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Abstract

There are two ways to write a program for manipulating tree-structured data such as XML
documents: One is to write a tree-processing program focusing on the logical structure of
the data and the other is to write a stream-processing program focusing on the physical
structure. While tree-processing programs are easier to write than stream-processing pro-
grams, tree-processing programs are less efficient in memory usage since they use trees as
intermediate data. Our aim is to establish a method for automatically translating a tree-
processing program to a stream-processing one in order to take the best of both worlds.
We first define a programming language for processing binary trees and a type system
based on ordered linear type, and show that every well-typed program can be translated
to an equivalent stream-processing program. We then extend the language and the type
system to deal with XML documents. We have implemented an XML stream processor
generator based on our algorithm, and obtained promising experimental results.

1 Introduction

There are two ways to write a program for manipulating tree-structured data such
as XML documents (Bray et al., 2000): One is to write a tree-processing pro-
gram focusing on the logical structure of the data and the other is to write a
stream-processing program focusing on the physical structure. For example, as for
XML processing, DOM (Document Object Model) API and programming language
XDuce (Hosoya & Pierce, 2003) are used for tree-processing, while SAX (Simple
API for XML) is for stream-processing.

Figure 1 illustrates what tree-processing and stream-processing programs look
like for the case of binary trees. The tree-processing program f takes a binary

∗ This article is a revised and extended version of the paper presented in The Second ASIAN
Symposium on Programming Languages and Systems (APLAS 2004).
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Tree-processing program f :
fix f.λt.(case t of leaf x ⇒ leaf (x + 1) | node x1 x2 ⇒ node (f x1) (f x2))
Stream-processing program g:
fix g.λt.(case read() of leaf ⇒ let x = read() in write(leaf);write(x + 1)

| node ⇒ write(node); g (); g ())

Fig. 1. Tree-processing and stream-processing.

tree t as an input, and performs case analysis on t. If t is a leaf, it increments
the value of the leaf. If t is a branch, f recursively processes the left and right
subtrees. If actual tree data are represented as a sequence of tokens (as is often
the case for XML documents), f must be combined with the function parse for
parsing the input sequence, and the function unparse for unparsing the result tree
into the output sequence, as shown in the figure. The stream-processing program
g directly reads/writes data from/to streams. It reads an element from the input
stream using the read primitive and performs case-analysis on the element. If the
input is the leaf tag, g outputs leaf to the output stream with the write primitive,
reads another element, adds 1 to it, and outputs it. If the input is the node tag, g

outputs node to the output stream and recursively calls the function g twice with
the argument ().

Both of the approaches explained above have advantages and disadvantages. Tree-
processing programs are written based on the logical structure of data, so that
it is easier to write, read, and manipulate (e.g., apply program transformation
like deforestation (Wadler, 1988)) than stream-processing programs. On the other
hand, stream-processing programs have their own advantage that intermediate tree
structures are not needed, so that they often run faster than the corresponding tree-
processing programs if input/output trees are physically represented as streams, as
in the case of XML.

The goal of the present paper is to achieve the best of both approaches, by allow-
ing a programmer to write a tree-processing program and automatically translating
the program to an equivalent stream-processing program. To clarify the essence, we
first use a λ-calculus with primitives on binary trees, and show how the translation
works. We then extend the language for XML processing.

The key observation is that: (1) stream processing is most effective when trees are
traversed and constructed from left to right in the depth-first preorder and (2) in that
case, we can obtain from the tree-processing program the corresponding stream-



Translation of Tree-processing Programs into Stream-processing Programs 3

Tree-processing program:
fix f.λt.(case t of leaf x ⇒ leaf x | node x1 x2 ⇒ node (f x2) (f x1))

Fig. 2. A program that swaps children of every node.

processing program simply by replacing case analysis on an input tree with case
analysis on input tokens, and replacing tree constructions with stream outputs. In
fact, the stream-processing program in Figure 1, which satisfies the above criterion,
is obtained from the tree-processing program in that way.

In order to check that a program satisfies the criterion, we use the idea of or-
dered linear types (Petersen et al., 2003; Polakow, 2001). Ordered linear types,
which are linear types (Baker, 1992; N.Turner et al., 1995) extended with order
constraints, describe not only how often but also in which order data is used. Our
type system designed based on the ordered linear types guarantees that a well-typed
program traverses and constructs trees from left to right and in the depth-first pre-
order. Thus, every well-typed program can be translated to an equivalent stream-
processing program. The tree-processing program f in Figure 1 is well-typed in our
type system, so that it can automatically be translated to the stream-processing
program g. On the other hand, the program in Figure 2 is not well-typed in our
type system since it accesses the right sub-tree of an input before accessing the left
sub-tree. In fact, we would obtain a wrong stream-processing program if we simply
applied the above-mentioned translation to the program in Figure 2.

Our contributions can be summarized as follows.

• Formalization of the type system and the translation algorithm mentioned
above for an extension of λ-calculus with binary trees.

• Proof of correctness of the translation algorithm.
• Extension of the type system and the translation algorithm for XML docu-

ments.
• Implementation and experiments. We implemented the type checking algo-

rithm and the translation algorithm for XML documents. With that imple-
mentation, we performed experiments using four micro-benchmarks in XSLT-
Mark (DataPower Technology, 2001) and one our own micro-benchmark.

The rest of the paper is organized as follows: To clarify the essence, we first fo-
cus on a minimal calculus which deals with only binary trees in Sections 2–4. In
Section 2, we define the source language and the target language of the transla-
tion. We define an ordered linear type system of the source language in Section 3.
As mentioned above, the type system guarantees that every node of input trees
is accessed exactly once in left-to-right depth-first preorder. Section 4 presents a
translation algorithm, proves its correctness and discusses the improvement gained
by the translation. The minimal caclulus is not so expressive; especially, one can
only write a program that does not store input/output trees on memory at all. Sec-
tion 5 describes an extension that allows selective buffering of input/output trees.
Section 6 shows how our framework can be applied to XML documents. Section 7
reports implementation and experiment. After discussing related work in Section 8,
we conclude in Section 9.
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Terms, values and evaluation contexts:

M (terms) ::= i | λx.M | x | M1 M2 | M1 + M2 | fix f.M
| leaf M | node M1 M2

| (case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2)
V (tree values) ::= leaf i | node V1 V2

W (values) ::= i | λx.M | V
Es (evaluation contexts) ::= [ ] | Es M | (λx.M) Es | Es + M | i + Es

| leaf Es | node Es M | node V Es

| (case Es of leaf x ⇒ M1 | node x1 x2 ⇒ M2)

Reduction rules:

Es[i1 + i2] → Es[plus(i1, i2)] (Es-Plus)

Es[(λx.M)W ] → Es[[W/x]M ] (Es-App)

Es[fix f.M ] → Es[[fix f.M/f ]M ] (Es-Fix)

Es[case leaf i of leaf x ⇒ M1 | node x1 x2 ⇒ M2] → Es[[i/x]M1] (Es-Case1)

Es[case node V1 V2 of leaf x ⇒ M1 | node x1 x2 ⇒ M2] →
Es[[V1/x1, V2/x2]M2]

(Es-Case2)

Fig. 3. The syntax, evaluation context and reduction rules of the source language.
plus(i1, i2) is the sum of i1 and i2.

2 Language Definitions

We define the source and target languages in this section. The source language is a
call-by-value functional language with primitives for manipulating binary trees. The
target language is a call-by-value, impure functional language that uses imperative
streams for input and output.

2.1 Source Language

The syntax and operational semantics of the source language is summarized in
Figure 3.

The meta-variables x and i range over the sets of variables and integers respec-
tively. The meta-variable W ranges over the set of values, which consists of integers
i, lambda-abstractions λx.M , and binary-trees V . A binary tree V is either a leaf
labeled with an integer or a tree with two children. (case M of leaf x ⇒ M1 |
node x1 x2 ⇒ M2) performs case analysis on a tree. If M is a leaf, x is bound
to its label and M1 is evaluated. Otherwise, x1 and x2 are bound to the left and
right children respectively and M2 is evaluated. fix f.M is a recursive function that
satisfies f = M . Bound and free variables are defined as usual. We assume that
α-conversion is implicitly applied so that bound variables are always different from
each other and free variables.

We write let x = M1 in M2 for (λx.M2) M1. Especially, if M2 contains no free
occurrence of x, we write M1; M2 for it.
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Terms, values and evaluation contexts:

e (terms) ::= v | x | e1 e2 | e1 + e2 | fix f.e
| read e | write e
| (case e of leaf ⇒ e1 | node ⇒ e2)

v (values) ::= i | leaf | node | λx.e | ()
Et (evaluation contexts) ::= [ ] | Et e | (λx.e) Et | Et + e | i + Et

| read Et | write Et

| (case Et of leaf ⇒ e1 | node ⇒ e2)

Reduction rules:

(Et[v1 + v2], Si, So) → (Et[plus(v1, v2)], Si, So) (Et-Plus)

(Et[(λx.M)v], Si, So) → (Et[[v/x]M ], Si, So) (Et-App)

(Et[fix f.e], Si, So) → (Et[[fix f.e/f ]e], Si, So) (Et-Fix)

(Et[read()], v; Si, So) → (Et[v], Si, So) (Et-Read)

(Et[write v], Si, So) → (Et[()], Si, So; v) (Et-Write)

(when v is an integer, leaf or node)

(Et[case leaf of leaf ⇒ e1 | node ⇒ e2], Si, So) → (Et[e1], Si, So) (Et-Case1)

(Et[case node of leaf ⇒ e1 | node ⇒ e2], Si, So) → (Et[e2], Si, So) (Et-Case2)

Fig. 4. The reduction rules of the target language.

A source program:
fix sumtree.λt.(case t of leaf x ⇒ x | node x1 x2 ⇒ (sumtree x1) + (sumtree x2))
A target program:
fix sumtree.λt.(case read() of leaf ⇒ read() | node ⇒ sumtree () + sumtree ())

Fig. 5. Programs that calculate the sum of leaf elements of a binary tree.

2.2 Target Language

The syntax and operational semantics of the target language is summarized in
Figure 4. A stream, represented by the meta variable S, is a sequence consisting of
leaf , node and integers. We write ∅ for the empty sequence and write S1; S2 for
the concatenation of the sequences S1 and S2.

read is a primitive for reading a token (leaf , node, or an integer) from the input
stream. write is a primitive for writing a value to the output stream. The term
(case e of leaf ⇒ e1 | node ⇒ e2) performs a case analysis on the value of e. If e

evaluates to leaf , e1 is evaluated and if e evaluates to node, e2 is evaluated. fix f.e

is a recursive function that satisfies f = e. Bound and free variables are defined as
usual.

We write let x = e1 in e2 for (λx.e2) e1. Especially, if e2 does not contain x as
a free variable, we write e1; e2 for it.

Figure 5 shows programs that take a tree as an input and calculate the sum of
leaf elements. The source program takes a tree t as an argument of the function,
and performs a case analysis on t. If t is a leaf, the program binds x to the element
and returns it. If t is a branch node, the program recursively applies f to the left
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and right children and returns the sum of the results. The target program reads
a tree (as a sequence of tokens) from the input stream, performs a case analysis
on tokens, and returns the sum of leaf elements. Here, we assume that the input
stream represents a valid tree. If the input stream is in a wrong format (e.g., when
the stream is node; 1; 2), the execution gets stuck.

3 Type System

In this section, we present a type system of the source language, which guarantees
that a well-typed program reads every node of an input tree exactly once from
left to right in the left-to-right depth-first preorder. Thanks to this guarantee, any
well-typed program can be translated to an equivalent, stream-processing program
without changing the structure of the program, as shown in the next section. To
enforce the correct access order on input trees, we use ordered linear types (Polakow,
2001; Petersen et al., 2003).

3.1 Type and Type Environment

Definition 3.1 (Type)
The set of types, ranged over by τ , is defined by:

τ (type) ::= Int | Treed | τ1 → τ2

d (mode) ::= − | +.

Int is the type of integers. For a technical reason, we distinguish between input
trees and output trees by types. We write Tree− for the type of input trees, and
write Tree+ for the type of output trees. τ1 → τ2 is the type of functions from τ1

to τ2.
We introduce two kinds of type environments for our type system: ordered linear

type environments and (non-ordered) type environments.

Definition 3.2 (Ordered Linear Type Environment)
An ordered linear type environment, ranged over by the meta-variable ∆, is a se-
quence of the form x1 : Tree−, . . . , xn : Tree−, where x1, . . . , xn are different from
each other. We write ∆1, ∆2 for the concatenation of ∆1 and ∆2.

An ordered linear type environment x1 :Tree−, . . . , xn :Tree− specifies not only
that x1, . . . , xn are bound to trees, but also that each of x1, . . . , xn must be accessed
exactly once in this order and that each of the trees bound to x1, . . . , xn must be
accessed in the left-to-right, depth-first preorder.

Definition 3.3 (Non-Ordered Type Environment)
A (non-ordered) type environment, ranged over by a meta variable Γ, is a set of
the form {x1 : τ1, . . . , xn : τn} where x1, . . . , xn are different from each other and
{τ1, . . . , τn} does not contain Treed.

Note that a non-ordered type environment must not contain variables of tree
types. Tree− is excluded since input trees must be accessed in the specific order.
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Tree+ is excluded in order to forbid output trees from being bound to variables. For
example, we will exclude a program like let x1 = t1 in let x2 = t2 in node x1 x2

when t1 and t2 have type Tree+. This restriction is convenient for ensuring that
trees are constructed in the specific (from left to right, and in the depth-first pre-)
order. Note that a non-ordered type environment can contain types that use tree
types, like Tree− → Tree+. See the first example in Section 3.2.

3.2 Type Judgment

A type judgement is of the form Γ | ∆ ` M : τ , where Γ is a non-ordered type
environment, ∆ is an ordered linear type environment and Γ and ∆ do not share
the same variables. The judgment means “If M evaluates to a value under an
environment described by Γ and ∆, the value has type τ and the variables in ∆ are
accessed in the order specified by ∆.” For example, if Γ = {f : Tree− → Tree+}
and ∆ = x1 : Tree−, x2 : Tree−,

Γ | ∆ ` node (f x1) (f x2) : Tree+

holds, while

Γ | ∆ ` node (f x2) (f x1) : Tree+

does not. The latter program violates the restriction specified by ∆ that x1 and x2

must be accessed in this order.
Γ | ∆ ` M : τ is the least relation that is closed under the rules in Figure 6. Note

that in the typing rules, there is an implicit assumption that the conclustion must
be a well-formed judgment in order for a rule to be applied. Therefore, in T-App,
T-Plus and T-Node, it is implicitly assumed that the variables in ∆1 and ∆2 are
disjoint.

T-Var1, T-Var2 and T-Int are the rules for variables and integer constants.
As in ordinary linear type systems, these rules prohibit variables that do not occur
in a term from occurring in the ordered linear type environment. (In other words,
weakening is not allowed on an ordered linear type environment.) That restriction
is necessary to guarantee that each variable in an ordered linear type environment
is accessed exactly once.

T-Abs1 and T-Abs2 are rules for lambda abstraction. Note that the ordered
type environments of the conclusions of these rules must be empty. This restriction
prevents input trees from being stored in function closures. That makes it easy to
enforce the access order on input trees. For example, without this restriction, the
function

λt.let g = λf.(f t) in (g sumtree) + (g sumtree)

would be well-typed where sumtree is the function given in Figure 5. However, when
a tree is passed to this function, its nodes are accessed twice because the function
g is called twice. The program above is actually rejected by our type system since
the closure λf.(f t) is not well-typed due to the restriction of T-Abs2.1

1 We can relax the restriction by controlling usage of not only trees but also functions, as in
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Γ | x : Tree− ` x : Tree− (T-Var1)

Γ, x : τ | ∅ ` x : τ (T-Var2)

Γ | ∅ ` i : Int (T-Int)

Γ | x : Tree− ` M : τ

Γ | ∅ ` λx.M : Tree− → τ
(T-Abs1)

Γ, x : τ1 | ∅ ` M : τ2

Γ | ∅ ` λx.M : τ1 → τ2

(T-Abs2)

Γ | ∆1 ` M1 : τ2 → τ1 Γ | ∆2 ` M2 : τ2

Γ | ∆1, ∆2 ` M1M2 : τ1

(T-App)

Γ | ∆1 ` M1 : Int Γ | ∆2 ` M2 : Int

Γ | ∆1, ∆2 ` M1 + M2 : Int
(T-Plus)

Γ, f : τ1 → τ2 | ∅ ` M : τ1 → τ2

Γ | ∅ ` fix f.M : τ1 → τ2

(T-Fix)

Γ | ∆ ` M : Int

Γ | ∆ ` leaf M : Tree+ (T-Leaf)

Γ | ∆1 ` M1 : Tree+ Γ | ∆2 ` M2 : Tree+

Γ | ∆1, ∆2 ` node M1 M2 : Tree+ (T-Node)

Γ | ∆1 ` M : Tree− Γ, x : Int | ∆2 ` M1 : τ
Γ | x1 : Tree−, x2 : Tree−, ∆2 ` M2 : τ

Γ | ∆1, ∆2 ` case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2 : τ
(T-Case)

Fig. 6. Typing Rules.

T-App is the rule for function application. The ordered linear type environments
of M1 and M2, ∆1 and ∆2 respectively, are concatenated in this order because
when M1 M2 is evaluated, (1) M1 is first evaluated, (2) M2 is then evaluated, and
(3) M1 is finally applied to M2. In the first step, the variables in ∆1 are accessed
in the order specified by ∆1. In the second and third steps, the variables in ∆2

are accessed in the order specified by ∆2. On the other hand, because there is no
restriction on usage of the variables in a non-ordered type environment, the same
type environment (Γ) is used for both subterms.

T-Leaf and T-Node are rules for tree construction. We concatenate the ordered
type environments of M1 and M2, ∆1 and ∆2, in this order as we did in T-App.
Also as in the rule T-App, ∆1 and ∆2 cannot share the same variables in T-Node.

T-Case is the rule for case expressions. If M matches node x1 x2, subtrees x1

and x2 have to be accessed in this order after that. This restriction is expressed by
x1 : Tree−, x2 : Tree−, ∆2, the ordered linear type environment of M2.

T-Fix is the rule for recursion. Note that the ordered type environment must be
empty as in T-Abs2.

The program in Figure 1 is typed as shown in Figure 7. On the other hand, the

the resource usage analysis (Igarashi & Kobayashi, 2002). The resulting type system would,
however, become very complex.
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Γ | t : Tree− ` t : Tree−

.

.

.

Γ′ | ∅ ` M : Tree+

.

.

.

Γ | ∆ ` node (f x1) (f x2) : Tree+

Γ | t : Tree− ` case t of leaf x ⇒ M | node x1 x2 ⇒ node (f x1) (f x2) : Tree+

Γ | ∅ ` λt.case t of leaf x ⇒ M | node x1 x2 ⇒ node (f x1) (f x2) : Tree− → Tree+

∅ | ∅ ` fix f.λt.case t of leaf x ⇒ M | node x1 x2 ⇒ node (f x1) (f x2) : Tree− → Tree+

Fig. 7. An example of typing derivation. Γ = {f : Tree− → Tree+}, M = leaf (x + 1),
Γ′ = {f : Tree− → Tree+, x : Int} and ∆ = x1 : Tree−, x2 : Tree−.

program in Figure 2 is ill-typed: Γ | x1 : Tree−, x2 : Tree− ` node (f x2) (f x1) :
Tree+ must hold for the program to be well-typed, but it cannot be derived by
using T-Node.

3.3 Examples of Programs

Figure 8 shows more examples of source programs. The first and second programs
(or the catamorphism (Meijer et al., 1991)) apply the same operation on every node
of the input tree. (The return value of the function tree fold cannot, however, be a
tree because a return value of tree fold is passed to g. Note that functions cannot
take a value of type Tree+ as argument because binding variables to Tree+ values
is forbidden in our type system as we mentioned in Section 3.1.) The third program
returns a tree obtained by incrementing all the leaf values of odd depth by one. In
this way, one can also write functions that process nodes in a non-uniform manner.
The fourth program is an example of a well-typed program in which variables of
type Tree− (y1, y2 and x2) are not bound to sibling nodes in the input tree.

The fifth program in Figure 8 takes a tree as an input and returns the right
subtree. Due to the restriction imposed by the type system, the program uses sub-
functions copy tree and skip tree for explicitly copying and skipping trees.2 (See
Section 9 for a method for automatically inserting those functions.)

The last program in Figure 8 takes a tree as an input, and returns a tree consisting
of a copy of the input tree and the number of leaves of the input. Here, we assume
that the source language has been extended with ML-style reference cells. The
type system can be easily extended: The only restriction is that input/output trees
cannot be stored in reference cells.

Remark 3.1
The reader may think that our type system is too restrictive. The following two
functions, which are obtained by modifying the first and third programs in Figure 8,

2 Due to the restriction that lambda abstractions cannot contain variables of type Treed, we
need to introduce let expression as a primitive and extend typing rules with the following rule:

Γ | ∆1 ` M1 : τ ′ Γ ∪ {x : τ ′} | ∆2 ` M2 : τ τ ′ 6= Treed

Γ | ∆1, ∆2 ` let x = M1 in M2 : τ.
(T-Let)
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fix tree map.λf.λt.
case t of

leaf x ⇒ leaf (f x)
| node x1 x2 ⇒ node (tree map f x1) (tree map f x2))

fix tree fold .λf.λg.λt.
case t of

leaf n ⇒ (f n)
| node t1 t2 ⇒ (g (tree fold f g t1) (tree fold f g t2))

fix inc alt .
let inc alt even =

λt.case t of
Leafx ⇒ leaf x + 1

| node x1 x2 ⇒ node (inc alt x1) (inc alt x2)
in

λt.case t of
Leafx ⇒ leaf x

| node x1 x2 ⇒ node (inc alt even x1) (inc alt even x2)

fix inc left .λt.
case t of

leaf x ⇒ leaf x
| node x1 x2 ⇒

node
(case x1 of leaf y ⇒ leaf (y + 1)

| node y1 y2 ⇒ node (inc left y1) (inc left y2))
(inc left x2)

let copy tree =
fix copy tree.λt.

case t of
leaf x ⇒ leaf x

| node x1 x2 ⇒ node (copy tree x1) (copy tree x2)) in
let skip tree =

fix skip tree.λt.
case t of

leaf x ⇒ 0
| node x1 x2 ⇒ (skip tree x1); (copy tree x2) in

λt.(case t of leaf x ⇒ leaf x | node x1 x2 ⇒ (skip tree x1); (copy tree x2))

let copy and count aux = fix f .λr.λt.
case t of

leaf x ⇒ (r :=!r + 1; leaf x)
| node x1 x2 ⇒ node (f r x1) (f r x2)) in

let copy and count =
λt.let x = ref 0 in node (copy and count aux x t) (leaf !x)

Fig. 8. Program Examples.
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fix f.λt.case t of leaf x ⇒ leaf x | node x1 x2 ⇒ (λt′.node (f t′) (f x2)) x1

Fig. 9. Program that is not typed due to the restriction on closures though the access
order is correct.

highlight the main limitations of our type system.

fix tree map′.λt.λf.

case t of
leaf x ⇒ leaf (f x)

| node x1 x2 ⇒ node (tree map′ x1 f) (tree map′ x2 f))

fix tree map′′.λf.λt.

case t of
leaf x ⇒ leaf (f x)

| node x1 x2 ⇒ let t1 = tree map′′ f x1 in node t1 (tree map′′ f x2))

They are operationally equivalent to the first program in Figure 8, but are not
well-typed. The sub-expression λf.case t of · · · of the first program above violates
the rule T-Abs2, which says that a variable of type Tree− must not occur free in a
function. The sub-expression let t1 = tree map′′ f x1 in · · · violates the condition
that no variable can be bound to a tree of type Tree+.

It would be possible to remove the limitations to some extent by introducing a
more complex type system.3 We do not do so, however. We believe that in many
cases, the above problems can be avoided by adding a simple pre-processing phase;
The first problem can often be avoided by uncurrying transformation, and the
second problem can often be avoided by inlining arguments of the node contructor.
Thus, it is unclear how much benefit is obtained in practice by introducing a more
complex type system. Moreover, the simplicity of the type system is beneficial for
various extensions of the framework, especially for automatic insertion of buffering
primitives discussed elsewhere (Suenaga et al., 2005).

3.4 Type Checking Algorithm

We sketch a type checking algorithm that takes a type-annotated term M and a non-
ordered type environment Γ as input, and outputs τ and ∆ such that Γ | ∆ ` M :τ ,
or reports failure if such τ or ∆ does not exist. Here, by a type-annotated term, we
mean a term whose bound variables are annotated with types.

The rules in Figure 6 can be interpreted as such an algorithm. Consider Γ and M

in each rule as input and ∆ and τ in each rule as output. Then, read each rule from
bottom to top. For example, T-App can be read as follows. For input (Γ,M1 M2),
do the following:

3 For the second problem, we also have to modify the translation algorithm discussed in the next
section.
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A(x) = x
A(i) = i
A(λx.M) = λx.A(M)
A(M1M2) = A(M1) A(M2)
A(M1 + M2) = A(M1) +A(M2)
A(fix f.M) = fix f.A(M)
A(leaf M) = write(leaf);write(A(M))
A(node M1 M2) = write(node);A(M1);A(M2)
A(case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2) =

case A(M); read() of leaf ⇒ let x = read() in A(M1)
| node ⇒ [()/x1, ()/x2]A(M2)

Fig. 10. Translation Algorithm.

1. Execute the algorithm with input (Γ,M1) and obtain the result (∆1, τ2 → τ1).
2. Execute the algorithm with input (Γ,M2) and obtain the result (∆2, τ

′
2).

3. Check (∆1, ∆2) is well-formed (i.e., does not share the same variables) and
τ2 = τ ′2.

4. Output ((∆1,∆2), τ1).

4 Translation Algorithm

Definition 4.1 (Translation Algorithm)
The translation functionA from a source program into the target program is defined
in Figure 10.

A maps a source program to a target program, preserving the structure of the
source program and replacing operations on trees with operations on streams. For
example, the tree construction primitives (leaf M and node M1 M2) are trans-
lated into writing operations to the output stream. The pattern matching primitive
(case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2) is translated into the case analysis
on the head of the input stream. As we have observed in Section 1, this simple
translation works because the type system guarantees that well-typed programs
access an input tree in left-to-right, depth-first preorder.

In the rest of this section, we will prove the correctness of the translation algo-
rithm A and discuss the efficiency of the translated program.

4.1 Correctness of Translation Algorithm

The correctness of the translation algorithm A is stated as follows.

Definition 4.2
A function [[ · ]] from the set of trees to the set of streams is defined by:

[[ leaf i ]] = leaf ; i
[[node V1 V2 ]] = node; [[ V1 ]]; [[ V2 ]] .

Theorem 4.1 (Correctness of Translation)
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If ∅ | ∅ ` M : Tree− → τ and τ is Int or Tree+, the following properties hold for
any tree value V :

(i) M V →∗ i if and only if (A(M)(), [[V ]], ∅) →∗ (i, ∅, ∅)
(ii) M V →∗ V ′ if and only if (A(M)(), [[V ]], ∅) →∗ ((), ∅, [[V ′ ]]) .

The above theorem means that a source program and the corresponding target
program evaluate to the same value. The clause (i) is for the case where the result
is an integer, and (ii) is for the case where the result is a tree.

We give an outline of the proof of Theorem 4.1 below. The basic idea of the
proof is to show a correspondence between reduction steps of a source program and
those of the target program. However, the reduction semantics given in Section 2
is not convenient for showing the correspondence because the target language se-
mantics imposes a restriction on access to stream input/outputs, while the source
language semantics in Section 2 does not. So, we introduce another semantics of
the source language that has the corresponding order restriction on environments
holding input/output trees, and prove: (1) for well-typed programs, the new seman-
tics is equivalent to the one in Section 2 (Corollary 4.3 below), and (2) evaluation
of the source program based on the new semantics agrees with evaluation of the
corresponding target program (Theorem 4.4 below). First, we define the new oper-
ational semantics of the source language. The semantics takes the access order of
input trees into account.

Definition 4.3 (Ordered Environment)
An ordered environment is a sequence of the form x1 7→ V1, . . . , xn 7→ Vn, where
x1, . . . , xn are distinct from each other.

We use a meta-variable δ to represent an ordered environment. Given an ordered
environment x1 7→ V1, . . . , xn 7→ Vn, a program must access variables x1, . . . , xn in
this order.

Definition 4.4 (New Reduction Semantics)
The reduction relation (M, δ) → (M ′, δ′) is the least relation that satisfies the rules
in Figure 11.

The meta-variable U in Figure 11 ranges over the set of variables (bound to tree
values) and non-tree values.

The differences between the new reduction semantics above and the original one
in Section 2 are: (1) input trees are substituted in the original semantics while they
are held in ordered environments in the new semantics (compare Es-Case2 with
Es2-Case2), and (2) input trees must be accessed in the order specified by δ in
the new semantics (note that variable y that is being referred to must be at the
head of the ordered environment in Es2-Case1 and Es2-Case2). Thus, evaluation
based on the new semantics can differ from the one in Section 2 only when the
latter one succeeds while the former one gets stuck due to the restriction on access
to input trees. As the following theorem (Theorem 4.2) states, that cannot happen
if the program is well-typed, so that both semantics are equivalent for well-typed
programs (Corollary 4.3).
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U ::= x | i | λx.M

(Es[i1 + i2], δ) → (Es[plus(i1, i2)], δ) (Es2-Plus)

(Es[(λx.M)U ], δ) → (Es[[U/x]M ], δ) (Es2-App)

(Es[case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2], (y 7→ leaf i, δ)) →
(Es[[i/x]M1], δ)

(Es2-Case1)

(Es[case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2], (y 7→ node V1 V2, δ)) →
(Es[M2], (x1 7→ V1, x2 7→ V2, δ))

(Es2-Case2)

(Es[fix f.M ], δ) → (Es[[fix f.M/f ]M ], δ) (Es2-Fix)

Fig. 11. The new reduction semantics of the source language.

Definition 4.5
A function 〈〈·〉〉 from the set of ordered environments to the set of ordered linear
type environments is defined by:

〈〈∅〉〉 = ∅
〈〈x 7→ V, δ〉〉 = x : Tree−, 〈〈δ〉〉

Theorem 4.2
Suppose ∅ | 〈〈δ〉〉 ` M : τ . Then the following conditions hold.

• M is a value or a variable, or (M, δ) → (M ′, δ′) holds for some M ′ and δ′.
• If (M, δ) → (M ′, δ′) holds, then ∅ | 〈〈δ′〉〉 ` M ′ : τ .

Proof
See Appendix A.

Corollary 4.3
If ∅ | ∅ ` M : Tree− → τ and if τ ∈ {Int,Tree+}, MV →∗ W if and only if
(Mx, x 7→ V ) →∗ (W, ∅) for any tree value V .

Proof
See Appendix B.

The following theorem states that the evaluation of a source program under the
new rules agrees with the evaluation of the target program.

Theorem 4.4
If ∅ | ∅ ` M : Tree− → τ and τ ∈ {Int,Tree+} holds, the following statements
hold for any tree value V .

(i) (Mx, x 7→ V ) →∗ (i, ∅) holds if and only if
(A(M)(), [[ V ]], ∅) →∗ (i, ∅, ∅))

(ii) If (Mx, x 7→ V ) →∗ (V ′, ∅) holds if and only if
(A(M)(), [[ V ]], ∅) →∗ ((), ∅, [[V ′ ]]))

We hereafter give an outline of the proof of Theorem 4.4. Figure 13 illustrates
the idea of the proof (for the case where the result is a tree). The relation ∼ (de-
fined later in Definition 4.7) in the diagram expresses the correspondence between
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an evaluation state of a source program (M, δ) and a state of a target program
(e, Si, So). We shall show that the target program A(M) can always be reduced
to a state corresponding to the inital state of the source program M (Lemma 4.5
below) and that reductions and the correspondence relation commute (Lemma 4.6).
Those imply that the whole diagram in Figure 13 commutes, i.e., the second state-
ment of Theorem 4.4 holds.

To define the correspondence (M, δ) ∼ (e, Si, So) between states, we use the
following function 〈·〉, which maps an ordered environment to the corresponding
stream.

Definition 4.6
A function 〈·〉 from the set of ordered environments to the set of streams is defined
by:

〈∅〉 = ∅
〈x 7→ V, δ〉 = [[V ]]; 〈δ〉

Definition 4.7 (Correspondence between States)
The relations (M, δ) ∼ (e, Si, So) and M ∼γ (e, So) are the least relations closed
under the rules in Figure 12.

In the figure, the meta-variable γ denotes a set of variables. FV(M) is the set
of free variables in M . Aγ(M) is the term obtained from A(M) by replacing every
occurrence of variables in γ with (). The meta-variable I represents the term that
is being reduced. Note that any term M can be written as Es[I] if it is reducible.

In the relation (M, δ) ∼ (e, Si, So), e represents the rest of computation, Si is
the input stream, and So is the already generated output streams. For example,
(node(leaf 1)(leaf (2 + 3)), ∅) corresponds to (2 + 3, ∅,node; leaf ; 1; leaf).

We explain some of the rules in Figure 12 below.

• C-Tree: A source program V represents a state where the tree V has been
constructed. Thus, it corresponds to ((), [[V ]]), where there is nothing to be
computed and V has been written to the output stream.

• C-Node1: A source program node Es[I] M represents a state where the left
subtree is being computed. Thus, the rest computation of the target program
is (e;Aγ(M)) where e is the rest computation in Es[I], and Aγ(M) represents
the computation for constructing the right subtree. The corresponding output
stream is node;So because node represents the root of the tree being con-
structed, and So represents the part of the left subtree that has been already
constructed.

Lemmas 4.5 and 4.6 below imply that the whole diagram in Figure 12 commutes,
which completes the proof of Theorem 4.4.

Lemma 4.5
Suppose ∅ | 〈〈δ〉〉 ` M : τ . Then, there exist e and So that satisfy

• (M, δ) ∼ (e, 〈δ〉, So)
• (Aγ(M), 〈δ〉, ∅) →∗ (e, 〈δ〉, So)
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I ::= (λx.M)U | i1 + i2 | (case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2) | fix f.M

M ∼FV (M) (e, So) Si = 〈δ〉
(M, δ) ∼ (e, Si, So)

U ∼γ (Aγ(U), ∅) (C-Value)

V ∼γ ((), [[ V ]])
(C-Tree)

I ∼γ (Aγ(I), ∅) (C-Inst)

Es[I] ∼γ (e, So)

Es[I] M ∼γ (e Aγ(M), So)
(C-App1)

Es[I] ∼γ (e, So)

(λx.M) Es[I] ∼γ ((λx.Aγ(M)) e, So)
(C-App2)

Es[I] ∼γ (e, So)

Es[I] + M ∼γ (e +Aγ(M), So)
(C-Plus1)

Es[I] ∼γ (e, So)

i + Es[I] ∼γ (i + e, So)
(C-Plus2)

Es[I] ∼γ (e, So)

leaf Es[I] ∼γ (write(e), leaf ; So)
(C-Leaf)

Es[I] ∼γ (e, So)

node Es[I] M ∼γ (e;Aγ(M),node; So)
(C-Node1)

Es[I] ∼γ (e, So)

node V Es[I] ∼γ (e,node; [[ V ]]; So)
(C-Node2)

Es[I] ∼γ (e, So)

case Es[I] of leaf x ⇒ M1 | node x1 x2 ⇒ M2 ∼γ

(
case e; read () of leaf ⇒ let x = read () in Aγ(M1)

node ⇒ [()/x1, ()/x2]Aγ(M2)
, So)

(C-Case)

Fig. 12. Correspondence between run-time states of source and target programs.

Proof
See Appendix C.

Lemma 4.6
If ∅ | 〈〈δ〉〉 ` M : τ and (M, δ) ∼ (e, Si, So), the following conditions hold:

• Si = 〈δ〉.
• If (M, δ) → (M ′, δ′), then there exist e′ and S′i and S′o that satisfy

(e, 〈δ〉, So) →+ (e′, 〈δ′〉, S′o) and (M ′, δ′) ∼ (e′, S′i, S
′
o).

• If (e, 〈δ〉, So) is reducible,there exist M ′ and δ′ that satisfy (M, δ) → (M ′, δ′).

Proof
The first condition is obvious. For the proof of the other conditions, see Appendix D.
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(A(M), [[ V ]], ∅) →∗ (e, [[ V ]], So) →+(e′, S′i, S
′
o) →+ · · · →+ ((), ∅, [[ V ′ ]])

(Mx, x 7→ V ) → (M ′, δ′) → · · · → (V ′, ∅)'

?Lemma 4.5 Lemma 4.6

Fig. 13. Evaluation of a source and the target program.

4.2 Efficiency of Translated Programs

Let M be a source program of type Tree− → Tree+. We argue below that the
target program A(M) runs more efficiently than the source program unparse ◦M ◦
parse, where parse is a function that parses the input stream and returns a binary
tree, and unparse is a function that takes a binary tree as an input and writes it to
the output stream. Note that the fact that the target program is a stream-processing
program does not necessarily imply that it is more efficient than the source program:
In fact, if the translation A were defined by A(M) = unparse◦M ◦parse, obviously
there would be no improvement.

The target program being more efficient follows from the fact that the transla-
tion function A preserves the structure of the source program, with only replacing
tree constructions with stream outputs, and case analyses on trees with stream
inputs and case analyses on input tokens. More precisely, by inspecting the proof
of soundness of the translation, we can observe:4

• When a closure is allocated in the execution of M (so that the heap space
is consumed), the corresponding closure is allocated in the corresponding
reduction step of A(M), and vice versa.

• When a function is called in the execution of M (so that the stack space is con-
sumed), the corresponding function is called in the corresponding reduction
step of A(M), and vice versa.

• When a case analysis on an input tree is performed in the execution of M ,
a token is read from the input stream and a case analysis on the token is
performed in the corresponding reduction step of A(M).

• When a tree is constructed in the execution of M , the corresponding sequence
of tokens is written on the output stream in the corresponding reduction steps
of A(M).

By the observation above, we can conclude:

• The memory space allocated by A(M) is less than the one allocated by
unparse ◦ M ◦ parse, by the amount of the space for storing the interme-
diate trees output by parse and M (except for an implementation-dependent
constant factor).

• The number of computation steps for running A(M) is the same as the one
for running unparse◦M ◦parse (up to an implementation-dependent constant
factor).

4 To completely formalize these observations, we need to define another operational semantics
that makes the heap and the stack explicit.
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M ::= i | λx.M | x | M1 M2 | M1 + M2

| leaf M | node M1 M2 | mleaf M | mnode M1 M2

| (case M of leaf x ⇒ M1 | node x1 x2 ⇒ M2)
| (mcase M of mleaf x ⇒ M1 | mnode x1 x2 ⇒ M2)
| fix f.M

e ::= v | x | e1 e2 | e1 + e2

| read e | write e
| mleaf M | mnode M1 M2

| (mcase M of mleaf x ⇒ M1 | mnode x1 x2 ⇒ M2)
| (case e of leaf ⇒ e1 | node ⇒ e2)
| fix f.e

Γ | ∆ ` M : Int

Γ | ∆ ` mleaf M : Treeω (T-MLeaf)

Γ | ∆1 ` M1 : Treeω Γ | ∆2 ` M2 : Treeω

Γ | ∆1, ∆2 ` mnode M1 M2 : Treeω (T-MNode)

Γ | ∆1 ` M : Treeω Γ, x : Int | ∆2 ` M1 : τ
Γ, x1 : Treeω, x2 : Treeω | ∆2 ` M2 : τ

Γ | ∆1, ∆2 ` mcase M of mleaf x ⇒ M1 | mnode x1 x2 ⇒ M2 : τ
(T-MCase)

A(mleaf M) = mleaf A(M)
A(mnode M1 M2) = mnode A(M1) A(M2)
A(mcase M of mleaf x ⇒ M1 | mnode x1 x2 ⇒ M2) =

mcase A(M) of mleaf x ⇒ A(M1) | mnode x1 x2 ⇒ A(M2)

Fig. 14. Extended languages, type system and translation algorithm.

Thus, our translation is effective especially when the space for evaluating M is much
smaller than the space for storing input and output trees.

5 Constructs for Storing Trees on Memory

By adding primitives for constructing and destructing trees on memory, we can
allow programmers to selectively buffer input/output trees at the cost of efficiency
of target programs. Let us extend the syntax of the source and target languages as
follows:

M ::= · · · | mleaf M | mnode M1 M2

| (mcase M of mleaf x ⇒ M1 | mnode x1 x2 ⇒ M2)
e ::= · · · | mleaf e | mnode e1 e2

| (mcase e of mleaf x ⇒ e1 | mnode x1 x2 ⇒ e2) .

Here, mleaf M and mnode M1 M2 are constructors of trees on memory and
mcase · · · is a destructor.

We also add type Treeω, the type of trees stored on memory. The type system
imposes no restriction on access order between variables of type Treeω like type
Int (so Treeω is put in the ordinary type environment, not the ordered linear type
environment). The translation algorithm A simply translates a source program,
preserving the structure:
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fix strm to mem.
λt.case t of leaf x ⇒ mleaf x

| node x1 x2 ⇒ mnode (strm to mem x1) (strm to mem x2)
fix mem to strm.

λt.mcase t of mleaf x ⇒ leaf x
| mnode x1 x2 ⇒ node (mem to strm x1) (mem to strm x2)

Fig. 15. Definition of strm to mem and mem to strm.

let mswap =
fix f.λ t.mcase t of mleaf x ⇒ leaf x

| mnode x1 x2 ⇒ node (f x2) (f x1) in
fix swap deep.λn.λt.

if n = 0 then mswap (strm to mem t)
else

case t of
leaf x ⇒ leaf x

| node x1 x2 ⇒ node (swap deep (n− 1) x1) (swap deep (n− 1) x2)

Fig. 16. A program which swaps children of nodes whose depth is more than n.

A(mleaf M) = mleaf A(M)
A(mnode M1 M2) = mnode A(M1) A(M2)

· · ·
These extensions are summarized in Figure 14.

With these primitives, a function strm to mem, which copies a tree from the
input stream to memory, and mem to strm, which writes a tree on memory to the
output stream, can be defined as shown in Figure 15.

Using the functions above, one can write a program that selectively buffers only a
part of the input tree, while the type system guarantees that the selective buffering
is correctly performed. For example, the program in Figure 16, which swaps children
of nodes whose depth is more than n, only buffers the nodes whose depth is more
than n. In that example, we assume that we have booleans, comparison operators
and if M then M1 else M2 in our source and target language syntax. The typing
rule for if − then− else expressions is as follows:

Γ | ∆1 ` M : bool Γ | ∆2 ` M1 : τ Γ | ∆2 ` M2 : τ

Γ | ∆1, ∆2 ` if M then M1 else M2 : τ.
(T-If)

The proof of Theorem 4.1 can be easily adapted for the extended language.
One drawback of the framework described in this section is that programmers

need to write tree buffering operations. We report elsewhere an algorithm that
automatically inserts strm to mem and mem to strm (Suenaga et al., 2005).

6 Extension for Dealing with XML

We extend our framework to deal with XML documents in this section. Note that
we do not consider schemata for XML in this paper (i.e., XML documents are
considered as untyped labeled unranked trees.) Using schemata in our framework
is left as future work.
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Remove leaf , node and case expressions from the definition of M and add the fol-
lowing constructs.

M ::= . . .
| leaf M | node Ml Ma M
| nil | cons(M1, M2)
| caseElem M of leaf x ⇒ M1 | node(l, attr , tl) ⇒ M2

| caseElem M of nil ⇒ M1 | cons(x, xs) ⇒ M2

Fig. 17. Change to the syntax of the source language to deal with XML documents.

The difference between binary trees and (untyped) XML documents is that the
latter ones (i) are unranked trees and (ii) contain end tags that mark the end of
sequences in the stream format. The first point can be captured as the difference
between the type binarytree and the type xmltree in the following ML-style type
declarations.

type binarytree = Leaf of int | Node of tree * tree;

type xmltree = Leaf of pcdata

| Node of label * attribute * treelist

and treelist = Nil | Cons of xmltree * treelist;

While the type binarytree represents binary trees, xmltree represents unranked
trees. Based on the difference between these types, we can replace the case-construct
of the source language with the following two pattern-matching primitives.

caseElem ... of Leaf x -> ...

| Node(l, attr, tl) -> ...

caseSeq ... of Nil -> ...

| Cons(x, xs) -> ...

The above changes to the syntax are summarized in Figure 6.
We have not incorporated regular expression patterns (Hosoya & Pierce, 2003)

into our framework because type checking regular pattern matching requires doc-
ument type information. This makes our current framework not satisfactory as a
high-level programming language for XML processing. We plan to address that by
designing a translation algorithm from a language with regular pattern matching
into our language.

Typing rules can also be naturally extended. For example, the typing rules for
the leaf and node constructs are:

Γ | ∆ ` M : pcdata

Γ | ∆ ` leaf M : xmltree+

Γ | ∆1 ` Ml : label Γ | ∆2 ` Ma : attribute Γ | ∆3 ` M3 : treelist+

Γ | ∆1, ∆2, ∆3 ` node(Ml,Ma, M)
and the typing rule for the caseSeq construct is:
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Γ | ∆ ` M : pcdata

Γ | ∆ ` leaf M : xmltree+ (T-Leaf)

Γ | ∆1 ` Ml : label Γ | ∆2 ` Ma : attribute Γ | ∆3 ` M3 : treelist+

Γ | ∆1, ∆2, ∆3 ` node(Ml, Ma, M)
(T-Node)

Γ | ∆1 ` M : xmltree Γ, x : pcdata | ∆2 ` M2 : τ
Γ, l : label, attr : attribute | tl : treelist, ∆2 ` M1 : τ

Γ | ∆1, ∆2 ` caseElem M of node(l, attr, tl) ⇒ M1 | leaf(x) ⇒ M2 : τ
(T-CaseElem)

Γ | ∆1 ` tl : treelist
Γ | ∆2 ` M1 : τ Γ | x : xmltree, xl : treelist, ∆2 ` M2 : τ

Γ | ∆1, ∆2 ` caseSeq tl of nil ⇒ M1 | cons(x, xl) ⇒ M2 : τ
(T-CaseSeq)

Fig. 18. Typing rules for XML extension.

A(caseElem M of node(l, attr, tl) ⇒ M1 | leaf(x) ⇒ M2) =
case readtoken() of

start tag(l, attr) ⇒ push(l); [()/tl]A(M1)
| pcdata(x) ⇒ A(M2)
| ⇒ raise IllFormedException (* end tag or end of file *)

A(caseSeq M of nil ⇒ M1 | cons(x, xs) ⇒ M2) =
case peektoken() of

end tag(l) ⇒ let l′ = pop() in
if l = l′ then readtoken();A(M1)
else raise IllFormedException

| ⇒ [()/x, ()/xs]A(M2)

Fig. 19. Definition of A for XML processing constructs.

Γ | ∆1 ` tl : treelist− Γ | ∆2 ` M1 : τ

Γ | x : xmltree−, xl : treelist−, ∆2 ` M2 : τ

Γ | ∆1, ∆2 ` caseSeq tl of nil ⇒ M1 | cons(x, xl) ⇒ M2 : τ.

The restriction on the access order is expressed by x : xmltree−, xl : treelist−, ∆2

as in T-Node. Figure 18 shows the typing rules for newly added constructs.
Figure 19 shows the definition of A for XML processing constructs. readtoken()

reads an element from the input stream where the element is either
start tag(l, attr), end tag(l), pcdata(x) or end of file. The primitive
peektoken() peeks the top of the input stream without deleting the element. Val-
ues of type attribute are stored on memory like values of type pcdata, because
attributes can occur in an arbitrary order (e.g., <a b=’’foo’’ c=’’baa’’> and <a

c=’’baa’’ b=’’foo’’> have the same meaning). Thus, type attribute is put in
the ordinary type environment, not in the ordered linear type environment, in the
rule T-CaseElem.

In target programs, a stack is used to check well-formedness of input documents.
When a start tag is read, the tag is pushed on the stack. When an end tag is read,
it is compared with the tag stored on the top of the stack.
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Note that the pattern nil in the source language is translated to the pattern for
closing tags.

Remark 6.1
The data representation and pattern matching constructs for XML are essentially
the same as those used in general-purpose programming languages that provide no
primitive support for XML processing (except that there is an additional restric-
tion on access order). Programs written with such data representation and pattern
matching are certainly more awkward than those written in XML-centric program-
ming languages (Hosoya & Pierce, 2003; Benzaken et al., 2003), which provide a
number of useful features such as regular expression pattern matching. (For exam-
ple, compare the program in Figure 20 with a program using regular expression
pattern matching.) We, however, believe that writing a program in our language is
still much easier than writing it using a low-level stream processing language (like
the target language of our framework).

Programming can be made much easier by introduction of additional layers of
transformations. For example, we have already implemented a translator that takes
an ordinary XML processing program as an input, and automatically inserts buffer-
ing primitives. so that the output is well-typed in our type system (Suenaga et al.,
2005; Sato, 2007). The result of the transformation is then given as an input of
the transformation described in the present paper and transformed into a stream-
processing program. Thus, the source language discussed in this section actually
serves as an intermediate language of the entire transformation framework. We also
plan to add an additional layer of transformation for compiling regular expression
pattern matching.

7 Implementation and Experiments

We have implemented a translator X-P based on the type system and the translation
algorithm we presented. X-P can deal with both tree buffering in Section 5 and XML
processing in Section 6.

Figure 20 shows a part of a sample X-P program. That program extracts firstname
and lastname fields from input data, by filtering id, street, city, state and zip

fields out. An example of input and the output is shown in Figure 21.
The current implementation of X-P translator adopts ML-like syntax. Here is an

overview of the syntax of X-P language.

• a tree expressed with an XML document

<row sex=’’male’’><firstname>Kohei</firstname>

<lastname>Suenaga</lastname></row>

is written like

<row>@{sex = ‘‘male’’}[

<firstname>@{}[PC ‘‘Kohei’’];

<lastname>@{}[PC ‘‘Suenaga’’]

]
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...

let rec process_row = fun /t/ ->

match t with

/id/::/tl/ -> skip_tree id;

match tl with /firstname/::/tl/ ->

let firstname = get_firstname firstname in

match tl with /lastname/::/tl/ ->

let lastname = get_lastname lastname in

match tl with /street/::/tl/ -> skip_tree street;

match tl with /city/::/tl/ -> skip_tree city;

match tl with /state/::/tl/ -> skip_tree state;

match tl with /zip/::/tl/ -> skip_tree zip;

match tl with [] ->

<row>@{}[

<firstname>@{}[PC firstname];

<lastname>@{}[PC lastname]

]

...

Fig. 20. An X-P program that extracts first name and last names fields from an input
document.

Input: Output:

<table> <table>

<row> <row>

<id>0001</id> <firstname>Al</firstname>

<firstname>Al</firstname> <lastname>Aranow</lastname>

<lastname>Aranow</lastname> </row>

<street>1 Any St.</street> ...

<city>Anytown</city> </table>

<state>AL</state>

<zip>22000</zip>

</row>

...

</table>

Fig. 21. A sample input and the intended output for programs in Figure 20 and
Figure 22.

• case M of nil ⇒ M1 | cons(x, y) ⇒ M2 is written like match M with []

-> M1 | /x/::/y/ -> M2. We mark bound variables of type Tree− with
surrounding slashes. These marks are used in the type checking algorithm
described in Section 3.4.

• In the current implementation, we allow only two patterns for matching lists:
[] and x::y.

Remark 7.1
The program in Figure 20 is unnecessarily involved because of the limited pattern
matching constructs and the need for automatic insertion of the skip_tree instruc-
tions. By using the usual ML-like pattern matching constructs and the translator
for automatic insertion of buffering (recall Remark 6.1), the program in Figure 20
can be actually simplified to:
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let rec _process_row29 = (fun _t30 ->

match _t30;peek_token () with

StartTag(_, _) | Pcdata _ ->

skip_tree (); match ();peek_token () with

StartTag(_, _) | Pcdata _ ->

let _firstname35 = _get_firstname7 () in

match ();peek_token () with

StartTag(_, _) | Pcdata _ ->

let _lastname38 = _get_lastname8 () in

match ();peek_token () with

StartTag(_, _) | Pcdata _ ->

skip_tree (); match ();peek_token () with

StartTag(_, _) | Pcdata _ ->

skip_tree (); match ();peek_token () with

StartTag(_, _) | Pcdata _ ->

skip_tree (); match ();peek_token () with

StartTag(_, _) | Pcdata _ ->

skip_tree (); match ();peek_token () with

EndTag __65 ->

read_token ();

assert (pop ()) = Pcdata(__65);

write (StartTag("row",[]));

write (StartTag("first",[]));

write (Pcdata(_firstname35));

write (EndTag("first"));

write (StartTag("last",[]));

write (Pcdata(_lastname38));

write (EndTag("last"));

write (EndTag("row"))

...

Fig. 22. The result of translation of the program in Figure 20.

let rec process_row = fun /t/ ->

match _::/firstname/::tl with

let firstname = get_firstname firstname in

match tl with /lastname/::_ ->

let lastname = get_lastname lastname in

<row>@{}[

<firstname>@{}[PC firstname];

<lastname>@{}[PC lastname]

]

Figure 22 shows the result of translation. Based on the framework so far, the
system first type-checks the source program and then transforms it into a stream
processing program written in Objective Caml.

We measured the maximum heap size during the execution for four micro-benchmarks
in XSLTMark (DataPower Technology, 2001) (dbonerow, dbtail, avts and stringsort),
one in our own micro-benchmark (evensort), and two in XMark (Schmidt et al.,
2001) (Q1 and Q8). We also measured the execution time of benchmarks Q1 and
Q8.
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<site>

...

<people>

<person id=’’person0’’><name>Kohei Suenaga</name> ... </person>

...

</people>

...

<closed_auctions>

<closed_auction> ... <buyer person=’’person0’’/> ... </closed_auction>

...

</closed_auctions>

</site>

Fig. 23. Sample input of benchmarks Q1 and Q8.

Benchmarks dbonerow, dbtail, avts, stringsort and evensort use XML doc-
uments of the form shown in Figure 21 as input. The following is the description
of those benchmarks.

• dbonerow: Scans the whole input and extracts the row record whose id field
is equal to 0432 in the form of an HTML document.

• dbtail: Scans the whole input and extracts firstname field and lastname

field of each row record (A program presented in part in Figure 20).
• avts: Scans the whole input and converts each row record to an address tag

whose attributes have the information the row record has.
• stringsort: Sorts all the row records in input documents by values of
firstname field.

• evensort: Sorts row records whose id field is an even number by values of
firstname field.

Benchmarks Q1 and Q8 use auction data of the form shown in Figure 23 as input.
The followings are the description of each benchmark.

• Q1: Extracts the name of the person whose ID is person0.
• Q8: Extracts the names of persons and the number of items bought by each

person from the join of people and closed auctions.

For each benchmark, we prepared (1) an OCaml program generated by our im-
plementation from a manually written tree-processing program in our language and
(2) a manually written OCaml tree-processing program. All the OCaml programs
were compiled by ocamlopt 3.08.4. The experiments were performed on Intel(R)
CPU 1.06GHz with 1GB memory. We executed each of dbonerow, dbtail, avts,
stringsort and evensort with 12 input documents each of which contains 10, 50,
100, 250, 500, 750, 1000, 2000, 4000, 6000, 8000 and 10000 records. Benchmarks Q1

and Q8 were executed with 5, 10, 50 and 100 MB documents.
Figure 24 shows the memory consumption of dbonerow, dbtail, avts, stringsort

and evensort. In those graphs, the horizontal axes show the number of row records.
Figure 25 shows the memory consumption of Q1 and Q8. In those graphs, the hori-
zontal axes show the size of input documents. In both figures, the vertical axes are
the maximum heap size during the execution (measured in kilobytes.)
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Fig. 24. Memory consumption of benchmarks dbonerow, dbtail, avts, stringsort and
evensort.
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Fig. 25. Memory consumption of benchmarks Q1 and Q8.

In each benchmark, memory consumption of tree-processing programs is pro-
portional to the number of the size of input. In dbonerow, dbtail, avts and Q1
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Fig. 26. Time consumption of benchmarks Q1 and Q8.

benchmarks, in which all the tree variables have ordered linear type, the heap mem-
ory consumption of stream-processing programs is constant w.r.t. the number of
records. (On the other hand, the stack memory consumption is linear in the depth
of the input document. The input documents used in our experiments, however,
have the constant depth, so that the stack memory consumption is also constant.)
In stringsort benchmark, which requires all the records to be stored on memory
in processing, so that all the tree variables in the program have buffered tree type,
the program consumes as much memory as the tree-processing version does. Bench-
mark evensort requires records with even id field values to be stored on memory.
The memory consumption of the stream-processing version is almost a half of that
of the tree-processing version as expected. In benchmark Q8, which performs a join
operation and hence requires a part of input to be on heap, the memory consump-
tion of the stream-processing program is about 3% of that of tree-processing one.
For example, for 100MB input, memory consumption is 5576KB in the stream-
processing program, while 179232KB in the tree-processing program. Note that we
cannot simply compare this result with that in (Koch & Scherzinger, 2003), because
our tree-processing program is optimized by hand to produce a memory-efficient
stream-processing program,5 while (Koch & Scherzinger, 2003) automatically de-
rives stream-processing programs from XMark queries.

Figure 26 shows the execution time of benchmark Q1 and Q8. In both bench-
marks, the stream-processing program is faster than the tree-processing program.

8 Related Work

Attribute grammars are widely used for specifying XML processing. Nakano and
Nishimura (Nakano & Nishimura, 2001; Nakano, 2004) proposed a method for
translating tree-processing attribute grammars into stream-processing ones by de-
scriptional composition (Ganzinger & Giegerich, 1984) with parsing and unparsing
grammars. Quasi-SSUR condition in (Nakano & Nishimura, 2001) and single use
requirement in (Nakano, 2004), which force attributes of non-terminal symbols to

5 Specifically, we took advantage of the following facts in translating Q8 into our language: (1)
people comes before closed auctions (2) in people tree, only the name and the ID of each
person are needed and thus should be buffered.
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be used at most once, seems to correspond to our linearity restriction on variables
of tree types, but there seems to be no restriction that corresponds to our order
restriction. As a result, their method can deal with programs (written as attribute
grammars) that violate the order restriction of our type system, although in that
case, generated stream-processing programs store parts of trees in memory, so that
the translation may not improve the efficiency. On the other hand, an advantage
of our method is that programs are easier to read and write since one can write
programs as ordinary functional programs except for the restriction imposed by the
type system, rather than as attribute grammars. Another advantage of our method
is that we can deal with source programs that involve side-effects (e.g. programs
that print the value of every leaf) while that seems difficult in their method based
on attribute grammars (since the order is important for side effects).

Nakano and Mu (Nakano & Mu, 2006) proposed a method of deriving a stream-
processing program from a tree-processing program written as a macro forest trans-
ducer (MFT). They fuse parsing and unparsing MFTs with a given tree-processing
program, and derive an equivalent stream-processor. A main difference between
their method and ours seems to be that stream-processors derived in their method
tend to buffer outputs, while those in our method (used with the automatic in-
sertion algorithm of buffering primitives presented in (Suenaga et al., 2005)) tend
to buffer inputs. For example, their method translates a program which reverses
children of every node (a program presented in Figure 2) into a stream-processor
which buffers output, while our framework buffers input and performs computa-
tion on the buffered input. Another difference is that their stream-processors may
perform redundant computation due to their evaluation strategy. For example, con-
sider a program that transform a tree of the form node M (leaf i) into f1 M if i

is an even number and into f2 M if i is an odd number. In order to avoid buffering
the input tree, their stream-processor evaluates both f1 M and f2 M , while ours
buffers M and evaluates either f1 M or f2 M .

The class of well-typed programs in our language seems to be closely related to
the class of L-attributed grammars (Aho et al., 1986). The upper half of Figure 27
shows the general form of L-attributed grammar over binary trees. In the grammar,
syn represents a synthesized attribute and inh represents an inherited attribute.
f1, . . . , f4 are functions that calculate values of attributes. For example, the inher-
ited attribute of N2 is calculated from the inherited attributes of N and N1 and the
synthesized attribute of N1 with the function f2. (Note that N2.inh depends only
on N.inh, N1.syn and N1.inh from the definition of L-attributed grammar.) That
L-attributed grammar can be expressed as a program as shown in the lower half
of Figure 27. If output trees are not used in attributes, the program is well-typed.
Conversely, any program that is well-typed in our language seems to be definable
as an L-attribute grammar. The corresponding attribute grammar may, however,
be awkward, since one has to encode control information into attributes.

Koch and Scherzinger (Koch & Scherzinger, 2003) proposed XML Stream At-
tribute Grammars (XSAGs), which are extended regular tree grammars (Neven,
2005) with several primitives for manipulating the output stream. By limiting
the grammars to L-attributed ones, they ensure that any XSAGs are evaluated
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N → node N1 N2

N1.inh = f1 N.inh; N2.inh = f2 N.inh N1.syn N1.inh
N.syn = f3 N.inh N1.syn N1.inh N2.syn N2.inh

N → leaf i
N.syn = f4 N.inh i

fix f.λinh.λt.case t of
leaf x ⇒ f4 inh x
node x1 x2 ⇒ let N1.inh = f1 inh in

let N1.syn = f N1.inh x1 in
let N2.inh = f2 N.inh N1.syn N1.inh in
let N2.syn = f N2.inh x2 in

f3 N.inh N1.syn N1.inh N2.syn N2.inh

Fig. 27. L-attributed grammar over binary trees and corresponding program.

as stream-processing programs that read the input stream from head to tail with
bounded memory consumption, and thus programmers need not care about the in-
put stream. However, their framework does not ensure that output is well-formed.
We guess well-typed XML processing programs in our framework are at least as
expressive as XSAGs that output well-formed documents by the following obser-
vation. According to (Koch & Scherzinger, 2003), expressive power of XSAGs is
equivalent to that of XML-DPDTs, deterministic pushdown transducers with an
auxiliary stack for checking well-formedness of input documents. XML-DPDTs are
essentially XML processing programs that (1) read well-formed input documents in
left-to-right, depth-first preorder, and (2) generate an output in document order,
which are also the properties of well-typed programs of our framework. Thus, the
expressive power of XSAGs is equivalent to that of our well-typed programs.

There are other studies on translation of tree-processing programs into stream-
processing programs. Some of them (Green et al., 2001; Gupta & Suciu, 2003;
Avila-Campillo et al., 2002; Bar-Yossef et al., 2005; Olteanu et al., 2002) deal with
XPath expressions (Berglund et al., 2003; Scardina & Fernandez, 2003) and oth-
ers (Ludäscher et al., 2002) deal with XQuery (Boag et al., 2003; Chamberlin et al.,
2003). Those translations are more aggressive than ours in the sense that the struc-
ture of source programs is changed so that input trees can be processed in one
pass. On the other hand, their target languages (XPath and XQuery languages)
are restricted in the sense that they do not contain functions and side-effects 6.

There are many studies on program transformation (Wadler, 1988; Meijer et al.,
1991) for eliminating intermediate data structures of functional programs, known
as deforestation or fusion. Although the goal of our translation is also to remove
intermediate data structures from unparse ◦ f ◦ parse, the previous methods are
not directly applicable since those methods do not guarantee that transformed
programs access inputs in a stream-processing manner. In fact, swap in Figure 2,
which violates the access order, can be expressed as a treeless program (Wadler,

6 Though XQuery can deal with user-defined functions, the fragment dealt with in (Ludäscher
et al., 2002) excludes user-defined functions.
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1988) or a catamorphism (Meijer et al., 1991), but the result of deforestation is not
an expected stream-processing program.

Actually, there are many similarities between the restriction of treeless pro-
gram (Wadler, 1988) and that of our type system. In treeless programs, (1) variables
have to occur only once, and (2) only variables can be passed to functions. (1) cor-
responds to the linearity restriction of our type system. (2) is the restriction for
prohibiting trees generated in programs to be passed to functions, which corre-
sponds to the restriction that functions cannot take values of type Tree+ in our
type system. The main differences are:

• Our type system additionally imposes a restriction on the access order. This
is required to guarantee that translated programs read input streams sequen-
tially.

• We restrict programs with a type system, while the restriction on treeless pro-
grams is syntactic. Our type-based approach enables us to deal with higher-
order functions. The type-based approach is also useful for automatic inference
of selective buffering of trees, as discussed in Section 9.

The type system we used in this paper is based on the ordered linear logic pro-
posed by Polakow (Polakow, 2001). He proposed a logic programming language
Olli, logical framework OLF and ordered lambda calculus based on the logic. There
are many similarities between our typing rules and his derivation rules for the or-
dered linear logic. For example, our type judgment Γ | ∆ ` M : τ corresponds to
the judgment Γ; ·; ∆ ` A of ordered linear logic. The rule T-Abs1 corresponds to
a combination of the rules for an ordered linear implication and the modality (!).
However, we cannot use ordered linear logic directly since it would make our type
system unsound.

Petersen et al. (Petersen et al., 2003) used ordered linear types to guarantee
correctness of memory allocation and data layout. While they used an ordered
linear type environment to express a spatial order, we used it to express a temporal
order.

As we stated in Section 3 and 5, one can write tree-processing programs that
selectively skip and/or buffer trees by using skip tree, copy tree, strm to mem and
mem to strm. However, inserting those functions by hand is sometimes tedious. To
solve that problem, we have developed a type-directed source-to-source translation
for automatically inserting these functions (Suenaga et al., 2005).

9 Conclusion

We have proposed a type system based on ordered linear types to enable transla-
tion of tree-processing programs into stream-processing programs, and proved the
correctness of the translation.

Since our translation algorithm preserves the structure of source programs, the
translation works in the presence of side effects other than stream inputs/outputs.
Our framework can also be easily extended to deal with multiple input trees.

In addition to application to XML processing, our translation framework may
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also be useful for optimization of distributed programs that process and communi-
cate complex data structures. Serialization/unserialization of data corresponds to
unparsing/parsing in Figure 1, so that our translation framework can be used for
eliminating intermediate data structures and processing serialized data directly.
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A Proof of Theorem 4.2

We prepare the following lemma to prove the theorem.

Lemma A.1 (type substitution)
If Γ ∪ {x : τ ′} | ∆ ` M : τ and Γ | ∅ ` N : τ ′ hold, Γ | ∆ ` [N/x]M : τ .

Proof
Straightforward.

Proof of Theorem 4.2. The first condition can be easily proved by induction on the
derivation tree of Γ | 〈〈δ〉〉 ` M : τ . Here we only show the proof of the second
condition.

From the assumption (M, δ) → (M ′, δ′), there exist Es and I that satisfy M =
Es[I]. We use structural induction on Es.

• Case Es = [ ].
Case analysis on I.

— Case I = (λx.N) U .
First, suppose U = i or U = λy.N ′ for some i or y and N ′. Then, δ = ∅
and Γ | ∅ ` U : τ ′ and Γ ∪ {x : τ ′} | ∅ ` N : τ follow from the assumption
Γ | 〈〈δ〉〉 ` M : τ and inversion of T-App and T-Abs2. M ′ = [U/x]N and
δ′ = δ (and thus, δ′ = ∅) follow from Es2-App. Thus, Γ | 〈〈δ′〉〉 ` M ′ : τ

follows from Lemma A.1 as required.
Next, suppose U = y for some y. Then, M ′ = [y/x]N and δ′ = δ follow
from Es2-App. 〈〈δ〉〉 = y :Tree− and Γ | x :Tree− ` N : τ follow from the
assumption Γ | 〈〈δ〉〉 ` M : τ and inversion of T-App and T-Abs1. Thus,
as easily seen, Γ | y : Tree− ` [y/x]N : τ . Thus, Γ | 〈〈δ′〉〉 ` M ′ : τ follows
as required.

— Case I = (case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2) with δ = (y 7→
leaf i, δ′′).
Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-Case. Thus, we
have Γ ∪ {x : Int} | 〈〈δ′′〉〉 ` M1 : τ . Because Γ | ∅ ` i : Int, we have
Γ | 〈〈δ′′〉〉 ` [i/x]M1 : τ from Lemma A.1. Because M ′ = [i/x]M1 and
δ′ = δ′′ follow from Es2-Case1, we have Γ | 〈〈δ′〉〉 ` M ′ : τ as required.

— Case I = (case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2) with δ = (y 7→
(node V1 V2), δ′′).
Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-Case. Thus, we have
Γ | x1 : Tree−, x2 : Tree−, 〈〈δ′′〉〉 ` M2 : τ . Because M ′ = M2 and δ′ =
x1 7→ V1, x2 7→ V2, δ

′′ follow from Es2-Case2, we have Γ | 〈〈δ′〉〉 ` M ′ : τ

as required.

• Case Es = (case E′
s of leafx ⇒ M1 | node x1 x2 ⇒ M2).

Γ | 〈〈δ〉〉 ` M : τ must have been derived by using T-Case. Thus, we have
Γ | 〈〈δ1〉〉 ` E′

s[I] : Tree− and Γ ∪ {x : Int} | 〈〈δ2〉〉 ` M1 : τ and Γ | x1 :
Tree−, x2 : Tree−, 〈〈δ2〉〉 ` M2 : τ and δ = δ1, δ2 for some δ1 and δ2. By
the induction hypothesis, there exist δ′1 and M ′′ that satisfy Γ | 〈〈δ′1〉〉 `
M ′′ :Tree− and (E′

s[I], δ1) → (M ′′, δ′1). Because M ′ = (case M ′′ of leaf x ⇒
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M1 | node x1 x2 ⇒ M2) and δ′ = δ′1, δ2, we have Γ | 〈〈δ′〉〉 ` M ′ : τ from
T-Case as required.

B Proof of Corollary 4.3

The following lemma guarantees that the reducibility in the original source language
semantics and that in the revised semantics are equivalent for well-typed programs.

Lemma B.1
If ∅ | 〈〈δ〉〉 ` M : τ and if τ ∈ {Int,Tree+}, then (M, δ) →∗ (M ′, δ′) if and
only if {|δ|}M → {|δ′|}M ′ where {|·|} is the function from ordered environments to
substitutions defined by

{|∅|} = (identity function)
{|x 7→ V, δ|} = [V/x] ◦ {|δ|}.

Proof
(=⇒) is obvious. We only show (⇐=) by induction on the length of {|δ|}M →∗

{|δ′|}M ′ The case where M = M ′ and δ = δ′ is obvious. Suppose that {|δ|}M →
{|δ′′|}M ′′ →∗ {|δ′|}M ′. From Theorem 4.2, we have (M, δ) → (M ′′′, δ′′′) and ∅ |
〈〈δ′′′〉〉 ` M ′′′ : τ for some M ′′′ and δ′′′. From the (=⇒) direction of this Lemma,
and from that the first semantics is deterministic, we have M ′′′ = M ′′ and δ′′′ = δ′′.
Then, we have (M ′′, δ′′) →∗ (M ′, δ′) from the induction hypothesis.

Lemma B.2
If ∅ | ∆ ` W : τ , then ∆ = ∅.
Proof
Case analysis on the last rule that derives ∅ | ∆ ` W : τ .

Proof of Corollary 4.3. From ∅ | ∅ ` M : Tree− → τ , we have ∅ | x : Tree− `
M x : τ . Thus, (M x, x 7→ V ) →∗ (W, δ) if and only if M V →∗ {|δ|}W . (Note that
{|x 7→ V |}(M x) = M V .) It suffices to show that δ = ∅. From Theorem 4.2, we
have ∅ | 〈〈δ〉〉 ` W : τ . Thus, we have δ = ∅ from Lemma B.2.

C Proof of Lemma 4.5

For the proof of Lemma 4.5, we prepare the following lemma.

Lemma C.1
If x 6∈ γ, then Aγ([M1/x]M2) = [Aγ(M1)/x]Aγ(M2).

Proof
Induction on the structure of M2.

Proof of Lemma 4.5. We prove M ∼FV(M) (e, So). We hereafter write γ for FV(M)
and S for So.

First, suppose that M is not reducible. Then, M = U or M = V .
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• Case M = U .
Let e = Aγ(M) and S = ∅. Then M ∼γ (e, S) follows from C-Value.
(Aγ(M), 〈δ〉, ∅) →∗ (e, 〈δ〉, S) is obvious.

• Case M = V .
Let e = () and S = [[V ]]. Then M ∼γ (e, S) follows from C-Tree.
(Aγ(M), 〈δ〉, ∅) →∗ (e, 〈δ〉, S) follows from the structural induction on V be-
low:

— Case V = leaf i.
In this case, Aγ(M) = (write(leaf);write(i)). Thus,
(Aγ(M), 〈δ〉, ∅) →∗ (e, 〈δ〉, S) holds.

— Case V = node V1 V2.
In this case, Aγ(M) = (write(node);Aγ(V1);Aγ(V2)) and
S = node; [[ V1 ]]; [[ V2 ]]. Because ∅ | ∅ ` V1 : Tree+ and ∅ | ∅ ` V2 : Tree+,
we have
(Aγ(V1), ∅, ∅) →∗ ((), ∅, [[V1 ]]) and (Aγ(V2), ∅, ∅) →∗ ((), ∅, [[V2 ]]) from
the induction hypothesis. Thus, (Aγ(M), 〈δ〉, ∅) →∗ (e, 〈δ〉, S). (Note that
δ = ∅ because ∅ | ∅ ` V : Tree+.)

Next, suppose that M is reducible. Then, there exist Es and I such as M = Es[I].
We use structural induction on Es. We show only important cases.

• Case Es = [ ].
In this case, M = I. Let e = Aγ(M) and S = ∅. Then, M ∼γ (e, S) follows
from C-Inst. (Aγ(M), 〈δ〉, ∅) →∗ (e, 〈δ〉, S) is obvious.

• Case Es = node E′
s M ′.

In this case, M = node E′
s[I] M ′. We have ∅ | 〈〈δ1〉〉 ` E′

s[I] : Tree+ and ∅ |
〈〈δ2〉〉 ` M ′ :Tree+ and δ = δ1, δ2 for some δ1 and δ2 from the assumption ∅ |
〈〈δ〉〉 ` M : τ . Thus, E′

s[I] ∼γ (e′, S′) and (Aγ(E′
s[I]), 〈δ1〉, ∅) →∗ (e′, 〈δ1〉, S′)

follows for some e′ and S′ from the induction hypothesis. Let e be e′;Aγ(M ′)
and S be node; S′. Then, M ∼γ (e, S) follows from C-Node1. Because
Aγ(M) = write(node);Aγ(E′

s[I]);Aγ(M ′), we have (Aγ(M), 〈δ〉, ∅) →∗ (e, 〈δ〉, S).
• Case Es = node V E′

s.
In this case, M = node V E′

s[I]. We have ∅ | 〈〈δ〉〉 ` E′
s[I] : Tree+ from the

assumption ∅ | 〈〈δ〉〉 ` M :τ . Thus, E′
s[I] ∼γ (e′, S′) and (Aγ(E′

s[I]), 〈δ〉, ∅) →∗

(e′, 〈δ〉, S′) follow for some e′ and S′ from the induction hypothesis. Let e be e′

and S be node; [[ V ]];S′. Then, M ∼γ (e, S) follows from C-Node2. Because
Aγ(M) = write(node);
Aγ(V );Aγ(E′

s[I]), we have (Aγ(M), 〈δ〉, ∅) →∗ (e, 〈δ〉, S).
• Case Es = (case E′

s of leaf x ⇒ M1 | node x1 x2 ⇒ M2).
In this case, M = (case E′

s[I] of leaf x ⇒ M1 | node x1 x2 ⇒ M2).
We have ∅ | 〈〈δ1〉〉 ` E′

s[I] : Tree− and x : Int | 〈〈δ2〉〉 ` M1 : τ and
∅ | x1 : Tree−, x2 : Tree−, 〈〈δ2〉〉 ` M1 : τ and δ = δ1, δ2 for some δ1 and
δ2 from the assumption ∅ | 〈〈δ〉〉 ` M : τ . Thus, E′

s[I] ∼γ (e′, S′) and
(Aγ(E′

s[I]), 〈δ1〉, ∅) →∗ (e′, 〈δ1〉, S′) follows for some e′ and S′ from the in-
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duction hypothesis. Let e be

case e′; read() leaf ⇒ let x = read() in Aγ(M1)
node ⇒ [()/x1, ()/x2]Aγ(M2)

and S be S′. Then, M ∼γ (e, S) follows from C-Case. Because Aγ(M) =
case Aγ(E′

s[I]); read() of leaf ⇒ let x = read() in Aγ(M1) | node ⇒
[()/x1, ()/x2]Aγ(M2). (Aγ(M), 〈δ〉, ∅) →∗ (e, 〈δ〉, S) holds.

D Proof of Lemma 4.6

We prove Lemma 4.6 in this section.

Proof
The second property follows immediately from the definition of M ∼γ (e, S). (If
M is irreducible, then M ∼γ (e, S) must follow either from C-Value or C-Tree,
which implies that e is irreducible too.)

We prove the first property below. We prove M ′ ∼FV(M) (e′, S′o). We hereafter
write γ for FV(M) and S′ for S′o.

Suppose (M, δ) → (M ′, δ′). Then, M = Es[I] for some Es and I. We use struc-
tural induction on Es. We show only important cases.

• Case Es = [ ]. Case analysis on I. We show only important cases.

— Case I = case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2 with δ = (y 7→
leaf i, δ1).
(M, δ) → (M ′, δ′) must have been derived by using Es2-Case1. So, it
must be the case that M ′ = [i/x]M1 and δ′ = δ1. M ∼γ (e, S) implies

e = Aγ(I) =
case (); read() leaf ⇒ let x = read() in Aγ(M1)

node ⇒ [()/x1, ()/x2]Aγ(M2)

and S = ∅. (e, leaf ; i; 〈δ1〉, ∅) →+ (Aγ(M ′), 〈δ1〉, ∅) follows from Lemma C.1.
By Lemma 4.5, there exist e′′ and S′′ that satisfy (Aγ(M ′), 〈δ1〉, ∅) →
(e′′, 〈δ1〉, S′′) and M ′ ∼γ (e′′, S′′). Let e′ be e′′ and S′ be S′′. Then, we
have (e, 〈δ〉, S) →+ (e′, 〈δ′〉, S′) and M ′ ∼γ (e′, S′) as required.

— Case I = case y of leaf x ⇒ M1 | node x1 x2 ⇒ M2 with δ = (y 7→
node V1 V2, δ1).
(M, δ) → (M ′, δ′) must have been derived by using Es2-Case2. So, it
must be the case that M ′ = M2 and δ′ = x1 7→ V1, x2 7→ V2, δ1. M ∼γ

(e, S) implies

e = Aγ(I) =
case (); read() leaf ⇒ let x = read() in Aγ(M1)

node ⇒ [()/x1, ()/x2]Aγ(M2)

and S = ∅. As easily seen, [()/x1, ()/x2]Aγ(M2) = Aγ∪{x1,x2}(M2).Thus,
(e,node; [[ V1 ]]; [[ V2 ]]; 〈δ1〉, ∅) →+ (Aγ∪{x1,x2}(M2), [[ V1 ]]; [[ V2 ]]; 〈δ1〉, ∅). By
Lemma4.5, there exist e′′ and S′′ that satisfy
(Aγ∪{x1,x2}(M2), [[V1 ]]; [[ V2 ]]; 〈δ1〉, ∅) →∗

(e′′, [[V1 ]]; [[V2 ]]; 〈δ1〉, S′′) and M2 ∼γ (e′′, S′′). Let e′ = e′′ and S′ = S′′.
Then, we have (e, 〈δ〉, S) →+ (e′, 〈δ′〉, S′) and M ′ ∼γ (e′, S′) as required.
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• Case Es = leaf E1.
There exists M ′

1 that satisfies M ′ = leaf M ′
1 and (E1[I], δ) → (M ′

1, δ
′). M ∼γ

(e, S) must have been derived from C-Leaf. Thus, there exist e1 and S1 that
satisfies e = write(e1) and E1[I] ∼γ (e1, S1) and S = leaf ; S1. Because M is
well-typed, E1[I] is also well-typed. Thus, from the induction hypothesis, we
have (e1, 〈δ〉, S1) →+ (e′1, 〈δ′〉, S′1) and M ′

1 ∼γ (e′1, S
′
1) for some e′1 and S′1.

First, suppose that M ′
1 is reducible. Let e′ be write(e′1) and S′ be leaf ;S1.

Then, M ′ ∼γ (e′, S′) follows from C-Leaf as required.
Next, suppose that M ′

1 is a value. Because M is well-typed, M ′
1 is an in-

teger (let the integer be i′1) and M ′
1 ∼γ (e′1, S

′
1) must have been derived

from C-Value. Thus, e′1 = i′1 and S′1 = ∅. Let e′ be () and S′ be leaf ; i′1.
Then, M ′ ∼γ (e′, S′) follows from C-Tree and (write(e′1), 〈δ′〉, leaf ; S′1) →
(e′, 〈δ′〉, S′) holds.

• Case Es = node E1 M2.
There exists M ′

1 that satisfies M ′ = node M ′
1 M2 and (E1[I], δ) → (M ′

1, δ
′).

M ∼γ (e, S) must have been derived from C-Node1. Thus, there exist e1

and S1 that satisfies e = e1;Aγ(M2) and E1[I] ∼γ (e1, S1) and S = node;S1.
Because we assume that M is well-typed, E1[I] is also well-typed. Thus, from
the induction hypothesis, we have (e1;Aγ(M2), 〈δ〉,node; S1) →+

(e′1;Aγ(M2), 〈δ′〉,node; S′1) and M ′
1 ∼γ (e′1, S

′
1) for some e′1 and S′1.

First, suppose that M ′
1 is reducible. Let e′ be e′1;Aγ(M2) and S′ be node;S′1.

Then, M ′ ∼γ (e′, S′) follows from C-Node1 as required.
Next, suppose that M ′

1 is a value (let the value be V ′
1). M ′

1 ∼γ (e′1, S1) must
have been derived from C-Tree. Thus, e′1 = () and S1 = [[V ′

1 ]]. Thus,
(e, 〈δ〉, S) →+ (Aγ(M2), 〈δ′〉,node; [[ V ′

1 ]]). From Lemma 4.5, there exist e2

and S2 that satisfy M2 ∼γ (e2, S2) and
(Aγ(M2), 〈δ′〉,node; [[V ′

1 ]]) →∗ (e2, 〈δ′〉,node; [[ V ′
1 ]];S2). Let e′ be e2 and S′

be node; [[V ′
1 ]];S2. Then, M ′ ∼γ (e′, S′) follows from C-Node2 and (e, 〈δ〉, S) →+

(e′, 〈δ′〉, S′) holds.
• Case Es = node V2 E1.

There exists M ′
1 that satisfies M ′ = node V2 M ′

1 and (E1[I], δ) → (M ′
1, δ

′).
M ∼γ (e, S) must have been derived from C-Node2. Thus, there exist e1

and S1 that satisfies e = e1 and E1[I] ∼γ (e1, S1) and S = node; [[ V2 ]];S1.
Because M is well-typed, E1[I] is also well-typed. Thus, from the induction hy-
pothesis, we have (e1, 〈δ〉,node; [[V2 ]];S1) →+ (e′1, 〈δ′〉,node; [[V2 ]];S′1) and
M ′

1 ∼γ (e′1, S
′
1) for some e′1 and S′1.

First, suppose that M ′
1 is reducible. Let e′ be e′1 and S′ be node; [[ V2 ]];S′1.

Then, M ′ ∼γ (e′, S′) follows from C-Node1 as required.
Next, suppose that M ′

1 is a value (let the value be V ′
1). M ′

1 ∼γ (e′1, S1)
must have been derived from C-Tree. Thus, e′1 = () and S1 = [[V ′

1 ]],
and thus, (e, 〈δ〉, S) →+ ((), 〈δ′〉,node; [[V2 ]]; [[V ′

1 ]]). Let e′ be () and S′ be
node; [[V2 ]]; [[V ′

1 ]]. Then, M ′ ∼γ (e′, S′) follows from C-Tree as required.
• Case Es = (case E1 of leaf x ⇒ M1 | node x1 x2 ⇒ M2).
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There exists M ′
1 that satisfies

M ′ =
case M ′

1 of leaf x ⇒ M1

| node x1 x2 ⇒ M2

and (E1[I], δ) → (M ′
1, δ

′). M ∼γ (e, S) must have been derived from C-Case.
Thus, there exists e1 that satisfies

e =
case e1; read() of leaf ⇒ let x = read() in M1

| node ⇒ [()/x1, ()/x2]Aγ(M2)

and E1[I] ∼γ (e1, S). Because M is well-typed, E1[I] is also well-typed. Thus,
from the induction hypothesis, we have

(
case e1; read() of leaf ⇒ let x = read() in M1

| node ⇒ [()/x1, ()/x2]Aγ(M2)
, 〈δ〉, S) →+

(
case e′1; read() of leaf ⇒ let x = read() in M1

| node ⇒ [()/x1, ()/x2]Aγ(M2)
, 〈δ′〉, S′′)

and M ′
1 ∼γ (e′1, S

′′) for some e′1 and S′′.
First, suppose that M ′

1 is reducible. Let e′ be

case e′1; read() of leaf ⇒ let x = read() in M1

| node ⇒ [()/x1, ()/x2]Aγ(M2)

and S′ be S′′. Then, M ′ ∼γ (e′, S′) follows from C-Case.
Next, suppose that M ′

1 is not reducible. Because M ′
1 is a tree-typed term,

M ′
1 is a variable (let it be y′1). Because M ′

1 ∼γ (e′1, S
′′) must have been de-

rived from C-Value, e′1 = Aγ(y′1). Thus, (e, 〈δ〉, S) →+ (Aγ(M ′), 〈δ′〉, S′′).
From Lemma 4.5, there exist e′′ and S1 that satisfy M ′ ∼γ (e′′, S1) and
(Aγ(M ′), 〈δ′〉, S′′) →∗ (e′′, 〈δ′〉, S1). Let e′ be e′′ and S′ be S1. Then, (e, 〈δ〉, S) →+

(e′, 〈δ′〉, S′) and M ′ ∼γ (e′, S′) hold as required.

E Proof of Theorem 4.4

This section proves Theorem 4.4.

Proof
First of all, note that ∅ | x : Tree− ` M x : τ follows an assumption ∅ | ∅ `
M : Tree− → τ and ∅ | x : Tree− ` x : Tree−.

We prove only (ii) hereafter. (i) can be proved in the same way.
Assume ((M x), x 7→ V ) →∗ (V ′, ∅). Because ∅ | x:Tree− ` (M x) :τ holds, there

exist e, Si and So such that ((M x), x 7→ V ) ∼ (e, Si, So) and (A(M)(), Si, ∅) →∗

(e, Si, So) from Lemma 4.5 7. From the definition of ∼, Si = [[V ]]. Because of
Theorem 4.2 and Lemma 4.6, there exists a sequence of reduction (e, [[V ]], So) →∗

7 Because ∅ | ∅ ` M : Tree− → τ holds, FV(M) = ∅. Thus, AFV(M)∪{x}(M x) = A(M)().
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(e′, ∅, S′o) that satisfies (V ′, ∅) ∼ (e′, ∅, S′o). From the definition of ∼, e′ = () and
S′o = [[V ′ ]]. Thus, (A(M)(), [[V ]], ∅) →∗ ((), ∅, [[ V ′ ]]) holds.

Next, assume (A(M)(), [[ V ]], ∅) →∗ ((), ∅, [[V ′ ]]). As we stated above, there exist
e, Si and So such that ((M x), x 7→ V ) ∼ (e, [[ V ]], So) and (A(M)(), [[ V ]], ∅) →∗

(e, [[V ]], So). Because applicable reduction rule can be uniquely determined at each
step of reduction, (e, [[ V ]], So) →∗ ((), ∅, [[ V ′ ]]) holds.

In the following, we prove “if ∅ | 〈〈δ〉〉 ` M ′:Tree+ and (e, 〈δ〉, S′o) →∗ ((), ∅, [[V ′ ]]))
and (M ′, δ) ∼ (e, S′i, S

′
o) hold, (M ′, δ) →∗ (V ′, ∅) holds”. We use mathematical in-

duction on the number of reduction step of (e, 〈δ〉, S′o) →∗ ((), ∅, [[ V ′ ]])). With this
fact, by letting M ′ be M x and δ be x 7→ V , ((M x), x 7→ V ) →∗ (V ′, ∅) holds
because ∅ | x : Tree− ` (M x) : Tree+ follows ((M x), x 7→ V ) →∗ (V, ∅) and
Theorem 4.2.

• In the case of n = 0, M ′ = V ′ and δ = ∅ hold because e = (), 〈δ〉 = ∅, S′o =
[[V ′ ]] and (M ′, ∅) ∼ (e, ∅, S′o) hold. Thus, (M ′, δ) →∗ (V ′, ∅) holds.

• In the case of n ≥ 1, there exist e′, Si, S
′′
o that satisfies

(e, 〈δ〉, S′o) → (e′, Si, S
′′
o ) →∗ ((), ∅, [[ V ′ ]]))

From Lemma 4.6, there exist M ′′, δ′, S′′′o that satisfies

— (M ′, δ) → (M ′′, δ′)
— (M ′′, δ′) ∼ (e′′, 〈δ′〉, S′′′o )
— (e, 〈δ〉, S′o) →+ (e′′, 〈δ′〉, S′′′o )

Since the reduction is deterministic, (e′′, 〈δ′〉, S′′′o ) →∗ ((), ∅, [[ V ′ ]])) holds.
From the induction hypothesis, (M ′′, δ′) →∗ (V ′, ∅). Thus, (M ′, δ) →∗ (V ′, ∅)
holds.


