
Higher-Order Model Checking: From Theory to Practice

Naoki Kobayashi
Tohoku University

Abstract—The model checking of higher-order recursion
schemes (higher-order model checking for short) has been
actively studied in the last decade, and has seen significant
progress in both theory and practice. From a practical perspec-
tive, higher-order model checking provides a foundation for
software model checkers for functional programming languages
such as ML and Haskell. This short article aims to provide an
overview of the recent progress in higher-order model checking
and discuss future directions.

I. INTRODUCTION

A higher-order recursion scheme (a recursion scheme for
short) is a kind of tree grammar for generating a single,
possibly infinite tree. From a programming language point of
view, a recursion scheme is a term (of tree type) of the call-
by-name simply-typed λ-calculus with recursion and tree
constructors. The goal of the model checking of higher-
order recursion schemes (higher-order model checking for
short) is, given a recursion scheme G and a property ϕ, to
decide whether the tree generated by G satisfies ϕ. To our
knowledge, this model-checking problem has been posed in
the present form by Knapik et al. [19, 20], although related
problems have been studied since 70’s (see Section III). The
decidability of higher-order model checking (for arbitrary
recursion schemes and properties expressed by modal μ-
calculus) has been open for some time, until Ong [36]
provided a positive answer in 2006.

Higher-order model checking has attracted interests of the
theoretical community in the last decade [1–3, 16, 19–21, 28,
36], as recursion schemes are very expressive grammars for
trees, subsuming the previously known classes of trees with
MSO-decidable theories, such as regular trees, algebraic
trees, and the trees generated by higher-order pushdown
automata. Higher-order model checking can also be consid-
ered a natural extension of finite-state and pushdown model
checking.

Until recently, however, higher-order model checking did
not appear to be of interest to researchers on automated pro-
gram analysis or verification. The main reason is probably
that the complexity of higher-order model checking is n-
EXPTIME complete (where n is the largest order of func-
tions) [36]. The algorithm given in Ong’s decidability proof
in fact always suffers from this n-EXPTIME bottleneck, so
that it is not runnable even for very small recursion schemes.

The situation above has dramatically changed in the last
few years. First, it turned out that various verification prob-
lems for higher-order functional programs, such as reacha-

bility and resource usage verification [18], can be naturally
reduced to higher-order model checking problems [24].
Thus, higher-order model checking provides a universal
tool for automated analysis or verification of functional
programs. Secondly, a new algorithm for higher-order model
checking has been found [22], which does not always suffer
from the n-EXPTIME bottleneck. A higher-order model
checker TRECS [23] has been implemented based on the
new algorithm, and is used as the core of recent verification
tools for functional programs [30, 31].

The purpose of this paper is to give a brief overview
of higher-order model checking, especially highlighting the
recent transition from theory to practice. The paper is by
no means a complete survey of the field; it just aims to
provide (non-exhaustive) references, from which the reader
can find more information. Nevertheless, we hope that this
short survey helps more people to get acquainted with and
interested in this exciting, but relatively unexplored research
field.

II. HIGHER-ORDER RECURSION SCHEMES AND MODEL
CHECKING

This section provides informal definitions of higher-order
recursion schemes and model checking problems. For more
formal definitions, the reader is referred to [36].

We consider simple types (also called sorts) constructed
from a unique base type o, describing trees, and the standard
function type constructor →. We assume a finite set of tree
constructors c1, . . . , ck of type o → · · · → o → o. We write
x̃ for a sequence x1, . . . , xm.

A higher-order recursion scheme (a recursion scheme for
short) G is a pair (D, t) where D is a set of top-level function
definitions, of the form {F1 x̃1 = t1, . . . , F� x̃� = t�}, and t
is a main program, whose syntax is given by:

t ::= x | Fi | cj | t1t2.

We consider the standard simple type system, and require
that the term t and the body ti of each function definition
have the tree type o.

The order of a recursion scheme is the highest order of
the simple types of function symbols, where the order of a
simple type κ is given by:

order (o) = 0
order (κ1 → κ2) = max(order (κ1) + 1, order(κ2))

a

e a

b

c

e

a

b2

c2

e

a

b3

c3

e

· · ·

Figure 1. The tree generated by G0

The tree generated by a recursion scheme G = (D, t),
written Tree(G), is the (possibly infinite) tree obtained by
reducing t according to D (possibly) infinitely often in a fair
manner.

Example 2.1: Consider tree constructors a : o→ o → o,
b : o → o, c : o → o, and e : o. Let G0 be (D, S), where
D is the set of function definitions:

S = F I e
F f x = a (f x) (F (B f) (c x))
B f x = b (f x)

I x = x

G0 is an order-2 recursion scheme, where F and B have an
order-2 type (o → o) → o → o. S is reduced as follows:

S −→ F I e −→ a (I e) (F (B I) (c e))
−→ a e (a (B I (c e)) (F (B (B I)) (c (c e)))) −→ · · ·

The tree generated by G0 is shown in Figure 1, which
consists of paths of the form an+1bncne.

The following is the key result, due to Ong.
Theorem 2.1 ([36]): Given an order-n higher-order re-

cursion scheme G and a modal μ-calculus formula ϕ, the
problem of deciding whether Tree(G) satisfies ϕ is n-
EXPTIME in the size of G and ϕ.

Remark 2.1: Restricted forms of higher-order model
checking problems are often considered in the literature.
Knapik et al. [20] considered a restricted class of recursion
schemes called safe higher-order recursion schemes and
proved the decidability for the restricted class. Aehlig [1]
considered a restricted class of properties, expressed by triv-
ial automata, which corresponds to a fragment of the modal
μ-calculus with only (positive occurrences of) the greatest
fixedpoint operator ν. Trivial automata are sufficient [24] for
applications to verification of safety properties of functional
programs.

III. HISTORICAL BACKGROUND

This section briefly reviews some historical background
about the model checking of higher-order recursion schemes.

De Miranda’s PhD thesis [13] and Ong’s tutorial paper [37]
provide a more comprehensive survey.

Order-1 recursion schemes have been studied in 70’s
under the name of recursive program schemes [10, 35]. A
recursive program scheme provides a tree representation of
the control flow graph of a program, with the semantics of
data and primitive instructions left unspecified. Thus, the
semantics of a program can be represented as a pair of
a recursive program scheme and an interpretation function
for the instructions. The reader is referred to other books
or papers [9, 14] on the historical background of program
schemes.

Higher-order grammars, where non-terminals can take
functions as parameters, or higher type program schemes
have been introduced also in 70’s [12, 42, 45] and extensively
studied since then [11]. As already mentioned, Knapik
et al. [19, 20] formalized the model-checking problem for
higher-order recursion schemes in the present form, and
proved the decidability for the class of safe higher-order
recursion schemes. To our knowledge, most of the earlier
results for higher-order languages [11] are also under the
equivalent restriction of derived types. The reader is referred
to [13] for discussions on the safety condition and derived
types. The first result on the model checking of unrestricted
recursion schemes was provided independently by Knapik
et al. [21] and Aehlig et al. [2], who proved that the
model checking of order-2 recursion schemes is decidable.
Ong [36] then extended the result to arbitrary orders.

IV. STATE OF THE ART

This section summarizes the state-of-the-art in the field
of higher-order model checking. The results are classified
into theory and practice, though they are of course related
to each other.

A. Theory

1) Decidability: As already mentioned, the most general
decidability result is due to Ong [36]. At present, there
are at least three proofs of the decidability: Ong’s original
proof, Hague et al.’s reduction to model checking problems
on collapsible higher-order pushdown automata [16], and
Kobayashi and Ong’s proof based on intersection types [28].
The first two are based on game semantics, and the third one,
which is relatively more elementary, is based on type theory.
Simpler proofs are available [1, 24] for the restricted class
of properties expressed by trivial automata.

Broadbent et al. [6] gave an algorithm for global model
checking, which, given a recursion scheme G and a formula
ϕ, computes all the subtrees of Tree(G) that satisfy ϕ.
As there may be infinitely many such trees, the output is
another recursion scheme G′ such that Tree(G′) is identical
to Tree(G) except that all the (roots of) subtrees satisfying
ϕ are marked.

2) Expressive Power: As already mentioned, the re-
stricted class of safe recursion schemes was considered in
earlier studies. It has been an open question whether the
safety is a genuine restriction until recently. Parys [39]
answered the question by proving that there is a tree that
is generated by an order-2 unsafe recursion scheme but not
by any order-2 safe recursion scheme. For word languages
generated by (non-deterministic) order-2 recursion schemes,
however, safety is not a fundamental restriction [3].

Connections to other models of higher-order computation
have also been actively studied. The class of trees generated
by safe higher-order recursion schemes coincides with those
generated by higher-order pushdown automata [20] and also
with the class of trees in Caucal hierarchy [7]. Recursion
schemes without the safety condition are equivalent to
higher-order pushdown automata extended with collapse
operations [16].

3) Complexity: As already mentioned, the complexity
of the modal μ-calculus model checking of higher-order
recursion schemes is n-EXPTIME complete [36]. It is the
case even for safe higher-order recursion schemes. If the
largest size of types of function symbols and the size of
the formula are fixed, however, the time complexity is
polynomial in the size of recursion schemes [28]. Under the
same condition, for the class of trivial automata, the time
complexity is linear in the size of recursion schemes [24].
For other results on the complexity of higher-order model
checking, we refer the reader to [17, 27].

B. Practice

1) Model-Checking Algorithms and Implementation: All
the decidability proofs mentioned in Section IV-A1 are con-
structive in the sense that they provide model checking algo-
rithms. Unfortunately, however, none of them can be used in
practice because they always suffer from n-EXPTIME bot-
tleneck. To our knowledge, the first practical algorithm and
its implementation are due to Kobayashi [22, 23], where the
class of properties is restricted to those expressed by deter-
ministic trivial automata. Lester et al. [32] recently extended
Kobayashi’s algorithm to deal with properties expressed by
alternating weak tree automata, and implemented another
model checker THORS. These algorithms are based on a
reduction from model checking to intersection type inference
problems [24, 28], and guess intersection types by partially
constructing the tree generated by a recursion scheme, and
running automata over the partial tree. Although the worst-
case time complexity of the algorithms is not polynomial
in the size of recursion schemes (recall Section IV-A3), the
algorithms run fast for many realistic inputs according to
experiments.

Kobayashi [26] has recently proposed yet another prac-
tical algorithm for trivial automata model checking, which
runs in time linear in the size of recursion schemes, under the

assumption that the largest size of types of function symbols
and the size of the formula are fixed.

2) Applications to Program Verification: A promising ap-
plication of higher-order model checking is automated verifi-
cation of functional programs. Given that higher-order model
checking subsumes finite state model checking and push-
down model checking, which have been successfully applied
to software model checkers for imperative languages [4, 5], it
is natural to expect that higher-order model checking can be
applied to construct software model checkers for functional
languages like ML and Haskell. As mentioned below, initial
results towards such directions have been obtained.

For the simply-typed λ-calculus with recursion and finite
base types, Kobayashi [22, 24, 25] showed that a variety of
program analysis or verification problems, such as reach-
ability, flow analysis, and resource usage verification can
be reduced to higher-order model checking. Thus, a higher-
order model checker can be used as a universal tool for
solving those problems.

Recent studies aim to deal with a larger class of functional
programs, with a sacrifice of completeness. Kobayashi et
al. [31] introduced a restricted class of higher-order tree-
processing programs called higher-order multi-parameter
tree transducers, and proposed a method to verify that tree-
processing programs conform to input and output speci-
fications. They [43] later extended the method to handle
arbitrary tree-processing functional programs, by requiring
user annotations on certain invariants. Ramsay and Ong [38]
combined a conventional static analysis and higher-order
model checking to deal with programs manipulating recur-
sive data types. Kobayashi et al. [29, 30] combined predicate
abstraction and CEGAR with higher-order model checking,
and constructed a software model checker MOCHI for a tiny
subset of ML. MOCHI takes functional programs annotated
with assertions on integer values, and verifies the lack of
assertion failures fully automatically.

V. FUTURE DIRECTIONS

Despite the long history of higher-order recursion schemes
and the recent progress in higher-order model checking, a
lot of work is still left to be done in this research area.
We discuss below some future directions, especially for
applications to program verification.

A. Theory

1) Open problems: There remain some open problems
about higher-order recursion schemes. The most notable one
is whether the equivalence of the trees generated by two
recursion schemes is decidable. This may have an appli-
cation to automated verification of program equivalence.
Another open problem is whether the results on the safety
condition [3, 39] for order-2 recursion schemes extend to
arbitrary orders.

2) Extensions of higher-order model checking: Another
challenge is to find a useful extension of the decidability of
higher-order model checking [36]. There are two possible
directions: extending the class of models, or the class of
properties. For example, in view of applications to program
verification, it would be very useful to relax the restriction
that terms of recursion schemes must be simply-typed. As
discussed in [41], however, extensions of the type system
can easily make the model checking problem undecidable.

3) Theoretical analysis of model checking algorithms:
We need a better understanding of the nature of the high
complexity of higher-order model checking. Ong [36] has
shown that higher-order model checking is n-EXPTIME
complete, but recent model checking algorithms [22, 26] run
reasonably fast for many inputs. This cannot be explained
by the complexity of fixed-parameter PTIME (recall Sec-
tion IV-A3) alone, as the constant factor is too large in
the worst case. As discussed in [25], the high complexity
of higher-order model checking seems to be related to the
ability of higher-order functions to express a long compu-
tation compactly. For example, consider the following two
recursion schemes G0 and G1:

G0 = ({F2m = a F2m−1, . . . , F1 = a F0, F0 = c}, F2m)
G1 = ({Gm x = Gm−1(Gm−1 x), . . . , G1 x = G0(G0 x),

G0 x = a x}, Gm c)

G0 and G1 generate the same tree a2m

c, but the size of
G0 is exponential in that of G1. Thus, an exponential time
algorithm for G1 can be as fast as a polynomial time
algorithm for G0. Similarly, there are finite trees that can
be expressed by order-n recursion schemes of size O(m)
but can only be expressed by order-0 recursion schemes

of size O(

n
︷︸︸︷

22···2m

). If this is the main source of the n-
EXPTIME hardness, higher-order model checking may work
for typical programs that do not fully exploit the expressive
power of higher-order functions. Furthermore, the recent
fixed-parameter linear time algorithm [26] runs in time linear
in the size of recursion schemes of arbitrary order, so that
the model checking of well-structured higher-order programs
can be faster than that of equivalent first-order programs.
More theoretical justifications are necessary however.

B. Practice

1) Better higher-order model checkers: Better algorithms
and implementation techniques for higher-order model
checking are required. According to experiments, the state-
of-the-art higher-order model checker TRECS [23] can
check many recursion schemes consisting of a few hundred
function definitions in a few seconds, but that is not sufficient
in the context of applications to program verification [30,
31], as higher-order recursion schemes obtained from source
programs are typically larger than the source programs.
As for algorithms, the new fixed-parameter linear time

algorithm [26] is attractive but requires further investigation,
as the current implementation is actually much slower than
TRECS for many inputs. As for implementation techniques,
BDD-like implementation techniques would be important,
especially because boolean values are heavily used in re-
cursion schemes obtained from program verification prob-
lems [30].

The current higher-order model checkers support only a
very restricted fragment of the properties expressed by the
modal μ-calculus. Implementing an efficient full modal μ-
calculus model checker is a challenge.

2) Scalable program verification tools: Program verifi-
cation tools [30, 31] based on higher-order model checking
should be improved in terms of both efficiency and supported
language features. For the efficiency, besides the improve-
ment of higher-order model checkers as discussed above,
abstraction techniques should also be improved. As fully
automated verification of large programs is difficult, finding
a good combination with user annotations [43] would also
be important. As for the language features, techniques for
supporting integers [30] and algebraic data structures [31,
38] have been proposed, but they should be improved and
integrated. Supporting objects and concurrency also remains
a big challenge.

3) Applications to other program verification problems:
Although a variety of program verification or analysis prob-
lems can be reduced to higher-order model checking [22,
24], many of them have not been implemented yet, so
that the effectiveness and the scalability of the resulting
methods are not clear. Particularly interesting for further
investigation is the reduction from control flow analysis
(CFA) to higher-order model checking. Flow analyses for
functional languages such as k-CFA [40] compute over-
approximations of the actual flow, except Mossin’s exact
flow analysis [34], which has non-elementary time com-
plexity and has never been implemented. Interestingly, with
the reduction to higher-order model checking, a single flow
query (of whether the expression at program point � evalu-
ates to a value created at �′) can be answered in time linear
in the program size, under the assumption that the largest
size of the simple types of functions is fixed. Under the same
assumption, therefore, all the flow queries can be computed
in cubic time. Thus, if the constant factor is ignored, the time
complexity is similar to that of 0-CFA [33], unlike other
flow analyses more precise than 0-CFA, like k-CFA [40]
and CFA2 [44]. It would be interesting to know how much
higher-order model checking-based CFA scales; note that it
is sometimes observed that the precision of program analysis
also improves the efficiency.

Higher-order model checking [24, 30, 31, 38] has so far
been applied to verification of safety properties. It should
also be possible to apply higher-order model checking
to verification of liveness properties such as termination,
following the success of first-order model checking [8].

4) Other applications: There are many other potential
applications of higher-order model checking. Given that
higher-order functions are used in recent hardware descrip-
tion languages [15], an application of higher-order model
checking to hardware verification may be useful. Another
interesting application is data compression. As mentioned
in Section V-A3, higher-order recursion schemes can ex-
press certain trees extremely compactly. Higher-order model
checking can then be used to check whether such com-
pressed trees match a given pattern without decompressing
them. The time complexity of the pattern matching is linear
in the size of the compressed data (expressed in the form of
recursion schemes), if the size of the pattern is fixed.

VI. CONCLUSION

We have briefly reviewed the recent progress of higher-
order model checking, and discussed future directions. Al-
though its scalability is unclear at the moment, we believe
that higher-order model checking is an exciting research
topic for both theoretical and practical research communities
and hope that more researchers get interested and involved
in this topic.

Acknowledgment: We would like to thank Luke Ong for
comments on this paper.

REFERENCES

[1] K. Aehlig. A finite semantics of simply-typed lambda terms
for infinite runs of automata. Logical Methods in Computer
Science, 3(3), 2007.

[2] K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. The monadic
second order theory of trees given by arbitrary level-two
recursion schemes is decidable. In TLCA 2005, volume 3461
of Lecture Notes in Computer Science, pages 39–54. Springer-
Verlag, 2005.

[3] K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is
not a restriction at level 2 for string languages. In FoSSaCS,
volume 3441 of Lecture Notes in Computer Science, pages
490–504. Springer-Verlag, 2005.

[4] T. Ball and S. K. Rajamani. The SLAM project: debugging
system software via static analysis. In POPL, pages 1–3,
2002.

[5] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar.
The software model checker Blast. International Journal
on Software Tools for Technology Transfer, 9(5-6):505–525,
2007.

[6] C. H. Broadbent, A. Carayol, C.-H. L. Ong, and O. Serre.
Recursion schemes and logical reflection. In Proceedings of
LICS 2010, pages 120–129. IEEE Computer Society Press,
2010.

[7] D. Caucal. On infinite terms having a decidable monadic
theory. In Proceedings of MFCS 2002, volume 2420 of
Lecture Notes in Computer Science, pages 165–176. Springer-
Verlag, 2002.

[8] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko, and
M. Y. Vardi. Proving that programs eventually do something
good. In Proceedings of ACM SIGPLAN/SIGACT Symposium
on Principles of Programming Languages (POPL), pages
265–276. ACM Press, 2007.

[9] B. Coucelle. Handbook of Theoretical Computer Science,
Volume B, chapter Recursive Applicative Program Schemes,
pages 459–492. The MIT Press, 1990.

[10] B. Courcelle and M. Nivat. The algebraic semantics of
recursive program schemes. In Proceedings of MFCS 1978,
volume 64 of Lecture Notes in Computer Science, pages 16–
30, 1978.

[11] W. Dam. The IO- and OI-hierarchies. Theoretical Computer
Science, 20:95–207, 1982.

[12] W. Damm. Higher type program schemes and their tree lan-
guages. In Theoretical Computer Science, 3rd GI-Conference,
volume 48 of Lecture Notes in Computer Science, pages 51–
72, 1977.

[13] J. de Miranda. Structures generated by Higher-Order Gram-
mars and the Safety Constraint. PhD thesis, University of
Oxford, 2006.

[14] J. Engelfriet. Simple Program Schemes and Formal Lan-
guages, volume 20 of Lecture Notes in Computer Science.
Springer-Verlag, 1974.

[15] D. R. Ghica and A. Smith. Verifying higher-order programs
with pattern-matching algebraic data types. In Proceedings
of ACM SIGPLAN/SIGACT Symposium on Principles of Pro-
gramming Languages (POPL), pages 587–598, 2011.

[16] M. Hague, A. Murawski, C.-H. L. Ong, and O. Serre.
Collapsible pushdown automata and recursion schemes. In
Proceedings of 23rd Annual IEEE Symposium on Logic in
Computer Science, pages 452–461. IEEE Computer Society,
2008.

[17] M. Hague and A. W. To. The complexity of model checking
(collapsible) higher-order pushdown systems. In Proceedings
of FSTTCS 2010, pages 228–239, 2010.

[18] A. Igarashi and N. Kobayashi. Resource usage analysis.
ACM Transactions on Programming Languages and Systems,
27(2):264–313, 2005.

[19] T. Knapik, D. Niwinski, and P. Urzyczyn. Deciding monadic
theories of hyperalgebraic trees. In TLCA 2001, volume
2044 of Lecture Notes in Computer Science, pages 253–267.
Springer-Verlag, 2001.

[20] T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order
pushdown trees are easy. In FoSSaCS 2002, volume 2303 of
Lecture Notes in Computer Science, pages 205–222. Springer-
Verlag, 2002.

[21] T. Knapik, D. Niwinski, P. Urzyczyn, and I. Walukiewicz.
Unsafe grammars and panic automata. In ICALP 2005,
volume 3580 of Lecture Notes in Computer Science, pages
1450–1461. Springer-Verlag, 2005.

[22] N. Kobayashi. Model-checking higher-order functions. In
Proceedings of PPDP 2009, pages 25–36. ACM Press, 2009.
See also [25].

[23] N. Kobayashi. TRECS: A type-based model checker for
recursion schemes. http://www.kb.ecei.tohoku.ac.jp/∼koba/
trecs/, 2009.

[24] N. Kobayashi. Types and higher-order recursion schemes for
verification of higher-order programs. In Proceedings of ACM
SIGPLAN/SIGACT Symposium on Principles of Programming
Languages (POPL), pages 416–428, 2009. See also [25].

[25] N. Kobayashi. Model checking higher-order programs.
Available at http://www.kb.ecei.tohoku.ac.jp/\∼{}koba/
papers/hmc.pdf. A revised and extended version of [24] and
[22], 2010.

[26] N. Kobayashi. A practical linear time algorithm for trivial
automata model checking of higher-order recursion schemes.
In Proceedings of FoSSaCS 2011, volume 6604 of Lecture
Notes in Computer Science, pages 260–274. Springer-Verlag,
2011.

[27] N. Kobayashi and C.-H. L. Ong. Complexity of model
checking recursion schemes for fragments of the modal mu-
calculus. In Proceedings of ICALP 2009, volume 5556 of
Lecture Notes in Computer Science, pages 223–234. Springer-
Verlag, 2009.

[28] N. Kobayashi and C.-H. L. Ong. A type system equivalent
to the modal mu-calculus model checking of higher-order
recursion schemes. In Proceedings of LICS 2009, pages 179–
188. IEEE Computer Society Press, 2009.

[29] N. Kobayashi, R. Sato, and H. Unno. MOCHI: A model
checker for higher-order programs. http://www.kb.ecei.
tohoku.ac.jp/∼ryosuke/cegar/, 2011.

[30] N. Kobayashi, R. Sato, and H. Unno. Predicate abstraction
and cegar for higher-order model checking. In Proceedings
of ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2011.

[31] N. Kobayashi, N. Tabuchi, and H. Unno. Higher-order multi-
parameter tree transducers and recursion schemes for program
verification. In Proceedings of ACM SIGPLAN/SIGACT Sym-
posium on Principles of Programming Languages (POPL),
pages 495–508, 2010.

[32] M. M. Lester, R. P. Neatherway, C.-H. L. Ong, and S. J.
Ramsay. Model checking liveness properties of higher-order
functional programs. Unpublished manuscript, 2010.

[33] J. Midtgaard and D. V. Horn. Subcubic control flow analysis
algorithms. Higher-Order and Symbolic Computation.

[34] C. Mossin. Exact flow analysis. Mathematical Structures in
Computer Science, 13(1):125–156, 2003.

[35] M. Nivat. On the interpretation of recursive program schemes.
In Symposia Mathematica, pages 255–281, 1975.

[36] C.-H. L. Ong. On model-checking trees generated by higher-
order recursion schemes. In LICS 2006, pages 81–90. IEEE
Computer Society Press, 2006.

[37] C.-H. L. Ong. Logics and Languages for Reliability and Secu-
rity, chapter Models of Higher-Order Computation: Recursive
Schemes and Collapsible Pushdown Automata, pages 263–
299. IOS Press, 2010.

[38] C.-H. L. Ong and S. Ramsay. Verifying higher-order programs
with pattern-matching algebraic data types. In Proceedings
of ACM SIGPLAN/SIGACT Symposium on Principles of Pro-
gramming Languages (POPL), pages 587–598, 2011.

[39] P. Parys. Collapse operation increases expressive power of de-
terministic higher order pushdown automata. In Proceedings
of STACS 2011, 2011.

[40] O. Shivers. Control-Flow Analysis of Higher-Order Lan-
guages. PhD thesis, Carnegie-Mellon University, May 1991.

[41] T. Tsukada and N. Kobayashi. Untyped recursion schemes
and infinite intersection types. In Proceedings of FOSSACS
2010, volume 6014 of Lecture Notes in Computer Science,
pages 343–357. Springer-Verlag, 2010.

[42] R. Turner. An infinite hierarchy of term languages - an
approach to mathematical complexity. In Proceedings of
ICALP, pages 593–608, 1972.

[43] H. Unno, N. Tabuchi, and N. Kobayashi. Verification of tree-
processing programs via higher-order model checking. In
Proceedings of APLAS 2010, volume 6461 of Lecture Notes
in Computer Science, pages 312–327. Springer-Verlag, 2010.

[44] D. Vardoulakis and O. Shivers. Cfa2: A context-free approach
to control-flow analysis. In Proceedings of ESOP 2010,
volume 6012 of Lecture Notes in Computer Science, pages
570–589. Springer-Verlag, 2010.

[45] M. Wand. An algebraic formulation of the chomsky hierarchy.
In Category Theory Applied to Computation and Control,
volume 25 of Lecture Notes in Computer Science, pages 209–
213. Springer-Verlag, 1974.

