that the reductions
u −→∗

G u
′ do not rewrite the root symbol. Thus, we have (q, u) �G,B Error, which

implies (q0, S) �
∗
G,B Error as required.

If (q0, S) �
∗
G,B Error, then by the property (ii) above, there exists t such that

S −→∗
G t and (q, t) �′∗B Error. Thus, t⊥ is rejected by B⊥, which implies that [[G]] is

also rejected by B⊥. �

We are now ready to relate the reduction of a program and that of a recursion
scheme. We write (H, e,R) ∼ (q, t) if either of the following conditions holds.
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(i) H = {ỹ �→ quntracked} and R = ∅ with q = quntracked and t = [K/ỹ]e.

(ii) H = {x �→ q, ỹ �→ quntracked} and R = {x} with q ∈ Q and t = [I/x,K/ỹ]e.

Here, {ỹ �→ q} and [K/ỹ] are abbreviations of {y1 �→ q, . . . , yn �→ q} and
[K/y1, . . . ,K/yn], respectively.
The following is the key lemma to prove Theorem 3.3..

Lemma A.3. Suppose that (H, e,R) ∼ (q, t) holds.

(1) If (H, e,R) �∗
D,W Error, then (q, t) �∗GD,W ,BW

Error.

(2) If (q, t) �∗BW
Error, then (H, e,R) �∗

D,W Error.

Proof. We often omit the subscripts of �∗ and �∗ below. δW is the transition
function of W , and δ′W = δW ∪ {(quntracked, a) �→ quntracked | a ∈ L}.
(1) The proof proceeds by induction on the length of the reduction sequence

(H, e,R) �∗
D,W Error, with case analysis on the shape of e. We define a

substitution ρR,H by:

ρR,H =

{
[K/ỹ] if R = ∅ and dom(H) = {ỹ}
[I/x,K/ỹ] if R = {x} and dom(H) = {x, ỹ}

(a) Case e = �:
In this case, there exists x such that x ∈ R with H(x) 
∈ QF . By the
definition of (H, e,R) ∼ (q, t), we have t = � and q = H(x). Thus,
(q, t) �GD,W ,BW Error.

(b) Case e = F ẽ1 with F z̃ = e0 ∈ D:
In this case, (H, e,R) �D,W (H, e′, R) �∗

D,W Error, where e′ = [ẽ1/z̃]e0
By the condition (H, e,R) ∼ (q, t), we have t = ρR,H(F ẽ1). Let t′ be
ρR,He

′. Then, we have (H, e′, R) ∼ (q, t′). By the induction hypothesis, we
have (q, t′) �∗ Error, which implies (q, t) � (q, t′) �∗ Error.

(c) Case e = if e1 e2: In this case, (H, e,R) � (H, ei, R) �∗ Error
for some i ∈ {1, 2}. By the condition (H, e,R) ∼ (q, t), we have
t = if ρR,He1 ρR,He2. Let ti be ρR,Hei. Then, (H, ei, R) ∼ (q, ti)
holds. By the induction hypothesis, we have (q, ti) �

∗ Error, which im-
plies (q, t) � (q, br t1 t2) � (q, ti) �

∗ Error.
(d) Case e = newq′ e1:

In this case, the reduction sequence (H, e,R) �∗
D,W Error must be of

the form (H, e,R) � (H ′, e′, R′) �∗ Error, where H ′ = H ∪ {z �→ q1},
e′ = e1 z, and (q1, R

′) is either (quntracked, R) or (q′, R ∪ {z}). By the
condition (H, e,R) ∼ (q, t), we have t = newq′ ρR,He1. If (q1, R

′) =
(quntracked, R), then (H ′, e′, R′) ∼ (q, t′) for t′ = (ρR,He1)K = ρR′,H′e′.
By the induction hypothesis, we have (q, t′) �∗Error, which implies (q, t) �
(q, br t′ (νq

′
(ρR,He1 I))) � (q, t

′) �∗ Error.
If (q1, R

′) = (q′, R ∪ {z}), then it must be the case that R = ∅ and q =
quntracked. We have (H ′, e′, R′) ∼ (q′, t′) for t′ = (ρR,He1)I = ρR′,H′e′. By
the induction hypothesis, we have (q′, t′) �∗ Error, which implies (q, t) �
(q, br (ρR,He1K) (νq

′
t′)) � (q, νq

′
t′) � (q′, t′) �∗ Error.

(e) Case e = acca x e1:
In this case, by the condition (H, e,R) ∼ (q, t), we have t =
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acca (ρR,Hx) (ρR,He1). By the condition (H, e,R) �∗
D,W Error, we have

either of the following conditions.
(i) H(x) = q, R = {x}, and δ′W (q, a) is undefined.
(ii) (H, e,R) �∗

D,W Error is of the form (H, e,R) � (H ′, e1, R) �∗

Error, where H = H1 ∪ {x �→ q1} and H ′ = H1 ∪ {x �→ δ′W (q1, a)}.
In the first case, t = acca I (ρR,He1), so that we have (q, t) �
(q, I a (ρR,He1)) � (q, a (ρR,He1)) � Error.
In the second case, we perform case analysis on whether x ∈ R. If x ∈ R,
then t = acca I (ρR,He1) with q1 = q. Let t′ = ρR,He1 = ρR,H′e1. Then,
since (H ′, e1, R) ∼ (δW (q1, a), t

′), we have (δW (q1, a), t
′) �∗ Error by the

induction hypothesis. Thus, we have (q, t) �∗ (q1, a t′) �∗ Error as required.
If x 
∈ R, then t = acca K (ρR,He1). Let t′ = ρR,He1 = ρR,H′e1. Then,
since (H ′, e1, R) ∼ (q, t′), we have (q, t′) �∗Error by the induction hypoth-
esis. Thus, we have (q, t) �∗ (q,K a t′) � (q, t′) �∗ Error as required.

(2) The proof proceeds by induction on the length of the reduction sequence
(q, t) �∗BW

Error, with case analysis on the shape of e.
(a) Case where e is �:

By the condition (H, e,R) ∼ (q, t), t must be �. By the condition (q, t) �∗

Error, it must be the case that q 
∈ QF ∪{quntracked}. By using (H, e,R) ∼
(q, t) again, we get R = {x} and H(x) = q. Thus, we have (H, e,R) =
(H, �, R) � Error as required.

(b) Case where e is of the form F ẽ1 with F z̃ = e0 ∈ D. By the condition
(H, e,R) ∼ (q, t), it must be the case that t = ρR,H(F ẽ1). The reduction
sequence (q, t) �∗ Error must be of the form:

(q, t) � (q, t′) �∗ Error

where t′ = [ρR,H ẽ1/z̃]e0. Let e′′ be [ẽ1/z̃]e0. Then, we have (H, e′′, R) ∼
(q, t′). By the induction hypothesis, we have (H, e′′, R) �∗ Error, which
implies (H, e,R) � (H, e′′, R) �∗ Error.

(c) Case where e is of the form if e1 e2:
By the condition (H, e,R) ∼ (q, t), it must be the case that t =
ρR,H(if e1 e2). The reduction sequence (q, t) �∗ Error must be of the
form:

(q, t) � (q, ρR,H(br e1 e2)) � (q, ρR,Hei) �
∗ Error

where i is either 1 or 2.
Let e′′ be ei. Then, we have:

(H, e′′, R) ∼ (q, ρR,Hei).

By the induction hypothesis, we have (H, e′′, R) �∗ Error, which implies
(H, e,R) � (H, e′′, R) �∗ Error.

(d) Case where e is of the form newq e1:
By the condition (H, e,R) ∼ (q, t), it must be the case that t =
newq ρR,He1. (q, t) �

∗ Error must be either of the form:

(q, t) � (q, br (ρR,He1 K) (νq
′
(ρR,He1 I)))

�(q, ρR,He1 K)
�∗Error
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or, of the form:

(q, t) � (q, br (ρR,He1 K) (νq(ρR,He1 I)))

�(q, νq
′
(ρR,He1 I))

�(q′, ρR,He1 I)
�∗Error

In the former case, let H ′ be H ∪ {z �→ q′} and e′ be e1z. Then, we have:

(H ′, e′, R) ∼ (q, ρR,He1 K).

By the induction hypothesis, we have (H ′, e′, R) �∗ Error, which implies
(H, e,R) � (H ′, e′, R) �∗ Error.

In the latter case, it must be the case that q = quntracked with R = ∅.
Let H ′ = H ∪ {z �→ quntracked}, e′ = e1z, and R′ = {z}. Then, we
have (H ′, e′, R′) ∼ (q′, ρR,He1 I). By the induction hypothesis, we have
(H ′, e′, R′) �∗ Error, which implies (H, e,R) � (H ′, e′, R′) �∗ Error as
required.

(e) Case where e is of the form acca z e1:
By the condition (H, e,R) ∼ (q, t), it must be the case that t =
acca (ρR,Hz) (ρR,He1). Let H = H1 ∪ {z �→ q1}.
The reduction sequence (q, t) �∗ Error must be one of the following forms.

(i) (q, t) � (q, I a (ρR,He1)) � (q, a (ρR,He1)) � Error, where δW (q, a) is
undefined.

(ii) (q, t) � (q, I a (ρR,He1)) � (q, a (ρR,He1)) � (δW (q, a), ρR,He1) �
∗ Error.

(iii) (q, t) � (q,K a (ρR,He1)) � (q, ρR,He1) �
∗ Error.

In the first or second case, we have R = {z} and q = q1. In the first
case (H, e,R) � Error follows immediately. In the second case, we have
(H1 ∪ {z �→ δW (q, a)}, e1, R) ∼ (δW (q, a), ρR,He1). Thus, by the induction
hypothesis, we have (H1 ∪ {z �→ δW (q, a)}, e1, R) �∗ Error, which implies
(H, e,R) �∗ Error as required.

In the third case, we have z 
∈ R and q1 = quntracked. By the condition
(H1 ∪ {z �→ δ′W (q1, a)}, e1, R) ∼ (q, ρR,H1e1) = (q, ρR,He1) and the induc-
tion hypothesis, we have (H1 ∪ {z �→ δ′W (q1, a)}, e1, R) �∗ Error, which
implies (H, e,R) �∗ Error as required.

�

Theorem 3.3 follows as an immediate corollary of the above lemmas.

Proof of Theorem 3.3. We show the contraposition.

D is not resource-safe, i.e., (∅, S) −→∗
D,W Error

if and only if (∅, S, ∅) −→∗
D,W Error (by Lemma A.1),

if and only if (q, t) �∗GD,W ,BW
Error (by Lemma A.3),

if and only if [[GD,W ]] is not accepted by BW (by Lemma A.2).

�
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B. PROOF OF THEOREM 5.2

Proof. As the configuration graph contains the root node [S, q0], we have S :q0 ∈
ΓC . Thus, it remains to prove that ΓC �B R(F ) : θ for each F : θ ∈ ΓC . In view
of proving this, we first construct a type derivation tree Πt,N of ΓC �B t : τt,N for
every term t that occurs in a head position in a node N of the configuration graph
C (i.e. the node N is labeled by 〈ts̃, q, closed〉). The construction of Πt,N proceeds
by induction on the structure of t.

(a) Case where t is a non-terminal F : In this case, Πt,N is just an application of
rule T-Var:

ΓC �B F : τF,N
T-Var

Note that F : τF,N ∈ ΓC holds by the construction of ΓC .
(b) Case where t is a terminal a: In this case, Πt,N is an application of rule

T-Const:

ΓC �B a : τa,N
T-Const

By the construction of the configuration graph, the node N must be la-
beled by [a t1 · · · tm, q], and have outgoing edges to N1, . . . , Nm labeled by
[t1, q1], . . . , [tm, qm], with δB(q, a) = q1 · · · qm. By the construction, τa,N must
be q1 → · · · → qm → q. Thus, the type derivation above is valid.

(c) Case where t is an application t1t2: By the induction hypothesis, we have a
type derivation Πt1,N for ΓC �B t1 : τt1,N . By the construction, τt1,N must be:∧

{τt2,Ni | Ni ∈ S} → τt,,

where S is the set of nodes where t2 occurs in a head position. Since {τt2,Ni |
Ni ∈ S} is a finite set (although S may be infinite), there exists a finite subset
S′ = {N ′

1, . . . , N
′
k} of S that satisfies: (i) {τt2,N ′

i
| N ′

i ∈ S′} = {τt2,Ni | Ni ∈
S}, and (ii) τt2,N ′

1
, . . . , τt2,N ′

k
are distinct from each other. By the induction

hypothesis, we have type derivations Πt2,N ′
i
of ΓC �B t2 : τt2,N ′

i
, for each i ∈

{1, . . . , k}. Now, let Πt1t2,N be:

Πt1,N Πt2,N ′
1

· · · Πt2,N ′
k

ΓC �B t1t2 : τt1t2,N
T-App

An important property of the type derivation tree constructed above is that every
node of the derivation tree of Πt,N is labeled by ΓC �B s : τs,N ′ , where s is a
subterm of t and occurs in a head position of N ′.
Now, suppose F : θ ∈ ΓC and R(F ) = λx1, . . . , xm.s. We need to show ΓC �B

λx1, . . . , xm.s : θ. By the construction of ΓC , it must be the case that θ = τF,N

for some node N of C. The node N must be labeled with [F t1 · · · tm, q], and have
a single outgoing edge to a node N ′, labeled with [[t1/x1, . . . , tm/xm]s, q]. By the
construction, τF,N must be:∧

{τt1,N1 | N1 ∈ S1} → · · · →
∧

{τtm,Nm | Nm ∈ Sm} → q,

where Si is the set of nodes where ti occurs in a head position.
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Let S′
i be the set of nodes Ni in Si such that ΓC �B ti : τti,Ni occurs in the

derivation of Π[t1/x1,...,tm/xm]s,N ′ . From the derivation tree Π[t1/x1,...,tm/xm]s,N ′ , we
obtain a derivation for:

ΓC ∪ {xi : τti,Ni | Ni ∈ S′
i} �B s : q.

Since S′
i ⊆ Si, we get

ΓC ∪ {xi : τti,Ni | Ni ∈ Si} �B s : q

by weakening (Lemma 4.2). By using T-Abs, we obtain

ΓC �B λx1, . . . , xm.s : θ

as required. �

C. EXAMPLES USED IN EXPERIMENTS

This section explains other examples used in the experiments in Section 6.
TwofilesExn is based on the following program, which copies a read-only file to

a write-only file, detecting the end of a file by an exception:

let rec f(x,y) = read(x);write(y);f(x,y) in

let x = open_in "foo" in

let y = open_out "bar" in

try f(x,y) with end_of_file -> close(x); close(y)

It has been reduced to a recursion scheme, by combining the reduction discussed in
Section 3.2 with the representation of exception handlers as additional continuation
arguments (recall Section 3.3.3). The rules for f and read are as follows.

S → NewR C1

C1 x→ NewW (C2 x)
C2 x y → F x y (Close x (Close y end)) end
F x y ex k → Read x ex (Write y ex (F x y ex k))
Read x ex k → ReadWithoutExn x (br ex k)
ReadWithoutExn x k → x read k
NewR k → br (k K) (νqread only (k I))
· · ·

Here, the variable ex in the definition of F is bound to the continuation expressing
an exception handler. In the rule for Read, the part “br ex k” captures the fact
that Read may or may not raise an exception.
The recursion scheme Lock1 has been obtained from the following code:

let f b x = if b then lock(x) else () in

let g b x = if b then unlock(x) else () in

let b = _ in let x = newlock() in

(f b x; g b x)

Here, the resource usage specification is that every lock should be used according
to (lock · unlock)∗. Booleans have been expressed by using Church encoding.
Order5-2 is a recursion scheme obtained from the following program.
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let rec gencon gen use =

if _ then ()

else let x = gen() in

gencon gen use; use x in

let f x = if _ then close x else read x; f x in

let genr () = open_in "foo" in

gencon genr f

In the recursion schemes, gencon (at which recursion occurs) has order 5.
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