
Resource Usage Analysis

ATSUSHI IGARASHI

Kyoto University

and

NAOKI KOBAYASHI

Tohoku University

It is an important criterion of program correctness that a program accesses resources in a valid
manner. For example, a memory region that has been allocated should eventually be deallocated,

and after the deallocation, the region should no longer be accessed. A file that has been opened
should be eventually closed. So far, most of the methods to analyze this kind of property have
been proposed in rather specific contexts (like studies of memory management and verification
of usage of lock primitives), and it was not clear what the essence of those methods was or how

methods proposed for individual problems are related. To remedy this situation, we formalize a
general problem of analyzing resource usage as a resource usage analysis problem, and propose a
type-based method as a solution to the problem.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory; D.3.2 [Programming Languages]: Language Classifications—Applicative (functional)
languages; F.3.1 [Logics and Meaning of Programs]: Specifying and Verifying and Reasoning

about Programs; F.3.2 [Logics and Meaning of Programs]: Semantics of Programming Lan-
guages—Program analysis; Operational Semantics; F.3.3 [Logics and Meaning of Programs]:
Studies of Program Constructs—Type structure

General Terms: Languages, Reliability, Theory, Verification

Additional Key Words and Phrases: resource usage, type inference

1. INTRODUCTION

It is an important criterion of program correctness that a program accesses resources
in a valid manner. For example, a memory cell that has been allocated should

This is a revised and extended version of a paper presented in the proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL2002), ACM

SIGPLAN Notices volume 37 number 1, pages 331–342, January 2002. This work was supported
in part by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific
Research on Priority Areas Research No. 12133202, 2000.
Authors’ addresses: A. Igarashi, Graduate School of Informatics, Kyoto University, Yoshida-

Honmachi, Sakyo-ku, Kyoto 606-8501, Japan; email: igarashi@kuis.kyoto-u.ac.jp; N. Kobayashi,
Graduate School of Information Sciences, Tohoku University, 6-3-9 Aoba, Aramaki, Aoba-ku,
Sendai 980-8579, Japan; e-mail:koba@ecei.tohoku.ac.jp.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1–50.

2 · A. Igarashi and N. Kobayashi.

eventually be deallocated1, and after the deallocation, the cell should not be read
or updated. A file that has been opened should be eventually closed. A lock should
be acquired before a shared resource is accessed. After the lock has been acquired,
it should be eventually released.

A number of program analyses have been proposed to ensure such a property.
Type systems for region-based memory management [Aiken et al. 1995; Birkedal
et al. 1996; Tofte and Talpin 1994; Walker et al. 2000] ensure that deallocated
regions are no longer read or written. Linear type systems [Kobayashi 1999; Turner
et al. 1995; Wadler 1990; Wansbrough and Peyton Jones 1999] ensure that a linear
(use-once) value that has been already accessed is never accessed again. Abadi
and Flanagan’s type systems for race detection [Flanagan and Abadi 1999a; 1999b]
ensure that appropriate locks will be acquired before a reference cell or a concurrent
object is accessed. Freund and Mitchell’s type system [Freund and Mitchell 1999]
for the Java Virtual Machine (JVM) ensures that every object is initialized before
it is accessed. Bigliardi and Laneve’s type system [Bigliardi and Laneve 2000] for
the JVM ensures that an object that has been locked will be eventually unlocked.
DeLine and Fähndrich’s type system [DeLine and Fähndrich 2001] keeps track of
the state of each resource in order to control access to the resource.

The problems attacked in the above-mentioned pieces of work are similar: There
are different types of primitives to access resources (initialization, read, write, deal-
location, etc.) and we want to ensure that those primitives are applied in a valid
order. In spite of such similarity, however, most of the solutions (except for DeLine
and Fähndrich’s work [DeLine and Fähndrich 2001]) have been proposed for specific
problems. As a result, solutions are often rather ad hoc, and it is not clear how they
can be applied to other similar problems and how solutions for different problems
are related. This is in contrast with standard program analysis problems like flow
analysis: For the flow analysis problem, there is a standard definition and there are
several standard methods, whose properties (computational cost, precision, etc.)
are well studied.

Based on the observation above, our aims are:

(1) To formalize a general problem of analyzing how each resource is accessed as a
resource usage analysis problem (usage analysis problem, in short2), to make it
easy to relate existing methods and to stimulate further studies of the problem.

(2) To propose a type-based method for usage analysis. Unlike DeLine and Fähndrich’s
type system [DeLine and Fähndrich 2001], our type-based analysis does not
need programmers’ type annotation to guide the analysis. Our analysis au-
tomatically gathers information about how resources are accessed, and checks
whether it matches the programmer’s intention.

We give an overview of each point below.

1Or, a program can just call exit() before memory is exhausted.
2The term “usage analysis” is also used to refer to linearity analysis [Gustavsson and Svenningsson

2000]. Our resource usage analysis problem can be considered generalization of the problem of
linearity analysis.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 3

1.1 Resource Usage Analysis Problem

We formalize a resource usage analysis problem in a manner similar to a formaliza-
tion of the flow analysis problem [Nielson et al. 1999]. Suppose that each expression
of a program is annotated with a label, and let L be the set of labels. The standard
flow analysis problem for λ-calculus is to obtain a function flow ∈ L → 2L (2L

denotes the powerset of L) where flow(l) = {l1, . . . , ln} means that an expression
labeled with l evaluates to a value generated by an expression labeled with one of
l1, . . . , ln. (Or, equivalently, the problem is to obtain a function flow−1 ∈ L → 2L

where flow−1(l) = {l1, . . . , ln} means that only expressions labeled with l1, . . . , ln
can evaluate to the value generated by an expression labeled with l.) From a flow
function, we know what access may occur to each resource. For example, consider
the following fragment of an ML-like program:

let x = (fopen(s))lo in . . . fread(M lR) . . . fclose(N lC) . . .

Here, we assume that fopen opens a file of name s and returns a file pointer to
access the file, and that fread (fclose, resp.) takes a file pointer as an input and
reads (closes, resp.) the file. If flow−1(lo) = {lR}, then we know that the file
opened at lo may be read, but is not closed (since expression N lC cannot evaluate
to the file by the definition of flow−1).

A flow function does not provide information about the order of resource ac-
cesses. Suppose that flow−1(lo) is {lC , lR} in the above program. From the flow
information, we cannot tell whether the file created at lo is closed after it has been
read, or the file is read after it has been closed.

Let us write L∗ for the set of finite sequences of labels. We formalize resource
usage analysis as a problem of (1) computing a function use ∈ L → 2L

∗
where

l1 · · · ln ∈ use(l) means that a value generated by an expression labeled with l may
be accessed by primitives labeled with l1, . . . , ln in this order, and then (2) checking
whether use(l) contains only valid access sequences. Let us reconsider the above
example:

let x = fopenlo(s) in . . . freadlR(M) . . . fcloselC (N) . . .

(Here, labels are moved to primitives for creating or accessing resources, rather
than expressions fopen(s), M , or N to be evaluated to file pointers.) If use(lo) =
{lRlC , lRlRlC}, we know that the file opened at lo may be closed after it is read
once or twice, and the file is never read after being closed. On the other hand, if
use(lo) = {lRlC , lC lR}, the file may be read after it has been closed.

Many problems can be considered instances of the usage analysis problem. In
region-based memory management [Tofte and Talpin 1994; Birkedal et al. 1996;
Aiken et al. 1995; Walker et al. 2000], we can regard regions as resources. Suppose
that every primitive for reading a value from a region (writing a value into a region,
deallocating a region, resp.) is annotated with lR (lW , lF , resp.). Then, a region-
annotated program is correct if use(l) ⊆ (lR + lW)∗lF , where the regular expression
(lR + lW)∗lF denotes the set of sequences consisting of zero or more occurrences
of lR or lW followed by one lF . In linear type systems [Wadler 1990; Turner et al.
1995; Kobayashi 1999; Wansbrough and Peyton Jones 1999], we can regard values
as resources. A linear type system is correct if for every label l of a primitive for
creating linear (use-once) values, use(l) contains only sequences of length 1. The

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 · A. Igarashi and N. Kobayashi.

object initialization is correct [Freund and Mitchell 1999] if for every label l of an
(occurrence of) object creation primitive, every sequence in use(l) begins with the
label of a primitive for object initialization. The problem of checking usage of lock
primitives [Bigliardi and Laneve 2000] is reduced to that of checking whether in
every sequence in use(l), each occurrence of a label of the lock primitive is followed
by an occurrence of a label of the unlock primitive. The control flow analysis
problem can also be considered an instance of the usage analysis problem. We can
regard functions as resources, function abstraction as the primitive for creating a
function, and function application as the primitive for accessing a function. Then,
a function created at l may be called at l′ if use(l) contains l′.

1.2 Type-Based Usage Analysis

We present a type-based resource usage analysis for a call-by-value, simply typed
λ-calculus extended with primitives for creating and accessing resources.

The main idea is to augment types with information about a resource access
order. For example, the type of a file is written as (File, U), where U , called a
usage, expresses how the file is accessed. Its syntax is given by:

U ::= l |U1 ; U2 |U1 & U2 | · · ·
(We shall introduce other usage constructors later.) Usage l means that the resource
is accessed by a primitive labeled with l. U1 ;U2 means that the resource is accessed
according to U1 and then accessed according to U2. U1&U2 means that the resource
is accessed according to either U1 or U2. For example, a file that is accessed
by a primitive labeled with l1 and then by a primitive labeled with l2 has type
(File, l1 ; l2).

A type judgment of our type system is of the usual form Γ ` M : τ except that
types are extended. Here, while the type τ of M expresses how the resource M
should be accessed by the context in which M appears, the type environment Γ
expresses how the resources pointed to by free variables should be accessed dur-
ing the evaluation of M (strictly speaking, it is not always the case that those
accesses happen during the evaluation of M , as we will see below). For example,
x : (File, lR; lW) specifies that the resource x should be read once and then written
once. So, x : (File, lR; lW) ` freadlR(x); fwritelW (x) : bool is a valid judgment,
but x : (R, lR; lW) ` fwritelW (x); freadlR(x) : bool is not.

Then, we extend typing rules for the simply typed λ-calculus so that the evalua-
tion order is taken into account. For example, the ordinary rule for let-expressions
is:

Γ ` M : τ Γ, x : τ ` N : σ

Γ ` let x = M in N : σ

It is replaced by the following rule:

Γ ` M : τ ∆, x : τ ` N : σ

Γ;∆ ` let x = M in N : σ

Type environment Γ; ∆ (connected by ‘;’) indicates that the resources referred to by
free variables are first accessed according to Γ and then according to ∆, reflecting
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 5

the evaluation rule that M is evaluated and then N is evaluated. For example, if we
have y : (File, l1) ` M :bool (which implies that y is a file accessed at l1 in M) and
y :(File, l2), x :bool ` N :bool, then we get y :(File, l1; l2) ` let x = M in N :bool.
The resulting type environment indicates that y is a file accessed at l1 and then at
l2.

Actually, the type system is a little more complicated than it might seem. Con-
sider an expression M

4
= let x = y in (freadlR(y); fwritelW (x, c)) where c is a

character. If we naively apply the above rule, we get:

y : (File, lW) ` y : (File, lW)
y : (File, lR), x : (File, lW) ` freadlR(y); fwritelW (x, c) : bool
(y : (File, lW)); (y : (File, lR))(= y : (File, lW ; lR)) ` M : bool

The conclusion implies that y is first written at lW and then read at lR, which
is wrong. This wrong reasoning comes from the fact that the access represented
by the type environment y : (File, lW) occurs not when y is evaluated but when
the body of the let-expression freadlR(y); fwritelW (x) is evaluated. To solve this
problem, we introduce a usage constructor 3U . Both U and 3U mean that the
resource must be used according to U , but they differ in the specification about the
timing of resource access: If an expression M is to be typed under the assumption
that x’s usage is U , x must be accessed according to U now, when the expression
M is evaluated. On the other hand, if x’s usage is 3U , x can be accessed at any
time, either when M is evaluated, or when the value of M is used later. Using the
constructor 3, we replace the above inference with:

y : (File, 3lW) ` y : (File, lW)
y : (File, lR), x : (File, lW) ` freadlR(y); fwritelW (x, c) : bool

y : (File, 3lW ; lR) ` M : bool

The premise y : (File, 3lW) ` y : (File, lW) reflects the fact that the resource y is
accessed only when the value of y is used later (when fwritelW (x) is evaluated). The
usage 3lW ; lR in the conclusion means that an access at lW may occur immediately
before an access at lR occurs, or later after an access at lR occurs. So, the conclusion
implies that y may be accessed at lW and lR in any order. (In order to obtain a more
accurate usage lR; lW , we need to keep dependencies between different variables:
See Section 7.)

In order to get accurate information about the access order, we also need to have
a rule to remove 3. Suppose that x : (File, 3l) ` M : τ is derived and that we know
that the value (evaluation result) of M cannot contain a reference to x. Then,
we know that x is accessed at l when M is evaluated, not later. To allow such
reasoning, we introduce the following rule:

Γ, x : τ ` M : σ x does not escape from M

Γ, x : _τ ` M : σ

Here, _ is a constructor to cancel the 3-constructor.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 · A. Igarashi and N. Kobayashi.

Based on the above idea, we formalize a type system for usage analysis and
prove its correctness. We also develop a type inference algorithm to infer resource
usage information automatically so that programmers only have to declare what
access sequences are valid: the type inference algorithm automatically computes
the function use, and checks whether use(l) contains only valid access sequences
for each resource creation point l.

1.3 The Rest of This Paper

Section 2 introduces a target language and Section 3 defines the problem of resource
usage analysis. After Section 4 presents a type system for resource usage analysis
and Section 5 proves its correctness, Section 6 gives a type inference algorithm.
Section 7 discusses extensions of the type-based method. Section 8 discusses related
work and Section 9 concludes.

2. TARGET LANGUAGE

This section introduces λR, a call-by-value λ-calculus extended with primitives to
create and access resources.

We assume that there is a countably infinite set L of labels, ranged over by the
meta-variable l. We write L∗ for the set of finite sequences of labels, and write
L∗,↓ for the set L∗ ∪ {s ↓ | s ∈ L∗}. The special symbol ‘↓’ is used to denote the
termination of program execution. We call an element of L∗,↓ a trace. We write ε
for the empty sequence, and s1s2 for the concatenation of two traces s1 and s2. A
trace set, denoted by the meta-variable Φ, is a subset of L∗,↓ that is prefix-closed,
i.e., ss′ ∈ Φ implies s ∈ Φ. S] denotes the set of all prefixes of elements of S, i.e.,
{s ∈ L∗,↓ | ss′ ∈ S}.

Definition 2.1 (Terms) . The syntax of λR terms is given by:

M ::= true | false | x | fun(f, x,M) | if M1 then M2 else M3

|M1 M2 | newΦ() | accl(M) | let x = M1 in M2

Here, we have extended the standard λ-calculus with two constructs: newΦ() for
creating a new resource and accl(M) for accessing resource M . For simplicity, we
consider a single kind of resource (hence the single primitive for resource creation).
Also, we assume that access primitives always return true or false. This is not
so restrictive from the viewpoint of usage analysis: For example, the behavior of
a primitive that accesses a resource and then returns the updated resource can be
simulated by λr.(let x = accl(r) in r). fun(f, x, M) denotes a recursive function
f that satisfies f = λx.M . A let-expression let x = M1 in M2 is computationally
equivalent to (fun(f, x, M2)) M1 (where f is not free in M2), but we include it
to make our type-based analysis in Section 4 more precise (also see Section 7). A
formal operational semantics of the language is defined in the next section.

The trace set Φ attached to an occurrence of resource creation primitive repre-
sents the programmer’s intention on how the resource should be accessed during
evaluation. A trace of the form s ↓ is a possible sequence of accesses performed
to a resource by the time when evaluation terminates, while a trace of the form
s(∈ L∗) is a possible sequence of accesses performed by some time during evalua-
tion. For example, new{l2 ↓,l1l2 ↓}]

() creates a resource that should be accessed at
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 7

l1 at most once and then accessed once at l2 before the evaluation of the whole
term terminates. It is important to distinguish between traces ending with ↓ and
those without ↓. For example, for a file, the trace set may contain lR; lW but not
lR; lW ↓, since the file should be closed before the program terminates.

We do not fix a particular way to specify trace sets Φ. They could be specified
in various ways, for example, using regular expressions, shuffle expressions [Gis-
cher 1981; Jȩdrzejowicz and Szepietowski 2001] context-free grammars, modal log-
ics [Emerson 1990], or usage expressions we introduce in Section 4.

Bound and free variables are defined in a standard manner. We write FV(M)
for the set of free variables in M . We often write M ′; M for let x = M ′ in M when
x 6∈ FV(M), and write λx.M for fun(f, x, M) when f 6∈ FV(M).

Example 2.2. Let init, read, write, and free be primitives to initialize, read,
update, and deallocate a resource respectively. (In examples, we often use more
readable names for primitives, rather than acc.) The following program creates a
new resource r, initializes it, and then calls function f . Inside function f , resource
r is read and updated several times and then deallocated.

let f = fun(f, x, if readlR(x) then freelF (x) else (writelW (x); f x)) in
let r = newΦr () in (initlI (r); f r)

Here, Φr = (lI(lR + lW)∗lF ↓)] (where lI(lR + lW)∗lF ↓ is a regular expression). Φr

specifies that r should be initialized first and deallocated at the end. Alternatively,
Φr can be a more precise specification (lI(lRlW)∗lRlF ↓)]. This kind of access
pattern (initialized, accessed, and then deallocated) often occurs to various types
of resources (e.g., memory, files, Java objects [Freund and Mitchell 1999]).

3. RESOURCE USAGE ANALYSIS PROBLEM

The purpose of resource usage analysis is to infer how each resource is used in a given
program, and check whether the inferred resource usage matches the programmer’s
intention (specified by using trace sets). We give below a formal definition of the
resource usage analysis problem, by using an operational semantics that takes the
usage of resources into account.

3.1 Operational Semantics

We first introduce the notion of heaps to keep track of how each resource is used
during evaluation: Formally, a heap is a mapping from variables to trace sets.

Definition 3.1.1 (Heap) . A heap H is a function from a finite set of variables
to trace sets.

We write {x1 7→ Φ1, . . . , xn 7→ Φn} (n may be 0) for the heap H such that
dom(H) = {x1, . . . , xn} and H(xi) = Φi. When dom(H1)∩dom(H2) = ∅, we write
H1]H2 for the heap H such that dom(H) = dom(H1)∪dom(H2) and H(x) = Hi(x)
if x ∈ dom(Hi).

Following [Kobayashi 1999; Morrisett et al. 1995; Turner et al. 1995], program
execution is represented by reduction of pairs of a heap and a term. When a resource
is used at a program point l, the attached traces are “consumed” — the label l at
the head of a trace is removed (if the trace begins with l; the traces not beginning

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 · A. Igarashi and N. Kobayashi.

z fresh

(H, E[newΦ()]) ; (H] {z 7→ Φ}, E[z])
(R-New)

b = true or false Φ−l 6= ∅
(H] {x 7→ Φ}, E[accl(x)]) ; (H] {x 7→ Φ−l}, E[b])

(R-Acc)

Φ−l = ∅
(H] {x 7→ Φ}, E[accl(x)]) ; Error

(R-AccErr)

(H, E[fun(f, x, M) v]) ; (H, E[[fun(f, x, M)/f, v/x]M]) (R-App)

(H, E[if true then M1 else M2]) ; (H, E[M1]) (R-IfT)

(H, E[if false then M1 else M2]) ; (H, E[M2]) (R-IfF)

Fig. 1. Reduction Rules

with l are discarded). We define Φ−l, which represents the trace set after the use at
l, by {s | ls ∈ Φ}. The formal reduction relation is defined below, using evaluation
contexts.

Definition 3.1.2 (Values, Substitution) . A value v is either a variable,
fun(f, x,M), true, or false. We write [v1/x1, . . . , vn/xn] for the standard (si-
multaneous) capture-avoiding substitution of vi for xi.

Definition 3.1.3 (Evaluation Contexts) . The syntax of evaluation contexts
is given by:

E ::= [] | if E then M1 else M2 | E M | v E | accl(E) | let x = E in M

We write E [M] for the expression obtained by replacing [] with M in E .

Definition 3.1.4. A reduction relation (H, M) ; P , where P is either Error or
a pair (H ′,M ′), is defined as the least relation closed under the rules in Figure 1.
We write ;∗ for the reflexive transitive closure of ;.

Most of the rules are straightforward. In rule R-Acc, the attached trace set
must include a trace beginning with l (represented by Φ−l 6= ∅). On the other
hand, if no such traces are included, a usage error is signaled (R-AccErr). Since
we do not care about the result of resource access here, it is left unspecified which
boolean value is returned in R-Acc, hence reduction is nondeterministic. When an
ordinary type error like application of a non-functional value occurs, the reduction
will get stuck.

Example 3.1.5. Let M be the following program, obtained by removing initlI (r)
from the program in Example 2.2 (let Φr be (lI(lR + lW)∗lF)]):

let f = fun(f, x, if readlR(x) then freelF (x) else (writelW (x); f x)) in
let r = newΦr () in f r

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 9

The evaluation of M fails because r is read before it is initialized.

({},M)
;∗ ({z 7→ (lI(lR + lW)∗lF ↓)]}, fun(f, x, if readlR(x) then · · · else · · ·) z)
; ({z 7→ (lI(lR + lW)∗lF ↓)]}, if readlR(z) then · · · else · · ·)
; Error

3.2 Resource Usage Analysis

Now, we define the problem of resource usage analysis. Intuitively, M is resource-
safe if evaluation of M does not cause any usage errors and if all the resources are
used up when the evaluation terminates.

Definition 3.2.1. M is resource-safe iff (1) ({},M) 6;∗ Error and (2) if ({},M) ;∗

(H, v), then for any x ∈ dom(H), ↓ ∈ H(x). The resource usage analysis problem
is, given a program M , to check whether M is resource-safe.

Since the problem is undecidable, the resource usage analysis technique developed
here is only sound (not complete): If the answer is yes, the program should indeed
be resource-safe, but even if the answer is no, the program may be resource-safe.

Example 3.2.2. The program M in Example 2.2 is resource-safe.

Example 3.2.3. Let M be the following program, obtained from the program
in Example 2.2 by replacing freelF (x) in the definition of f with true (let Φr be
(lI(lR + lW)∗lF)]):

let f = fun(f, x, if readlR(x) then true else (writelW (x); f x)) in
let r = newΦr () in (initlI (r); f r)

It is evaluated as follows:

({},M)
;∗ ({z 7→ {(lR + lW)∗lF ↓}]}, if true then true

else (writelW (z); fun(f, x, · · ·) z))
; ({z 7→ {(lR + lW)∗lF ↓}]}, true)

In the final state of the execution, the trace set associated to x2 indicates that the
resource still needs to be accessed at lF before the execution terminates. Since the
term cannot be reduced further, the program M is not resource-safe (the second
condition of Definition 3.2.1 is violated).

According to the second condition of Definition 3.2.1, a resource-safe program
must use up all resources before it terminates; For example, the program must
close all files of usage (lR + lW)∗lC . If a programmer wants to rely on the operating
system to close a file, the usage of the file should be specified as (lR + lW)∗(lC + ε)
instead of (lR + lW)∗lC .

Remark 3.2.4. Alternatively, we can formalize usage analysis as a problem of
giving not only a “yes”/“no” answer but also a trace set (consisting of possible
access sequences) for each resource, as explained in Section 1. Our type-based
analysis presented in the following sections can solve this problem, too.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 · A. Igarashi and N. Kobayashi.

4. A TYPE SYSTEM FOR RESOURCE USAGE ANALYSIS

In this section, we present a type system that guarantees that every well-typed
(closed) program is resource-safe. As hinted in Section 1, a main idea is to augment
the type of a resource with a usage expression (a usage, in short), which expresses
how the resource may be accessed. We first define the syntax and semantics of
usages in Subsection 4.1. We then define types, type environments, and typing
rules in Subsections 4.2–4.4. Note that programmers need not explicitly declare
any usage in their programs: the type inference algorithm described in Section 5
can automatically recover usage information from (untyped) terms.

4.1 Usages

Syntax of Usages. As explained in Section 1, usage expressions defined below are
used to describe how each resource can be accessed.

Definition 4.1.1 (Usages) . The set U of usages, ranged over by U , is defined
by:

U ::= 0 | α | l |U1 & U2 |U1 ; U2 |U1 ⊗ U2 | µα.U |3U |_U |U1 ¯ U2

We assume that the unary usage constructors 3 and _ bind tighter than the
binary constructors (&, ;,⊗ and ¯), so that 3l1 ; l2 means (3l1) ; l2.

0 is the usage of a resource that cannot be accessed at all. α denotes a usage
variable (which is bound by µα.). Usages l, U1 ;U2, and U1&U2 have been explained
in Section 1. U1 ⊗ U2 is the usage of a resource that can be accessed according to
U1 and U2 in an interleaved manner. So, (l1 ; l2) ⊗ l3 is equivalent to (l3; l1; l2) &
(l1; l3; l2)&(l1; l2; l3). µα.U denotes a recursive usage such that α = U . For example,
µα.(0 & (l; α)) means that the resource is accessed at l an arbitrary number of
times. We write !U as a shorthand notation for µα.(0 & (U ⊗ α)). As mentioned
in Section 1, 3U means that the resource may be accessed now or later according
to U . So, a resource of usage 3l1; l2 may be accessed either at l1 and then at l2,
or at l2 and then at l1. _U means that the access represented by U must occur
now. So, for example, _(3l1; l2; 3l3) is equivalent to l1 ⊗ (l2; l3). Usage U1 ¯ U2

means that the access represented by U2 occurs for each single access represented
by U1. For example, (l1 ⊗ l2) ¯ U is equivalent to U ⊗ U . The precise meaning of
each usage is defined later in this subsection.

Probably, we do not need some of the usage constructors (like ¯) to express the
final result of resource usage inference, but we need them to define the type system
and the type inference algorithm.

Remark 4.1.2. Our usage constructors ⊗ and & correspond to multiplicative
conjunction and additive conjunction (also denoted by ⊗ and &) of linear logic [Gi-
rard 1987], respectively. In linear logic, A ⊗ B intuitively means that we have A
and B at the same time, while A&B means that we can choose either of A and B,
but cannot have both at the same time. This intuition matches the intuition of the
usages U1 ⊗ U2 and U1 & U2: U1 ⊗ U2 means that we have both the capability to
access a resource according to U1 and the capability to access a resource according
to U2, while U1 & U2 means that we can choose one from the capability to access
a resource according to U1 and the capability to access a resource according to U2,
but cannot exercise both capabilities.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 11

Example 4.1.3. The usage of a read-only file can be expressed by µα.(0 & (lR;α)); lC
(or (!lR); lC), while that of a writable file can be expressed by µα.(0 & ((lR & lW);α)); lC
(or !(lR & lW); lC). The usage of a stack is expressed by !(lpush; lpop), and lpush and
lpop are the labels for the push and pop primitives respectively.

The usage expressions are strictly more expressive than the context-free grammar
due to the presence of ⊗ and recursion. One may wonder why we do not use a
simpler language (like a regular language) for describing usages. There are two
reasons for this:

(1) Usage of some resources cannot be specified using a regular expression. For
example, consider a stack-like resource, on which the ‘pop’ operation should be
performed the same number of times as the ‘push’ operation.

(2) Even if the usage of a resource can be specified using a regular expression (as we
have shown in the example of files), the usage of the resource in a certain part
of the program may not be expressed using a regular expression. For example,
consider the following recursive function (where b is some boolean expression
that does not contain any access to x):

fun(f, x, if b then true else (g(x); f(x);h(x))

Function g is first applied to the argument x of the function, and then h is
applied the same number of times. In order to perform type reconstruction,
we need to be able to assign a most general type for each expression. Using
regular expressions, however, we cannot assign the most general type to the
above function. The type judgment

g : (R, αg) → bool, h : (R, αh) → bool ` fun(f, x, · · ·) : (R, α∗
gα

∗
h) → bool

is correct but there are type judgments that express more precise information:

g : (R, αg) → bool, h : (R, αh) → bool
` fun(f, x, · · ·) : (R, ε + αgαh + αgα

+
g αhα+

h) → bool
g : (R, αg) → bool, h : (R, αh) → bool

` fun(f, x, · · ·) : (R, ε + αgαh + αgαgαhαh + α2
gα

+
g α2

hα+
h) → bool

· · ·

The above example suggests that we need at least a context-free language to
express the most general typing. In fact, in our type system, the function is
typed as:

g : (R, αg) → bool, h : (R, αh) → bool
` fun(f, x, · · ·) : (R, µα.(0 & (αg;α; αh))) → bool,

where the usage µα.(0 & (αg; α; αh)) denotes sequences of the form αn
g αn

h.
Moreover, as we have already explained in Section 1, we need the 3-constructor
for expressing information about not only the order between accesses but also
the timing of accesses.

A usage constructor ¯ is necessary for expressing usage of a resource accessed
through the invocation of a function closure. For example, consider a function
λy.readlR(x). The resource x is read once each time the function is called. There-
fore, if the function is called n times, the resource x is read n times. More generally,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 · A. Igarashi and N. Kobayashi.

if x is accessed according to U in an expression e, and the function λy.e is called n
times, the usage of x is expressed by:

U ⊗ · · · ⊗ U︸ ︷︷ ︸
n

Since we may not be able to statically determine exactly how often each function is
called, we express information about how often a function may be called by using
usage expressions (but with only a special label 1, as we are only interested in
how often a function is called, not in the call sites3). For example, the usage of a
function that may be called at most twice is expressed by the usage 0&1&(1⊗ 1).
The usage of a resource in a function closure can be computed from the usage of the
function closure (expressing how often the function may be called) and the usage
of a resource in the function body: If x is accessed according to U in an expression
e, and the function λy.e is called according to U ′, the usage of x is expressed by
U ′ ¯ U . Intuitively, the usage:

(1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
n

) ¯ U

expresses

U ⊗ · · · ⊗ U︸ ︷︷ ︸
n

,

and the usage:

(U1 & · · · & Un) ¯ U

expresses

(U1 ¯ U) & · · · & (Un ¯ U).

We should note that ordering information in the usage of a function is not as useful
as might be expected, to estimate the usage of the resource referred to by a free
variable in this function. Suppose, for instance, x is accessed according to U in an
expression e. Even if the usage of the function λy.e is given 1 ; 1 (the order between
the two calls is known), the usage of x is not necessarily U ; U . As it is usually the
case for recursive functions, the same (non-recursive) function may be called twice
before the execution of the first call is finished. Thus, we estimate the usage of x
to be U ⊗ U and define the semantics of usages so that (1 ; 1) ¯ U is equivalent to
U ⊗ U .

Semantics of Usages. We define the meaning of usages using a labeled transition
semantics. A usage denotes a set of traces, obtained from possible transition se-
quences. We also define a subusage relation, which induces a subtyping relation,
using the labeled transition system and the usual notion of simulation. In what
follows, we assume the meta-variable l ranges over L ∪ {1}.

We shall define a transition relation U
l−→ U ′, which means that a resource of

usage U can be first accessed at l and then accessed according to U ′. The transition
relation is basically defined in a manner similar to those for process calculi [Milner

3As we will see in Section 4.2, usages including only 1 as a label are attached to function types.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 13

U1 & U2 ¹ U1 U1 & U2 ¹ U2 µα.U ¹ [µα.U/α]U
U1 ¹ U ′

1 U2 ¹ U ′
2

U1 ; U2 ¹ U ′
1 ; U ′

2

U1 ¹ U ′
1 U2 ¹ U ′

2

U1 ⊗ U2 ¹ U ′
1 ⊗ U ′

2

U ¹ U ′

3U ¹ 3U ′
U ¹ U ′

_U ¹ _U ′
U1 ¹ U ′

1 U2 ¹ U ′
2

U1 ¯ U2 ¹ U ′
1 ¯ U ′

2

Fig. 2. Relation U ¹ U ′

1989; Sangiorgi and Walker 2001]. A little complication, however, arises for defining
the semantics of usage U1; U2. A resource of usage U1; U2 can be used according to
U2 only if U1 no longer contains accesses that must be performed immediately. So,
the usage lR; lW should have only the transition sequence:

lR; lW
lR−→ lW

lW−→ 0

since lR means that the resource must be read immediately, while the usage 3lR; lW
should have two transition sequences:

3lR; lW
lR−→ lW

lW−→ 0

3lR; lW
lW−→ 3lR

lR−→ 0,

since 3lR means that the read access may be delayed. In general, the part U2 in
usage U1; U2 can be reduced only when all the accesses specified in U1 are guarded
by 3. We express this condition by a unary predicate U1

⇓, defined below.
Before defining the transition relation, we first define auxiliary relations, includ-

ing U1
⇓ mentioned above.

Definition 4.1.4. A relation ¹ is the least reflexive and transitive relation on
usages that satisfies the rules in Figure 2.

U1 ¹ U2 holds when U2 is obtained from U1 by unfolding some recursive usages
(µα.U) and removing some branches from choices (U & U ′). For example, l1; (l2 &
l3) ¹ l1; l2 and µα.(0 & (U ; α)) ¹ 0& (U ; µα.(0 & (U ; α))) ¹ U ; µα.(0 & (U ; α)).

Definition 4.1.5. Unary relations void(·), ·↓ and ·⇓ are the least relations on
usages that satisfy the rules in Figure 3.

Intuitively, void(U) means that the resource cannot be used at all. In other
words, void(U) holds if U expresses essentially the same usage as 0. For exam-
ple, void(0 & 30) holds. U↓ means that some branch of the usage is equivalent to
0, and thus the resource need not be accessed before evaluation of the whole term
terminates. For example, (0 & lR)↓ holds, although void(0 & lR) does not hold.

Now we define the transition relation U
l−→ U ′.

Definition 4.1.6. A transition relation U
l−→ U ′ on usages is the least relation

closed under the rules in Figure 4.

The rules (UR-ParR) and (UR-SeqR) highlight the difference between U1 ⊗ U2

and U1 ;U2: (UR-ParR) allows a resource of usage U1⊗U2 to be accessed according
to U2 without any condition, while (UR-SeqR) requires U⇓, which specifies that
U1 does not contain any obligation to access the resource immediately, in order for

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 · A. Igarashi and N. Kobayashi.

void(U):

void(0)
void(U)

void(3U)

void(U)

void(_U)

void(U)

void(U ¯ U ′)

void(U)

void(U ′ ¯ U)

op = ⊗ or ; or & void(U1) void(U2)

void(U1 opU2)

void([µα.U/α]U)

void(µα.U)

U↓:

U ¹ U ′ void(U ′)

U↓

U⇓:

(3U)⇓
void(U)

U⇓
U⇓

(U ′ ¯ U)⇓
op = ⊗ or ; or & U1

⇓ U2
⇓

(U1 opU2)⇓
([µα.U/α]U)⇓

(µα.U)⇓

Fig. 3. Predicates void(U), U↓, and U⇓

a resource of usage U1 ; U2 to be accessed according to U2. As shown in the rules
(UR-Box) and (UR-Unbox), the constructors 3 and _ do not directly affect the
transition of a usage. Those constructors affects only the side condition U1

⇓ in the
rule (UR-SeqR). The premise U1

l1−→ U ′
1 of the rule (UR-Mult) (actually l1 is

always the same usage 1 in our type system) implies that a resource of U1 ¯ U2

can be used according to U2 ⊗ (U ′
1 ¯ U2) (recall that (1 ⊗ · · · ⊗ 1) ¯ U2 intuitively

means U2 ⊗ · · · ⊗ U2). The other premise U2
l2−→ U ′

2 means that a resource of
U2 may be used first at l2 and then U ′

2. So, a resource of usage U1 ¯ U2, which
subsumes U2 ⊗ (U ′

1 ¯U2), may be first used at l2 and then used according to U ′
2 ⊗

(U ′
1 ¯ U2), as specified in the conclusion of rule (UR-Mult). Rule (UR-PCong)

allows elimination of & and expansion of recursive usages to be performed before
the reduction. For example, we can derive l1 & l2

l1−→ 0 by:

l1 & l2 ¹ l1 l1
l1−→ 0

l1 & l2
l1−→ 0

Example 4.1.7. 3l1; l2 has two transition sequences: 3l1; l2
l1−→ 30; l2

l2−→
30;0 and 3l1; l2

l2−→ 3l1;0
l1−→ 30;0 but l1; l2 has only the transition sequence:

l1; l2
l1−→ 0; l2

l2−→ 0;0. (Note the righthand premise of rule (UR-SeqR).)
_(3l1; l2); l3 has two transition sequences:

_(3l1; l2); l3
l1−→ _(30; l2); l3

l2−→ _(30;0); l3
l3−→ _(30;0);0

_(3l1; l2); l3
l2−→ _(3l1;0); l3

l1−→ _(30;0); l3
l3−→ _(30;0);0

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 15

l
l−→ 0 (UR-Zero)

U1
l−→ U ′

1

U1 ⊗ U2
l−→ U ′

1 ⊗ U2

(UR-ParL)

U2
l−→ U ′

2

U1 ⊗ U2
l−→ U1 ⊗ U ′

2

(UR-ParR)

U1
l−→ U ′

1

U1 ; U2
l−→ U ′

1 ; U2

(UR-SeqL)

U2
l−→ U ′

2 U1
⇓

U1 ; U2
l−→ U1 ; U ′

2

(UR-SeqR)

U
l−→ U ′

3U
l−→ 3U ′

(UR-Box)

U
l−→ U ′

_U
l−→ _U ′

(UR-Unbox)

U1
l1−→ U ′

1 U2
l2−→ U ′

2

U1 ¯ U2
l2−→ U ′

2 ⊗ (U ′
1 ¯ U2)

(UR-Mult)

U ¹ U ′′ U ′′ l−→ U ′

U
l−→ U ′

(UR-PCong)

Fig. 4. Usage Reduction Rules

(1; 1)¯ (l1; l2) has the following transition sequences (For the sake of readability,
we shall simply write U for 0; U):

(1; 1) ¯ (l1; l2)
l1−→ l2 ⊗ (1 ¯ (l1; l2))
l2−→ 0 ⊗ (1 ¯ (l1; l2))
l1−→ 0 ⊗ l2 ⊗ (0 ¯ (l1; l2))
l2−→ 0 ⊗ 0 ⊗ (0 ¯ (l1; l2)).

(1; 1) ¯ (l1; l2)
l1−→ l2 ⊗ (1 ¯ (l1; l2))
l1−→ l2 ⊗ l2 ⊗ (0 ¯ (l1; l2))
l2−→ 0 ⊗ l2 ⊗ (0 ¯ (l1; l2))
l2−→ 0 ⊗ 0 ⊗ (0 ¯ (l1; l2)).

So, (1; 1) ¯ (l1; l2) has the same transition sequences as (l1; l2) ⊗ (l1; l2).

The set of traces denoted by a usage U , written [[U]], is defined as follows.

Definition 4.1.8. Let U be a usage. [[U]] denotes the set:

{l1 · · · ln | ∃U1, . . . , Un.(U l1−→ U1 · · ·Un−1
ln−→ Un)}

∪{l1 · · · ln ↓ | ∃U1, . . . , Un.((U l1−→ U1 · · ·Un−1
ln−→ Un) ∧ Un

↓)}

Here, n can be 0 (so ε ∈ [[U]] for any U).

It is trivial by definition that [[U]] is a trace set (i.e., prefix-closed).
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 · A. Igarashi and N. Kobayashi.

Example 4.1.9.

[[0]] = {ε, ↓}
[[µα.α]] = {ε}

[[3(l1; l2); l3]] = {l1l2l3 ↓, l1l3l2 ↓, l3l1l2 ↓}]

[[µα.(0 & (l; α))]] = {↓, l ↓, ll ↓, lll ↓, . . .}]

We define subusage and subtype relations U1 ≤ U2 and τ1 ≤ τ2 below. Intuitively,
U1 ≤ U2 means that U1 represents a more general usage than U2, so that a resource
of usage U1 may be used as that of usage U2. Similarly, τ1 ≤ τ2 means that a value
of type τ1 may be used as a value of type τ2.

In order for U1 ≤ U2 to hold, the condition [[U1]] ⊆ [[U2]] is not sufficient. For
example, [[3l]] = [[l]] = {ε, l, l ↓} holds, but l should not be considered a subusage
of 3l: Note that l, which says that the resource must be accessed now, expresses
a more restrictive usage than 3l, which says that the resource may be accessed at
any time. We, therefore, require the subusage relation to be closed under usage
contexts. Formally, a usage context, written C, is an expression obtained from
a usage by replacing one occurrence of a free usage variable with []. Suppose
that the set of free usage variables in U are disjoint from the set of bound usage
variables in C. We write C[U] for the usage obtained by replacing [] with U .
For example, if C = µα.([] ; α), then C[U] = µα.(U ; α). Let C = [] ; l′. Then,
[[C[l]]] = {ε, l, ll′, ll′ ↓} and [[C[3l]]] = {ε, l, ll′, l′l, ll′ ↓, l′l ↓}, so that usages l and
3l can be distinguished.

Using the usage contexts, one could define the subusage relation by: U1 ≤ U2 if
and only if [[C[U1]]] ⊆ [[C[U2]]] for any usage context C. We, however, impose a
stronger condition for the convenience of proving type soundness.

Definition 4.1.10. The subusage relation ≤ is the largest binary relation such
that for any usages U1 and U2, if U1 ≤ U2, then the following conditions are
satisfied:

(1) C[U1] ≤ C[U2] for any usage context C;

(2) If U2
l−→ U ′

2, then U1
l−→ U ′

1 and U ′
1 ≤ U ′

2 for some U ′
1.

(3) If U2
↓, then U1

↓.

Intuitively, U1 is a subusage of U2 if for any context C, every transition step of
C[U1] is simulated by a transition of C[U2]. It is trivial that if U1 ≤ U2 holds, then
[[C[U1]]] ⊆ [[C[U2]]] holds for any usage context C.

We write U1
∼= U2 if and only if U1 ≤ U2 and U2 ≤ U1. Some properties of ≤

and usage constructors, including reflexivity, transitivity of ≤, commutativity and
associativity of ⊗, etc. are shown in Appendix A.

Example 4.1.11. U ≤ µα.α holds for any U . U1 &U2 ≤ U1 holds for any U1 and
U2. U ∼= U ⊗ 0 holds for any U . More laws are given in Appendix A.

Example 4.1.12. l ≤ 0 does not hold, since 0↓ holds but l↓ does not hold, which
violates the third condition of Definition 4.1.10.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 17

4.2 Types

Now we introduce the syntax of types. As explained above, we associate both
resource types and function types with usages.

Definition 4.2.1 (Types) . The set of types, ranged over by τ , is defined by:

τ ::= bool | (τ1 → τ2, U) | (R, U)

(τ1 → τ2, U) is the type of a function that is accessed (i.e., called) according to U .
For example, (bool → bool, 1 ⊗ 1) is the type of a boolean function that is called
twice. (R, U) is the type of a resource that is accessed according to U .

The outermost usage of τ , written Use(τ), is defined by: Use(bool) = 0,
Use(τ1 → τ2, U) = U , and Use(R, U) = U .

We extend the subusage relation to the following subtype relation on types. As
usual, τ1 is a subtype of τ2, written τ1 ≤ τ2, when a value of type τ1 may be used
as a value of type τ2.

Definition 4.2.2. The subtype relation ≤ is the least binary relation on types
that satisfies the following rules:

bool ≤ bool (Sub-Bool)

U ≤ U ′

(τ1 → τ2, U) ≤ (τ1 → τ2, U
′)

(Sub-Fun)

U ≤ U ′

(R, U) ≤ (R, U ′)
(Sub-Res)

Remark 4.2.3. Actually, we could relax the above subtype relation by replacing
rule (Sub-Fun) with the following rule.

τ ′
1 ≤ τ1 τ2 ≤ τ ′

2 U ≤ U ′

(τ1 → τ2, U) ≤ (τ ′
1 → τ ′

2, U
′)

The replacement would make our type-based analysis more precise. We did not do
so in this paper for the sake of simplicity.

4.3 Type Judgments and Type Environments

We consider a type judgment of the form Γ ` M : τ , where Γ is a type environment,
which is a mapping from a finite set of variables to types. We use meta-variables Γ
and ∆ for type environments. We write ∅ for the type environment whose domain
is empty. When x 6∈ dom(Γ), we write Γ, x : τ for the type environment ∆ such
that dom(∆) = dom(Γ) ∪ {x}, ∆(x) = τ , and ∆(y) = Γ(y) for y ∈ dom(Γ).

A type environment specifies how the resources pointed to by free variables should
be accessed. For example, x : (R, lR), y : (R, lW) specifies that the resource x should
be read once, and y should be written once. The type environment x : (R, lR; lW)
specifies that the resource x should be first read once and then written once. A type
judgment Γ ` M : τ means that the expression M obeys the resource usage specified

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 · A. Igarashi and N. Kobayashi.

by Γ, and evaluates to a value of type τ . So, x:(R, lR; lW) ` readlR(x);writelW (x) :
bool is a valid judgment, but x : (R, lR; lW) ` writelW (x); readlR(x) : bool is not.

We introduce operations on type environments so that a complex specification
of resource usage may be constructed from simpler specifications. For example,
the type environment Γ1; Γ2, defined below, specifies that resources should be first
accessed according to Γ1 and then according to Γ2. As explained in Section 1,
these operations are useful for defining typing rules. We also define relations on
type environments.

Definition 4.3.1 (Operations on Types and Type Environments) . Let C
be a usage context. Suppose that the set of free usage variables appearing in τ or
Γ is disjoint from the set of bound usage variables in C. We define C[τ] and C[Γ]
by:

C[bool] = bool
C[(τ1 → τ2, U)] = (τ1 → τ2, C[U])

C[(R, U)] = (R, C[U])
dom(C[Γ]) = dom(Γ)

C[Γ](x) = C[Γ(x)]

Let op be a binary usage constructor ‘;’ or ‘&’. It is extended to operations on
types and type environments by:

bool opbool = bool
(τ1 → τ2, U1)op (τ1 → τ2, U2) = (τ1 → τ2, U1 opU2)

(R, U1)op (R, U2) = (R, U1 opU2)

dom(Γ1 opΓ2) = dom(Γ1) ∪ dom(Γ2)

(Γ1 opΓ2)(x) =





Γ1(x)opΓ2(x) if x ∈ dom(Γ1) ∩ dom(Γ2)
Γ1(x)op0 if x ∈ dom(Γ1)\dom(Γ2)
0opΓ2(x) if x ∈ dom(Γ2)\dom(Γ1).

The type environment _xΓ is defined by

_xΓ =
{

Γ if x 6∈ dom(Γ)
Γ′, x : (R,_U) if Γ = Γ′, x : (R, U)

Note that if Γ(x) = bool or Γ(x) = (τ1 → τ2, U), then _xΓ is undefined.

Example 4.3.2. Let Γ be x : (R, U) and ∆ be x : (R, U ′), y : bool. Then, 3Γ =
3[Γ] = x : 3(R, U) = x : (R,3U) and Γ; ∆ = x : ((R, U); (R, U ′)), y : (0;bool) =
x : (R, U ; U ′), y : bool.

We write Γ1 ≤ Γ2 when dom(Γ1) ⊇ dom(Γ2), Γ1(x) ≤ Γ2(x) for all x ∈ dom(Γ2),
and Use(Γ1(x)) ≤ 0 for all x ∈ dom(Γ1)\dom(Γ2).

4.4 Typing

Now we introduce typing rules to define the type judgment relation Γ ` M : τ .
As mentioned in Section 1, an escape analysis [Blanchet 1998; Hannan 1995] is

useful to refine the accuracy of our type-based usage analysis. To make our type
system simple and clarify its essence, we assume that a kind of escape analysis has
been already performed and that a program is annotated with the result of the
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 19

c = true or false

∅ ` c : bool
(T-Const)

x : 3τ ` x : τ (T-Var)

[[U]] ⊆ Φ

∅ ` newΦ() : (R, U)
(T-New)

Γ, f : (τ1 → τ2, U1), x : τ1 ` M : τ2 α fresh

(U2 ¯ µα.(1 ⊗ (U1 ¯ α))) ¯ 3Γ ` fun(f, x, M) : (τ1 → τ2, U2)
(T-Fun)

Γ1 ` M1 : (τ1 → τ2, 1) Γ2 ` M2 : τ1

Γ1; Γ2 ` M1 M2 : τ2
(T-App)

Γ ` M : (R, l)

Γ ` accl(M) : bool
(T-Acc)

Γ1 ` M1 : bool Γ2 ` M2 : τ Γ3 ` M3 : τ

Γ1; (Γ2 & Γ3) ` if M1 then M2 else M3 : τ
(T-If)

Γ1 ` M1 : τ1 Γ2, x : τ1 ` M2 : τ2

Γ1; Γ2 ` let x = M1 in M2 : τ2
(T-Let)

Γ ` M : τ

_xΓ ` M{x} : τ
(T-Now)

Γ′ ` M : τ ′ Γ ≤ Γ′ τ ′ ≤ τ

Γ ` M : τ
(T-Sub)

Fig. 5. Typing Rules

escape analysis. We extend the syntax of terms by introducing a term of the form
M{x}, which means that x does not escape from M , in the sense that a resource
referred to by x is not contained in (is unreachable from) the value of M . For
example, (readl(x)){x} is a valid annotation, but fun(f, y, readl(x)){x} is not. A
simplest escape analysis to check whether M may be annotated as M{x} would be
to compare the type of M and that of x, as in variants of linear type system [Wadler
1990; Walker and Watkins 2001]: For example if the type of M is bool, x cannot
escape from M (in the above sense).

Typing rules are shown in Figure 5. The type judgment relation Γ ` M : τ is
the least relation closed under those rules. In rule (T-Var), the 3-constructor is
applied to the type of x in the type environment, because x is used only later, not
when x is evaluated.

In rule (T-New), the conclusion means that newΦ() returns a resource that
should be used according to U . The premise [[U]] ⊆ Φ checks that the usage U

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 · A. Igarashi and N. Kobayashi.

conforms to the programmer’s specification Φ about how the resource created here
should be used.

To understand rule (T-Fun) for recursive functions, it would be helpful to first
consider the case of a non-recursive function λx.M . The rule for non-recursive
functions would be:

Γ, x : τ1 ` M : τ2

U ¯ 3Γ ` λx.M : (τ1 → τ2, U)
(T-Abs)

The premise Γ, x :τ1 ` M :τ2 says that, each time the function body M is evaluated,
a resource pointed to by the formal argument x is accessed according to τ1 and those
pointed to by free variables in the function λx.M are accessed according to Γ. While
the value of x can vary in each function call, those of free variables are determined
when the function closure is created and remain the same during its life time. So,
if the function λx.M is called according to U , the resources pointed to by free
variables are accessed according to U ¯ 3Γ. (The constructor 3 is necessary since
the resources are accessed only later when the function is called.) For example, the
following is a derivation for the case where the function is called twice:

Γ, x : τ1 ` M : τ2

(1 ⊗ 1) ¯ 3Γ(∼= 3Γ ⊗ 3Γ) ` λx.M : (τ1 → τ2, 1 ⊗ 1)

In the case of a recursive function, we have to carefully count how often the function
is called. The type (τ1 → τ2, U2) in the conclusion means that the function is called
according to U2 from the outside of the function, and the type (τ1 → τ2, U1) in the
premise means that each time the function is called, it is recursively called according
to U1 inside the function. Therefore, the function is, in total, called according to:

U2 ¯ (1 ⊗ U1 ⊗ (U1 ¯ U1) ⊗ (U1 ¯ U1 ¯ U1) ⊗ · · ·)
(= U2 ¯ µα.(1 ⊗ (U1 ¯ α)))

(As we have already discussed, ordering information between different function calls
is not very useful to estimate resource usage, hence ⊗ rather than ;). Thus, the
type environment for the function is (U2 ¯ µα.(1 ⊗ (U1 ¯ α)))¯3Γ.4 For example,
if the function is called twice from the outside, and if there is no recursive call, the
usage of the function is: (1 ⊗ 1)¯µα.(1 ⊗ (0 ¯ α)) ∼= 1⊗1. If the function is called
once from the outside, and if there is zero or one recursive call, the usage of the
function is: 1 ¯ µα.(1 ⊗ ((0 & 1) ¯ α)) ∼= µα.(1 ⊗ (0 & α)), which means that the
function may be called at least once.

In rule (T-App), the premises imply that resources are accessed according to
Γ1 and Γ2 in M1 and M2 respectively. Because M1 is evaluated first, the usage
of resources in total is represented by Γ1; Γ2. Because the function M1 is called,
the usage of M1 must be 1. Similarly, in rule (T-Acc), the usage of M must be l
because it is accessed at l.5

4A similar calculation is performed in linear type systems [Kobayashi 1999; Igarashi and Kobayashi
2000b; 2000a].
5Actually, because the value of accl(M) cannot contain references to resources, it is safe to apply
_ to Γ in the conclusion.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 21

x : (R, 3l1) ` x : (R, l1)
(T-Var)

x : (R, 3l1) ` accl1 (x) : bool
(T-Acc)

x : (R,_3l1) ` accl1 (x){x} : bool
(T-Now)

x : (R, l1) ` accl1 (x){x} : bool
(T-Sub)

x : (R, 3l2) ` x : (R, l2)
(T-Var)

x : (R, 3l2), y : bool ` x : (R, l2)
(T-Sub)

x : (R, l1; 3l2) ` let y = accl1 (x){x} in x : (R, l2)
(T-Let)

Fig. 6. An Example of Type Derivation

In rule (T-If), after M1 is evaluated, either M2 or M3 is evaluated. Thus, the
usage of resources in total is represented by Γ1; (Γ2 & Γ3). In rule (T-Now), M{x}

asserts that x does not escape from M . So, the access represented by Γ(x) should
happen now, i.e., when M is evaluated. The operator _x is applied to reflect this
fact.

Example 4.4.1. A derivation for the type judgment

x : (R, l1; 3l2) ` let y = accl1(x){x} in x : (R, l2)

is shown in Figure 6.

5. TYPE SOUNDNESS

The type system in the last section is sound in the sense that every closed well-
typed expression of type τ where Use(τ) ≤ 0 is resource-safe, provided that the
escape analysis is sound. The condition Use(τ) ≤ 0 means that resources con-
tained in the result of the evaluation may no longer be accessed. In this section,
after stating the type soundness theorem formally in Section 5.1, we prove the the-
orem using a technique similar to the one used in Kobayashi’s quasi-linear type
system [Kobayashi 1999]. We first introduce another operational semantics to the
target language—the semantics takes into account not only how but also where in
the expression each resource is used during evaluation. This alternative semantics,
defined in Section 5.2, is shown to be equivalent to the standard semantics in a cer-
tain sense and the type system is shown to be sound with respect to the alternative
semantics in Section 5.3. Readers who are not interested in proofs may safely skip
Sections 5.2–5.4.

5.1 Type Soundness Theorem

To state the type soundness theorem formally, we first extend the operational se-
mantics of the target language to deal with terms of the form M{x}. The syntax
of evaluation contexts is extended by:

E ::= · · · | E{x}

We add the following reduction rule, which make sure that M{x} reduces only when
the escape analysis is correct (in other words, if the escape analysis were wrong,
evaluation would get stuck):

x 6∈ FV(v)

(H, E [v{x}]) ; (H, E [v])
(R-ECheck)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 · A. Igarashi and N. Kobayashi.

The soundness of our type system is stated as follows.

Theorem 5.1.1 (Type Soundness) . If ∅ ` M : τ and Use(τ) ≤ 0, then M is
resource-safe.

5.2 Dynamic Expressions

We extend the target language with letR-expressions to express “local” usages of
resources and introduce dynamic expressions.

Definition 5.2.1. The set of dynamic expressions, ranged over by D, is given by
the following syntax:

D ::= letR x : U in D | true | false | x | fun(f, x, M) | if D1 then D2 else D3

|D1 D2 | newΦ() | accl(D) | let x = D1 in D2 |D{x}

The expression of the form letR x : U in D means that the resource allocated
at x is used in D and that U represents the resource’s usage local to D. We
often abbreviate letR x1 : U1 in · · · letR xn : Un in D to letR x̃ : Ũ in D and
letR x1 : (U1 ; U ′

1) in · · · letR xn : (Un ; U ′
n) in D to letR x̃ : (Ũ ; Ũ ′) in D.

Operational Semantics of Dynamic Expressions. An operational semantics of dy-
namic expressions is defined by the reduction relation D

ξ−→ E, in which E is either
a dynamic expression or Error. The label ξ is either ε, which corresponds to a re-
duction step in the standard semantics given in Section 3, or a variable x, which
means the usage of the heap value at x is split and localized to subexpressions.

As in the standard semantics, the reduction relation is given by using evaluation
contexts, whose syntax is given by:

ED ::= [] | letR x : U in ED | if ED then D1 else D2 | ED D

| (letR x̃ : Ũ in v) ED | accl(ED) | let x = ED in D | ED{x}

The reduction rules are given in Figures 7 and 8. We write D =⇒ E for D
x1−→

· · · xn−→ ε−→ E and write D ↑ if D always reduces to an error, that is, if D =⇒ Error
and there is no D′ such that D =⇒ D′.

A rule R-Name of the standard semantics corresponds to the rule RD-Name.
Unlike the standard semantics, which keeps track of one global heap, when a heap
value at x is accessed, it must be in a local heap binding. A heap binding is
pushed into subexpressions by rules RD-NamePush; If there are more than one
subexpressions (as in RD-AppPush, RD-IfPush, and RD-LetPush), the usage
U is split to two usages. On the other hand, when usages remain after the evaluation
of subexpressions, they are merged for the rest of computation (as in RD-App,
RD-IfT, RD-IfF and RD-Let).

For example, a dynamic expression let x = new{l1+l2}]

() in (λy.y) (accl(x)),
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 23

[[U]] ⊆ Φ z fresh

ED[newΦ()]
ε−→ ED[letR z : U in z]

(RD-New)

ED[letR x : U in D{x}]
x−→ ED[(letR x : 3U in D){x}] (RD-EChkPush1)

x 6= y

ED[letR x : U in D{y}]
x−→ ED[(letR x : U in D){y}]

(RD-EChkPush2)

y 6∈ FV(v) FV(v) ⊆ {x̃}

ED[(letR x̃ : Ũ in v){y}]
ε−→ ED[letR x̃ : Ũ in v]

(RD-ECheck)

U ≤ U1 ; U2

ED[letR x : U in D1 D2]
x−→ ED[(letR x : U1 in D1) (letR x : U2 in D2)]

(RD-AppPush)

ED[(letR x̃1 : Ũ1 in letR x̃2 : Ũ2 in fun(f, y, M)) (letR x̃1 : Ũ4 in letR x̃3 : Ũ3 in v)]
ε−→ ED[letR x̃1 : (Ũ1 ; Ũ4) in letR x̃2 : Ũ2 in letR x̃3 : Ũ3 in [v/y, fun(f, y, M)/f]M]

(RD-App)

ED[letR x : U in accl(D)]
x−→ ED[accl(letR x : U in D)] (RD-AccPush)

Ui
l−→ U ′

i U ′
k = Uk for k 6= i b = true or false

ED[accl(letR x̃ : Ũ in xi)]
ε−→ ED[letR x̃ : Ũ ′ in b]

(RD-Acc)

¬∃U.Ui
l−→ U

ED[accl(letR x̃ : Ũ in xi)]
ε−→ Error

(RD-AccErr)

Fig. 7. Dynamic Expressions: Reduction Rules (1)

which is also an expression, can be reduced as follows:

let x = new{l1+l2}]

() in (λy.y) (accl(x))
ε−→ let x = letR z : l1 & l2 in z in (λy.y) (accl(x))
ε−→ letR z : l1 & l2 in (λy.y) (accl(z))
z−→ (letR z : 0 in λy.y) (letR z : l1 & l2 in accl(z))
ε−→ (letR z : 0 in λy.y) (letR z : 0 in true)
ε−→ letR z : 0 ; 0 in true

Note that this is not the only reduction sequence: in particular, an error may be
yielded earlier than expected due to wrong split of resource bindings. For example,
other possible reduction sequences are:

let x = new{l1+l2}]

() in (λy.y) (accl(x))
=⇒∗ letR z : l1 & l2 in (λy.y) (accl(z))

z−→ (letR z : l1 & l2 in λy.y) (letR z : 0 in accl(z))
ε−→ Error

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 · A. Igarashi and N. Kobayashi.

U ≤ U1 ; U2

ED[letR x : U in if D then M1 else M2]
x−→ ED[if (letR x : U1 in D) then (letR x : U2 in M1) else (letR x : U2 in M2)]

(RD-IfPush)

ED[if (letR x̃ : Ũ1 in letR ỹ : Ũ2 in true) then (letR x̃ : Ũ3 in D1) else D2]
ε−→ ED[letR x̃ : (Ũ1 ; Ũ3) in letR ỹ : Ũ2 in D1]

(RD-IfT)

ED[if (letR x̃ : Ũ1 in letR ỹ : Ũ2 in false) then D1 else (letR x̃ : Ũ3 in D2)]
ε−→ ED[letR x̃ : (Ũ1 ; Ũ3) in letR ỹ : Ũ2 in D2]

(RD-IfF)

U ≤ U1 ; U2 x 6= y

ED[letR x : U in let y = D1 in D2]
x−→ ED[let y = (letR x : U1 in D1) in letR x : U2 in D2]

(RD-LetPush)

ED[let z = (letR x̃ : Ũ1 in letR ỹ : Ũ3 in v) in letR x̃ : Ũ2 in M]
ε−→ ED[letR x̃ : (Ũ1 ; Ũ2) in letR ỹ : Ũ3 in [v/z]M]

(RD-Let)

Fig. 8. Dynamic Expressions: Reduction Rules (2)

and

let x = new{l1+l2}]

() in (λy.y) (accl(x))
=⇒∗ letR z : l1 & l2 in (λy.y) (accl(z))

z−→ (letR z : 0 in λy.y) (letR z : l2 in accl(z))
ε−→ Error

As we show below, however, if an expression has an error-free reduction sequence in
the original semantics defined in Section 3, there is at least one error-free reduction
sequence in this semantics.

Typing Rules for Dynamic Expressions. We extend the type system in Section 4
to dynamic expressions by adding the following rules:6

Γ, x : (R, U) ` D : τ

Γ ` letR x : U in D : τ
(T-Letres)

5.3 Properties of Dynamic Expressions

Correspondence between the Two Semantics. As is stated below in Theorem 5.3.2,
the semantics of dynamic expressions is essentially equivalent to the standard one
given in Section 3. Intuitively, the theorem states that (1) program execution
(in the original semantics) proceeds as the reduction of a corresponding dynamic
expression proceeds; and (2) if there exists an error-free reduction in the semantics

6Strictly speaking, each occurrence of the meta-variable M in the typing rules of Figure 5 (except
for T-Fun) should be replaced with D.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 25

(D)\ = ((B)\, M) where (B, M) = (D)[

(letR x : U in D)[= (B] {x 7→ U}, M) where (B, M) = (D)[

(v)[= ({}, v)

(fun(f, x, M))[= ({}, fun(f, x, M))

(newΦ())[= ({},newΦ())

(if D1 then D2 else D3)[= (B1 ; B2, if M1 then M2 else M3)

where (Bi, Mi) = (Di)
[for i = 1 . . . 3

and B2 = B3

(D1 D2)[= (B1 ; B2, M1 M2 where (Bi, Mi) = (Di)
[for i = 1, 2

(accl(D))[= (B,accl(M)) where (B, M) = (D)[

(let x = D1 in D2)[= (B1 ; B2, let x = M1 in M2)

where (Bi, Mi) = (Hi)
[for i = 1, 2

(D{y})[= (_yB, M{y}) where (B, M) = (D)[

where, B1 ; B2 is defined by:

B1 ; {} = B1

(B′
1] {x 7→ U1}) ; (B′

2] {x 7→ U2}) = (B′
1 ; B′

2)] {x 7→ (U1 ; U2)}
and _xB by:

dom(_xB) = dom(B)
(_xB)(x) = _B(x)
(_xB)(y) = B(y) if y 6= x

and (B)\ by:

dom((B)\) = dom(B)

(B)\(x) = [[B(x)]]

Fig. 9. Translation of Dynamic Expressions

of dynamic expressions, then so does a corresponding reduction in the standard
semantics.

We first give a few definitions to state correspondence formally: Firstly, we define
a translation (·)\ from dynamic expressions to pairs of a heap and an expression
in Figure 9. Here, the meta-variable B ranges over a functions from variables to
usages; we use notations {x1 7→ U1, . . . , xn 7→ Un} or B1] B2, defined similarly to
{x1 7→ Φ1, . . . , xn 7→ Φn} or H1] H2. we write {} for the empty function. For
example,

((letR z : 0 in λy.y) (letR z : l in accl(z)))\ = ({z 7→ [[0 ; l]]}, (λy.y) accl(z)).

Secondly, we define the relation ≤ between pairs of a heap and an expression:

Definition 5.3.1. The binary relation ≤ on heaps is defined by: H1 ≤ H2 if and
only if (1) dom(H1) = dom(H2); and (2) H1(x) ⊇ H2(x). We write (H1,M1) ≤
(H2,M2) if H1 ≤ H2 and M1 = M2.

Then, the correspondence between (H, M) and D is represented by (H, M) ≤ (D)\.

Note that, by definition of D
ξ−→ D′, reduction preserves the following invariants,

which guarantee (·)\ is well-defined: if D contains an expression of the form let x =
D′ in letR x̃ : Ũ in M , then (D′)[= (B, M ′) and B = {x̃ 7→ Ũ , ỹ 7→ Ũ ′} and ỹ do
not appear in M (similarly for D1 D2 and if D1 then D2 else D3). The condition
means that a subexpression being evaluated has extra heap bindings, generated
during its evaluation.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 · A. Igarashi and N. Kobayashi.

The theorem below states that (1) reduction in the original semantics proceeds
as reduction of a corresponding dynamic expression proceeds; (2) if an error occurs
in the original semantics, so does in the second semantics; (3) for a reduction step
in the standard semantics, there may or may not exist the corresponding reduction
step. Note that, as discussed above, evaluation of dynamic expressions may cause
an error even when that in the standard semantics does not, because usages of one
resource are wrongly split.

Theorem 5.3.2.

(1) If D =⇒ D′ and (H, M) ≤ (D)\, then (H, M) ; (H ′, M ′) and (H ′,M ′) ≤
(D′)\ for some H ′ and M ′.

(2) If (H, M) ; Error and (H,M) ≤ (D)\, then D ↑.
(3) If (H, M) ; (H ′,M ′) and (H, M) ≤ (D)\, then either D ↑ or there exists D′

such that D =⇒ D′ and (H ′, M ′) ≤ (D′)\.

To prove this theorem, we begin with several required lemmas.

Lemma 5.3.3.

(1) If (ED[D0])[= (B, M), then there exist E, M0, B0 and B1 such that M = E [M0]
and B = B0; B1 and (D0)[= (B0,M0). Moreover, (ED[D′

0])
[= (B′,M ′)

implies M ′ = E [M ′
0] and B′ = B′

0; B1 and (D′
0)

[= (B′
0, M

′
0) for some M ′

0 and
B′

0.
(2) Conversely, if (B, E [M0]) = (D)[, then there exist ED, x̃, Ũ , D0, B0 and B1

such that D = ED[D0] and B = (B0; B1)] {x̃ 7→ Ũ} and (D0)[= (B0, M0).
Moreover, (B′, E [M ′

0]) = (D′)[implies D′ = ED[D′
0] and B′ = (B′

0; B1)] {x̃ 7→
Ũ} and (D′

0)
[= (B′

0,M
′
0) for some D′

0 and B′
0.

Proof. Easy induction on the structure of ED and E .

Lemma 5.3.4.

(1) If D
x−→ D′, then (D)\ ≤ (D′)\.

(2) If D
ε−→ D′ and (H,M) ≤ (D)\, then there exist H ′ and M ′ such that

(H,M) ; (H ′, M ′) and (H ′,M ′) ≤ (D′)\.

Proof. By case analysis on the rule used to derive D
ξ−→ D′, using Lemma 5.3.3

(1).

Proof of Theorem 5.3.2. (1) follows from Lemma 5.3.4. (2) and (3) are eas-
ily shown by case analysis on the rule used to derive (H,M) ; (H ′, M ′), using
Lemma 5.3.3 (2).

5.4 Proof of Theorem 5.1.1

Main theorems are Theorem 5.4.1 that a well-typed expression never causes a usage
error and Theorem 5.4.2 that reduction of dynamic expressions preserves typing.

Theorem 5.4.1. If Γ ` D : τ , then D 6 ε−→ Error.

Proof. Suppose the reduction step is derived from RD-AccErr. Then, the
premise ¬∃U.Ui

l−→ U contradicts the assumption Γ ` D : τ .

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 27

Theorem 5.4.2 (Subject Reduction) . If Γ ` D : τ and D
ξ−→ D′ and

(D′)\ = (H ′,M), then there exists D′′ such that D
ξ−→ D′′ and (D′′)\ = (H ′′,M)

and Γ ` D′′ : τ .

Proof. See Appendix B.

The complication of the statement of Theorem 5.4.2 stems from the fact that even
a well-typed dynamic expression may reduce to an ill-typed expression depending on
how a usage is split or on how a reduction step changes the usage of the used value.
So, the statement says that there is always a good reduction step that preserves the
well-typedness of the expression. Moreover, D′′ must be the same as D′ except for
type annotations (this is expressed by the phrases “(D′)\ = (H ′, M)” and “(D′′)\ =
(H ′′,M)”); It is required since RD-Acc makes reduction nondeterministic.

Finally, Theorem 5.1.1 is shown from Theorems 5.3.2, 5.4.1 and 5.4.2 via the
following lemma.

Lemma 5.4.3. If (H1,M1) ; (H2,M2) and (H1, M1) ≤ (D1)\ and ∅ ` D1 : τ ,
then there exists D2 such that D1 =⇒ D2 and (H2, M2) ≤ (D2)\ and ∅ ` D2 : τ .

Proof. By Theorem 5.3.2 (3) and Theorem 5.4.1, there exists D′
2 such that

D1 =⇒ D′
2 and (H2,M2) ≤ (D′

2)
\. Furthermore, by Theorem 5.4.2 and the def-

inition of ≤, there exist D′′
2 and H ′

2 such that D1 =⇒ D′′
2 and ∅ ` D′′

2 : τ and
(D′′

2)\ = (H ′
2,M2). By Theorem 5.3.2 (1), there exist H ′′

2 such that (H1,M1) ;

(H ′′
2 ,M2) and H ′′

2 ≤ H ′
2. It is easy to show that (H1,M1) ; (H2,M2) and

(H1,M2) ; (H ′′
2 ,M2) imply H ′′

2 = H2, thus, H2 ≤ H ′
2. Letting D2 = D′′

2 fin-
ishes the proof.

Proof of Theorem 5.1.1. For the first condition of the resource safety, let
(H1,M1) be ({},M) and suppose (H1,M1) ; · · · ; (Hn,Mn) ; Error. Let
D1 = M . Then, by Lemma 5.4.3, there exist D1, . . . , Dn such that Di =⇒ Di+1

and (Hi,Mi) ≤ (Di)\ and ∅ ` Di : τ . By Theorem 5.3.2 (2), Dn ↑ while, by
Theorem 5.4.1, Dn 6 ε−→ Error. Contradiction.

For the second, by a similar argument, it can be shown that there exist x̃ and
Ũ such that M =⇒∗ letR x̃ : Ũ in v and (H, v) ≤ (letR x̃ : Ũ in v)\ and
∅ ` letR x̃ : Ũ in v : τ . By inspection of the type derivation, Ui ≤ 0 for any i.
Then, by definition of ≤, we have Ui

↓, thus ↓ ∈ H(xi).

6. A TYPE INFERENCE ALGORITHM

Let M be a closed term. By the type soundness theorem (5.1.1), in order to verify
that all resources are used correctly in M , it suffices to verify that ∅ ` M : τ holds
for some type τ with Use(τ) ≤ 0. In this section, we describe an algorithm to check
it.

For simplicity, we assume the following conditions.

—Escape analysis has been already performed, and an input term is annotated
with the result of the escape analysis.

—The standard type (the part of a type obtained by removing usages) of each term
has been already obtained by the usual type inference. We write ρN for the
standard type of each occurrence of a term N .

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 · A. Igarashi and N. Kobayashi.

—Given a usage U and a set Φ of traces, there is an algorithm that verifies [[U]] ⊆ Φ.
This algorithm should be sound but may not be complete; in fact, depending on
U and how Φ is specified, the problem can become undecidable. For some specific
trace sets, however, it is possible to construct an algorithm for checking [[U]] ⊆ Φ:
See Section 6.6.

Because we do not expect a complete algorithm in the third assumption, our algo-
rithm described below is sound but incomplete.

Our algorithm proceeds as follows, in a manner similar to an ordinary type
inference algorithm [Kanellakis et al. 1991; Kobayashi 2000a] for the simply typed
λ-calculus:

Step 1. Construct a template of a derivation tree for ∅ ` M : τ , using usage
variables to denote unknown usages.

Step 2. Extract constraints on the usage variables from the template.

Step 3. Solve constraints on usage variables.

6.1 Step 1: Constructing a Template of a Type Derivation Tree

First, we construct syntax-directed typing rules equivalent to the typing rules given
in Section 4, so that there is exactly one rule that matches each term. It is obtained
by combining each rule with (T-Sub) and removing (T-Sub). For example, an
application of the rule (T-Var) followed by an application of (T-Sub):

x : 3τ ` x : τ
(T-Var)

Γ ≤ x : 3τ

Γ ` x : τ
(T-Sub)

is replaced by one rule:

Γ ≤ x : 3τ

Γ ` x : τ
(T-Var′)

The set of syntax-directed typing rules is given in Figure 10.

Remark 6.1.1. Each rule in Figure 10 is obtained by combining each rule in
Section 4 with the subsumption rule (T-Sub) applied after that rule. Alternatively,
we can obtain a syntax-directed rule by combining each rule with the subsumption
rule (T-Sub) applied before that rule. We have chosen the former approach since
the type reconstruction algorithm described below becomes a little clearer.

For each subterm N of an input term M , we prepare:

(i) a type τN such that all the usages in τN are fresh usage variables, and except
for the usages, τN is identical to ρN (the standard type for N).

(ii) a type environment ΓN such that dom(ΓN) = FV(N) and for each x ∈
dom(ΓN), ΓN (x) is identical to τx except for their outermost usages. The outer-
most usage of ΓN (x) (i.e., Use(ΓN (x))) is a fresh usage variable.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 29

c = true or false Γ ≤ ∅
Γ ` c : bool

(T-Const′)

Γ ≤ x : 3τ

Γ ` x : τ
(T-Var′)

[[U]] ⊆ Φ Γ ≤ ∅
Γ ` newΦ() : (R, U)

(T-New′)

Γ ` M : τ2 α fresh

Γ(f) = (τ1 → τ2, U1) if f ∈ dom(Γ) U1 ≤ 0 if f 6∈ dom(Γ)
τ1 ≤ Γ(x) if x ∈ dom(Γ) Use(τ1) ≤ 0 if x 6∈ dom(Γ)

Γ′ ≤ (U2 ¯ µα.(1 ⊗ (U1 ¯ α))) ¯ 3(Γ\{f, x})
Γ′ ` fun(f, x, M) : (τ1 → τ2, U2)

(T-Fun′)

Γ1 ` M1 : (τ1 → τ2, 1) Γ2 ` M2 : τ1 Γ ≤ Γ1; Γ2 τ2 ≤ τ ′
2

Γ ` M1 M2 : τ ′
2

(T-App′)

Γ ` M : (R, U) U ≤ l

Γ ` accl(M) : bool
(T-Acc′)

Γ1 ` M1 : bool Γ2 ` M2 : τ Γ3 ` M3 : τ Γ ≤ Γ1; (Γ2 & Γ3) τ ≤ τ ′

Γ ` if M1 then M2 else M3 : τ ′ (T-If′)

Γ1 ` M1 : τ1 Γ2 ` M2 : τ2
τ1 ≤ Γ2(x) if x ∈ dom(Γ2) Use(τ1) ≤ 0 if x 6∈ dom(Γ2)

Γ ≤ Γ1; (Γ2\{x}) τ2 ≤ τ ′
2

Γ ` let x = M1 in M2 : τ ′
2

(T-Let′)

Γ ` M : τ
Γ′ ≤ _xΓ τ ≤ τ ′

Γ′ ` M{x} : τ ′ (T-Now’)

Fig. 10. Syntax-Directed Typing Rules

Example 6.1.2. For a term f x where the standard type of f is R → bool, we
prepare the following types and type environments:

τf = ((R, α1) → bool, α2)
Γf = f : ((R, α1) → bool, α3)
τx = (R, α4)
Γx = x : (R, α5)
τf x = bool
Γf x = f : ((R, α1) → bool, α6), x : (R, α7)

We can construct a template of a type derivation tree, by labeling each node with
a judgment ΓN ` N : τN . For example, for the above term f x, the template is:

f : ((R, α1) → bool, α3) ` f : ((R, α1) → bool, α2)
x : (R, α5) ` x : (R, α4)

f : ((R, α1) → bool, α6), x : (R, α7) ` f x : bool

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 · A. Igarashi and N. Kobayashi.

6.2 Step 2: Extracting Constraints

In order to make the template a valid type derivation tree, it suffices to instan-
tiate usage variables so that the side conditions of a syntax-directed typing rule
are satisfied at each derivation step. We can extract from each sub-term N the
constraint C(N) given in Figure 11. For example, for a variable x, the syntax-
directed rule (T-Var′) requires that Γx ≤ x : 3τx. By the construction of Γx in
Step 1, it is guaranteed that dom(Γx) = {x} holds and that Γx(x) and τx are iden-
tical except for their outermost usages. We therefore generate the constraint set
C(x) = {Use(Γx(x)) ≤ 3Use(τx)} for the variable x.

Remark 6.2.1. The reason why we compare only the outermost usages above is
that in our definition of subtyping, τ1 ≤ τ2 holds only if τ1 and τ2 are identical
except for the outermost usages. If we introduce a more general subtyping rule
(recall Remark 4.2.3), C(x) should be replaced with {Γx(x) ≤ 3τx}. The resulting
constraint set becomes a little more complex, but we can still solve the constraints
in a similar manner.

Let CS =
⋃
{C(N) | N is a subterm of M}. Then, a substitution θ for usage

variables satisfies CS if and only if the derivation tree obtained by applying θ to
the template is a valid type derivation tree. Therefore, the problem of deciding
whether ∅ ` M : bool holds is reduced to the problem of deciding whether CS is
satisfiable.

Each constraint in the set CS is one of the following forms:

(1) α ≤ U

(2) [[U]] ⊆ Φ
(3) τ1 = τ2, where all usages in τ1 and τ2 are usage variables.
(4) τ1 ≤ τ2, where all usages in τ1 and τ2 are usage variables.

Constraints of the third form (i.e., unification constraints) can be solved by using
a standard unification algorithm. Constraints of the fourth form can be reduced to
unification constraints and subusage constraints by the following rules.

CS ∪ {bool ≤ bool} =⇒ CS
CS ∪ {(τ1 → τ2, α) ≤ (τ ′

1 → τ ′
2, α

′)} =⇒ CS ∪ {τ1 = τ ′
1, τ2 = τ ′

2, α ≤ α′}
CS ∪ {(R, α) ≤ (R, α′)} =⇒ CS ∪ {α ≤ α′}

We obtain the following set of constraints as a result:

{α1 ≤ U1, . . . , αn ≤ Un} ∪ {[[U ′
1]] ⊆ Φ1, . . . , [[U ′

m]] ⊆ Φm}

We can assume without loss of generality that α1, . . . , αn are distinct usage vari-
ables, because α ≤ U1 ∧ α ≤ U2 holds if and only if α ≤ U1 & U2 holds.

Example 6.2.2. From the template of a type derivation given in Example 6.1.2,
we obtain the following constraints:

{α3 ≤ 3α2, α5 ≤ 3α4, α6 ≤ α3, α7 ≤ α5, α3 ≤ 1, (R, α1) = (R, α4),bool ≤ bool}.

By reducing the constraints, we obtain the following constraints on usages:

{α3 ≤ 3α2, α5 ≤ 3α4, α6 ≤ α3, α7 ≤ α5, α3 ≤ 1}

with a substitution [α4/α1].

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 31

C(c) = {τc = bool}
C(x) = {Use(Γx(x)) ≤ 3Use(τx)}
C(newΦ()) = {[[Use(τnewΦ())]] ⊆ Φ}
C(fun(f, x, M)) =

{ΓM (f) = (τ1 → τ2, β) | f ∈ dom(ΓM), τfun(f,x,M) = (τ1 → τ2, U)}
∪{β ≤ 0 | f 6∈ dom(ΓM)}
∪{domty(τfun(f,x,M)) ≤ ΓM (x) | x ∈ dom(ΓM)}
∪{Use(domty(τfun(f,x,M))) ≤ 0 | x 6∈ dom(ΓM)}
∪{Use(Γfun(f,x,M)(y))

≤ (Use(τfun(f,x,M)) ¯ µα.(1 ⊗ (β ¯ α))) ¯ 3Use(ΓM (y))

| y ∈ dom(Γfun(f,x,M))}
(β is fresh)

C(M1 M2) =

{Use(ΓM1 M2 (x)) ≤ Use((ΓM1 ; ΓM2)(x)) | x ∈ dom(ΓM1 M2)}
∪{Use(τM1) ≤ 1}
∪{domty(τM1) = τM2 , codty(τM1) ≤ τM1 M2}

C(accl(M)) =

{Use(τM) ≤ l}
∪{Γaccl(M)(y) = ΓM (y) | y ∈ dom(ΓM)}

C(if M1 then M2 else M3) =
{τM1 = bool, τM2 = τM3}
∪{Use(Γif M1 then M2 else M3 (y)) ≤ Use((ΓM1 ; (ΓM2 & ΓM3))(y))

| y ∈ dom(Γif M1 then M2 else M3)}
∪{τif M1 then M2 else M3 ≤ τM2}

C(let x = M1 in M2) =
{τM1 ≤ ΓM2 (x) | x ∈ dom(ΓM2)}
∪{Use(τM1) ≤ 0 | x 6∈ dom(ΓM2)}
∪{Use(Γlet x=M1 in M2 (y)) ≤ Use((ΓM1 ; ΓM2)(y))

| y ∈ dom(Γlet x=M1 in M2)}
∪{τM2 ≤ τlet x=M1 in M2}

C(M{x}) =
{Use(ΓM{x} (x)) ≤ _Use(ΓM (x))}
∪{ΓM{x} (y) ≤ ΓM (y) | y ∈ dom(ΓM)\{x}}
∪{τM ≤ τM{x}}

domty and codty is defined by: domty(τ1 → τ2, U) = τ1 and codty(τ1 → τ2, U) = τ2.

Fig. 11. Constraints Extracted from Each Sub-Term

6.3 Step 3: Solving Constraints

Given the set of constraints {α1 ≤ U1, . . . , αn ≤ Un} ∪ {[[U ′
1]] ⊆ Φ1, . . . , [[U ′

m]] ⊆
Φm}, we can eliminate the first set of constraints by repeatedly applying the fol-
lowing transformation rule:

CS ∪ {α ≤ U} =⇒ [µα.U/α]CS .

Then, we check whether the remaining set of constraints is satisfied (using the
algorithm stated in the third assumption).

6.4 Properties of the Algorithm

The above algorithm is relatively sound and complete with respect to an algorithm
to judge [[U]] ⊆ Φ: The former is sound (complete, resp.) if the latter is sound

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 · A. Igarashi and N. Kobayashi.

(complete, resp.). Note that in the step 3 above, we are using the fact that µα.U is
the least solution of α ≤ U in the sense that U ′ ≤ [U ′/α]U implies [[µα.U]] ⊆ [[U ′]].

Suppose that the size of the standard types ρN of subterms is bound by a con-
stant. Then, the computational cost of the above algorithm, excluding the cost
for checking the validity of constraints of the form [[U]] ⊆ Φ, is quadratic in the
size n of an input term. Note that the size of each constraint set C(N) in Step
2 is O(n). So, the size of the set CS of all constraints is O(n2). It is reduced to
constraints on usages in O(n2) steps and the size of the resulting constraints in Step
2 is also O(n2). Therefore, the total cost of the algorithm is O(n2). Actually, we
expect that we can remove the assumption that the size of standard types is bound,
by performing inference of standard types and that of usages simultaneously, in a
manner similar to [Kobayashi 2000a]. (If we choose the more general subtyping rule
given in Remark 4.2.3, the assumption about the type size cannot be eliminated to
guarantee that the algorithm runs in time O(n2).)

Although our algorithm (excluding an unspecified algorithm for checking con-
straints of the form [[U]] ⊆ Φ) requires quadratic time in the worst case, we think
that the algorithm runs in linear time for ordinary programs. The size of each con-
straint set C(N) is linear in the number of free variables in N , and hence it is O(n)
in the worst case. For ordinary programs, however, the number of free variables in
each sub-term can be regarded as a constant, hence our algorithm typically runs in
linear time.

We assumed above that a whole program is given as an input. It is not difficult
to adapt our algorithm to perform a modular analysis: The first and second steps
of extracting and reducing constraints can be applied to open terms. The third
step can also be partially performed, because constraints on a usage variable α can
be solved when we know that no constraint on α is imposed by the outside of the
program being analyzed. For example, consider the following expression:

let x = newΦ() in (readlR(x);writelW (y); closelC (y)).

Here, Φ = ((lR + lW)∗lC ↓)]. By carrying out the first and second steps of the
algorithm, we obtain the following type judgment and constraints:

x : (R, α1) ` let x = newΦ() in (readlR(x);writelW (y); closelC (y)) : bool
α1 ≤ lR α2 ≤ lW ; lC [[α2]] ⊆ Φ.

Since α2 cannot be constrained by the outside of the expression, we can solve the
constraints on α2, and obtain the following simplified type judgment and constraint:

x : (R, α1) ` let x = newΦ() in (readlR(x);writelW (y); closelC (y)) : bool
α1 ≤ lR.

6.5 Examples

We give examples of our analysis. We often omit annotations on escape information
below, but assume that terms of type bool are appropriately annotated with escape
information (as in (acclI (r)){r}, (f r){r}). For readability, usage expressions are
often replaced with equivalent but simplified ones: for example, U is substituted
for _3U .
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 33

Example 6.5.1. Let us consider the program in Example 2.2. The template of
type derivation for the program is of the form (unification on some usage variables
has been already applied for the sake of readability):

· · ·
f : τf , x : (R, αx) ` if · · · : bool

∅ ` fun(f, x, if · · ·) : τ ′
f

∅ ` newΦr () : (R, αr)

· · ·
f : τ ′

f , r : (R, αr) ` initlI (r); f r : bool

f : τ ′
f ` let r = newΦr () in (initlI (r); f r) : bool

∅ ` let f = fun(f, x, if · · ·) in let r = newΦr () in (initlI (r); f r) : bool

Here, τf = ((R, αx) → bool, αf) and τ ′
f = ((R, αx) → bool, α′

f). We get the
following constraints on usage variables αx and αr:

{αx ≤ lR; (lF & (lW ;αx)), αr ≤ lI ; αx, [[αr]] ⊆ Φr}

The first constraint is obtained from the derivation for f :τf , x:(R, αx) ` if · · ·:bool
and the second constraint is obtained from the derivation for f : τ ′

f , r : (R, αr) `
initlI (r); f r : bool. By solving the first two subusage constraints, we get αr =
lI ; µαx.(lR; (lF & (lW ; αx))). By substituting the solution for the third constraint,
we get

[[lI ; µαx.(lR; (lF & (lW ; αx)))]] = (lI(lRlW)∗lRlF ↓)] ⊆ Φr.

Since Φr = (lI(lR + lW)∗lF ↓)], we know that the program is well-typed.

Example 6.5.2. Let us consider the following program:

let f = fun(f, x, if readlR(x) then true
else (pushlP ush(x); f x;poplP op(x))) in

let r = newΦr () in
f r

The usage of r, inferred in a manner similar to the above example, is
µα.(lR; (0 & (lPush; α; lPop))). It implies that r is accessed in a stack-like man-
ner: Each access push is followed by an access pop. This kind of access pattern
appears in stacks, JVM lock primitives [Bigliardi and Laneve 2000], memory man-
agement with reference counting [Walker and Watkins 2001] (counter increment
corresponds to push and decrement to pop).

Example 6.5.3. Let us consider the following program:

let f = fun(f, g, g true; f g) in
let r = newΦr () in
f (λx.readlR(r))

It first creates a new resource r, and passes to f a function to access the resource.
f calls the function repeatedly, forever. The template of type derivation for the
program is of the form:

· · ·
f : τf , g : τg ` g true; f g : bool

∅ ` fun(f, g, g true; f g) : τ ′
f

∅ ` newΦr () : (R, αr)

· · ·
f : τ ′

f , r : (R, α′
r) ` M : bool

f : τ ′
f , r : (R, αr) ` M{r} : bool

f : τ ′
f ` let r = newΦr () in M{r} : bool

∅ ` let f = fun(f, g, g true; f g) in let r = newΦr () in M{r} : bool

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

34 · A. Igarashi and N. Kobayashi.

Here, M = f (λx.readlR(r)), τg = (bool → bool, αg), τf = (τg → bool, αf), and
τ ′
f = (τg → bool, α′

f). From the template, we get the following constraints on αg

and αr:

{αg ≤ 1;αg, αr ≤ _α′
r, α′

r ≤ (αg ¯ µα.(1 ⊗ (0 ¯ α))) ¯ 3lR, [[αr]] ⊆ Φr}.

The first constraint is obtained from the derivation for f :τf , g :(R, τg) ` g true; f g :
bool and the third constraint is obtained from the derivation of f : τ ′

f , r : (R, αr) `
M : bool.

From the first three constraints, we get:

αg = µα.(1;α)
αr = _α′

r

= _((αg ¯ µα.(1 ⊗ (0 ¯ α))) ¯ 3lR)
∼= _(αg ¯ 3lR)
∼= µα.(lR; α)

So, we know that r is accessed at lR infinitely many times. (As a by-product, we
also know that the program never terminates, because no trace in [[αr]] contains
↓.)

6.6 Some Algorithms for Checking [[U]] ⊆ Φ

In the discussion above, we assumed that there exists an algorithm to verify [[U]] ⊆
Φ. There is obviously no complete algorithm to verify [[U]] ⊆ Φ for arbitrary U
and Φ, since it subsumes the inclusion problem between context-free languages. For
some specific set Φ, however, there is an algorithm to verify [[U]] ⊆ Φ.

We informally present a sound (but incomplete7) algorithm for the case where
Φ = ((lR + lW)∗lC ↓)], which denotes the usage of files. Constraints of the form
[[U]] ⊆ ((lR + lW)∗lC ↓)] can be expanded into the following form:

[[α1]] ⊆ ((lR + lW)∗lC ↓)]

α1 ≤ F1(α1, . . . , αn)
· · ·
αn ≤ Fn(α1, . . . , αn)

Here, each Fi(α1, . . . , αn) consists of usage variables α1, . . . , αn, usage constants,
and usage constructors other than the recursive usage constructor. Since the goal
is to check whether [[α1]] ⊆ ((lR + lW)∗lC ↓)], we need not obtain the exact value
of α1. So, we solve the subusage constraints over the abstract domain:

{µα.α,0, URW , 3URW , UC , UError}

where URW = µα.(0 & (lR;α) & (lW ; α)), UC = 3µα.(lC & (lR; α) & (lW ; α)), and
UError = 3µα.(0 & (lC ; α) & (lR; α) & (lW ; α)). By abstracting usage constants
and constructors in Fi accordingly, we obtain the following abstract version of the

7It is probably possible to construct a complete algorithm with a little more complication,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 35

constraints:
[[α1]] ⊆ ((lR + lW)∗lC ↓)]

α1 ≤ F [
1(α1, . . . , αn)

· · ·
αn ≤ F [

n(α1, . . . , αn)

For example, the constructor ⊗ is replaced by the following abstract operation:

⊗[µα.α 0 URW 3URW UC UError

µα.α µα.α µα.α URW 3URW UC UError

0 µα.α 0 URW 3URW UC UError

URW URW URW URW 3URW UError UError

3URW 3URW 3URW 3URW 3URW UError UError

UC UC UC UError UError UError UError

UError UError UError UError UError UError UError

Since the abstract domain is a finite semilattice, we can solve the inequalities by
using the standard method [Rehof and Mogensen 1999]. [[α1]] ⊆ ((lR + lW)∗lC ↓)]

holds if α1 is µα.α or UC .
The case where Φr = (lI(lR + lW)∗lF ↓)] (recall Example 2.2) can be dealt with

in a similar manner. For the trace set Φ = {lnpushlnpop | n ≥ 0}], which represents
the usage of a stack, we think we can develop a sound algorithm (that may not
be complete) to verify [[U]] ⊆ Φ by modifying the algorithm given by Iwama and
Kobayashi [2002].

7. EXTENSIONS

We discuss some extensions to refine our type-based usage analysis.

Polymorphism and subtyping. As in other type-based analysis, polymorphism on
types and usages improves the accuracy of our analysis. Consider the following
program:

let f = λx.(accl1(x);x) in (accl2(f y);accl3(f z))

There are two calls of f . The return value of the first call is used at l2 and
that of the second call is used at l3. So, the best type we can assign to f is
((R, l1; (l2 & l3)) → (R, l2 & l3), l4; l5), and the type of y is (R, l1; (l2 & l3)). If we
introduce polymorphism, we can give f a type ∀α.((R, l1; α) → (R, α), l4; l5), and
we can assign a more accurate type (R, l1; l2) to y. Similarly, our analysis becomes
more precise if we relax the subtype relation (see Remark 4.2.3).

Dependencies between different variables. Our type-based analysis is imprecise
when there is an alias. For example, consider the following program:

(let y = x in (accl1(x);accl2(y))){x}

The type inferred for x is (R,_(3l2; l1)) (which is equivalent to (R, l2 ⊗ l1)). So,
we lose information that x is actually used at l1 and then at l2. The problem is
that a type environment is just a binding of variables to types and it does not keep
track of the order of accesses through different variables. To solve the problem,
we can extend type environments, following our generic type system for the π-
calculus [Igarashi and Kobayashi 2003]. For example, the type environment of the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

36 · A. Igarashi and N. Kobayashi.

expression accl1(x);accl2(y) can be represented as x:(R, l1); y:(R, l2), which means
that x is accessed at l1, and then y is accessed at l2. Then, we can obtain the type
environment of the whole expression by: [x/y](x : (R, l1); y : (R, l2)) = x : (R, l1; l2).
With the extension above, we expect that the type inference algorithm and its time
complexity do not change so much, although the proof of type soundness becomes
more complex.

Combination with region/effect systems. Regions and effects [Birkedal et al. 1996;
Tofte and Talpin 1994] are also useful to improve the accuracy of the analysis. Con-
sider a term (λy.accl1(x)) accl2(x). The best type we can assign to x is (R,3l1; l2),
although the term is computationally equivalent to let y = accl2(x) in accl1(x).
The problem is that rule (T-Fun) loses information that free variables in λx.M are
accessed only after the function is applied.

We can better handle this problem using region and effect systems [Birkedal
et al. 1996; Tofte and Talpin 1994]. Let us introduce a region to express a set of
resources, and let r be the region of the resource x above. Then, we can express

the type of λy.accl1(x) as bool rl1
−→ bool, where the latent effect rl1 means that

a resource in region r is accessed at l1 when the function is invoked. Using this
precise information, we can obtain rl2 ; rl1 as the effect of the whole expression.

There is, however, a drawback in region and effect systems. Since the effect
rl2 ; rl1 tells only that some resource in region r is accessed at l2 and then some
resource in region r is accessed at l1, we do not know whether x is indeed accessed
at l1 and l2 if r represents multiple resources. Multiple resources are indeed aliased
to the same region, for example, when they are passed to the same function:

let x = new() in let y = new() in (f(x), f(y))

A common solution to this problem is to use region polymorphism, existential types,
etc. [DeLine and Fähndrich 2001; Tofte and Talpin 1994; Walker et al. 2000], at
the cost of complication of type systems.

We have recently studied a combination of our type system with regions and
effects to take the best of both worlds [Kobayashi 2003]. The resulting analysis
no longer requires a separate escape analysis, because region/effect information
subsumes escape information. Development of a type inference algorithm for the
new type system is under way.

Recursive data structures. It is not difficult to extend our type-based analysis to
deal with recursive data structures like lists. For example, we can write (R, U) list
for the type of a list of resources used according to U . (Note that in DeLine and
Fähndrich’s type system [DeLine and Fähndrich 2001], existential types are required
to express similar information.) The rules for constructing and destructing lists can
be given as:

Γ1 ` M1 : τ Γ2 ` M2 : τ list
Γ1; Γ2 ` M1 :: M2 : τ list

Γ1 ` M1 : τ list
Γ2 ` M2 : τ ′ Γ3, x : τ, y : τ list ` M3 : τ ′

Γ1; (Γ2 & Γ3) ` case M1 of nil ⇒ M2 | x :: y ⇒ M3 : τ ′

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 37

If we are also interested in how cons cells are accessed, we can further extend the
list type to ((R, U1) list, U2), which means that each cons cell is accessed according
to U2.

8. RELATED WORK

8.1 General Type Systems for Resource Usage Analysis

The goal of our type system is close to that of DeLine and Fähndrich’s type system
for programming language Vault [DeLine and Fähndrich 2001; 2002] and Foster,
Terauchi, and Aiken’s type system [2002]. We discuss relationship between our type
system and them in this subsection.

Their type systems keep track of the state of a resource and ensure that only
valid operations are performed on the resource in each state. For example, let
us consider socket libraries. Socket libraries contain various functions to access
sockets, but they should be applied in a particular order: the function bind should
be first called, and then the function listen should be called, etc. To enforce such
usage of sockets, the following types8 are assigned in Vault [DeLine and Fähndrich
2001]:

socket : · · · → (sock , raw)
bind : (sock , raw) → (sock ,named)
listen : (sock ,named) → (sock , listening)
· · ·

The types specify that the function socket creates a new socket in state raw , that
the function bind takes a socket in state raw and changes its state to named , and
that the function listen takes a socket in state named and changes its state to
listening . These types enforce that bind is first applied to a new socket, and then
listen is applied. In our resource usage analysis, a similar effect can be achieved by
assigning to socket the following type:

socket : · · · → (sock , bind ; listen; · · ·)

The usage bind ; listen specifies that bind and listen should be applied in this order.
Although the difference above may not look essential, both approaches have

both advantages and disadvantages. A disadvantage of our approach is that usage
expressions are so expressive that there is no complete algorithm for deciding [[U]] ⊆
Φ (i.e., whether the inferred usage U conforms to the specification Φ). As we
discussed in Section 6.6, however, we think that for a certain class of languages
for describing Φ (regular languages, in particular), we can develop an (at least
sound) algorithm for checking [[U]] ⊆ Φ. On the other hand, our approach has the
following advantages. First, the other type systems [DeLine and Fähndrich 2001;
2002; Foster et al. 2002] cannot deal with resources that can have infinite states
(like stacks), but our type system can, as long as the number of operations is finite.
For example, the state of a stack can be expressed using a sequence of actions push
and pop in our approach. Second, our approach seems to require less complex type
machinery. To see the advantage, consider a resource to which an operation f can

8The notation used here is simplified and is imprecise. For precise descriptions, see their pa-
pers [DeLine and Fähndrich 2001; 2002; Foster et al. 2002].

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

38 · A. Igarashi and N. Kobayashi.

be applied at most twice. Then, the resource can be modeled as an automaton with
3 states q0, q1, q2 such that f can be applied in q0 and q1 and the state becomes q1

and q2 respectively. Since f can be applied in two states, the following intersection
type has to be assigned in the approach of extending types with states of resources:

f : ((R, q0) → (R, q1)) ∧ ((R, q1) → (R, q2))

On the other hand, we just need to assign type (R, f ; f) to a new resource. Third,
our approach can easily deal with concurrent access to resources. Let M1||M2 be
an expression that evaluates M1 and M2 in parallel and returns the result of M2.
Then, the typing rule for the expression is given as:

Γ1 ` M1 : bool Γ2 ` M2 : τ2

Γ1 ⊗ Γ2 ` M1||M2 : τ2

Notice here that ⊗ is used to combine environments instead of “;”. For example,
the following type derivation expresses that the file x is read twice.

x : (File, lR) ` freadlR(x) : bool
x : (File, lR) ` freadlR(x) : bool

x : (File, lR ⊗ lR) ` freadlR(x)||freadlR(x) : bool

On the other hand, it is not obvious how to extend the type systems in [Foster
et al. 2002; DeLine and Fähndrich 2001; 2002] to deal with concurrency. For ex-
ample, if one wants to check that a file is read exactly twice (as in the example
above), the file must be given three states: not read, read once, read twice. Then,
in freadlR(x); freadlR(x), the first freadlR(x) would be given a typing which ex-
presses that the file state is changed from not read into read once, and the second
one would be given a typing which expresses that the state is changed from read once
into read twice. In the case of freadlR(x)||freadlR(x), however, freadlR(x) cannot
be typed since we cannot statically tell which freadlR(x) is executed first.

Another technical difference between our type system and their type systems [De-
Line and Fähndrich 2001; 2002; Foster et al. 2002] is that our type system uses the
ideas of linear types, while their type systems use the ideas of region/effect sys-
tems. (The type system of Vault [DeLine and Fähndrich 2002] also uses some idea
of linear types, but in a way different from ours.) As we sketched in Section 7,
both approaches have advantages and disadvantages: In the region/effect-based
approach, the analysis becomes imprecise when multiple resources are represented
by the same region. The type system of Vault, therefore, uses complex type ma-
chinery such as bounded polymorphism and existential types, so that automatic
type inference is not possible. Foster et al.’s type system [Foster et al. 2002] ba-
sically gives up keeping track of the state of resources that may be aliased to the
same region and introduces a special programming construct to partially solve the
problem. On the other hand, our analysis based on linear types becomes imprecise
when resources are put into a closure (as mentioned in Section 7). We have recently
extended our type system with ideas of region/effect systems, but a type inference
algorithm for the new type system has not been developed yet [Kobayashi 2003].
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 39

The type system of Vault [DeLine and Fähndrich 2001; 2002] requires explicit
type annotation, while in our type system and Foster et al.’s type system [Foster
et al. 2002], types can be inferred automatically. Annotation of trace sets (Φ) is
necessary in our framework, but it is only used to declare valid access sequences. It
is necessary because the valid access sequences vary depending on the type of each
resource. Typically, declaration of a trace set needs to be done only once for each
kind of resource. For example, the following program defines new ro and new rw
as functions to create a read-only file and a read-write file respectively:

let new ro = λx.new(l∗RlC ↓)]

() in
let new rw = λx.new((lR+lW)∗lC ↓)]

() in · · ·

Here, we assume that the primitives for reading, writing, and closing a file are an-
notated with lR, lW , and lC , respectively. As for the analysis cost, except for the
unspecified algorithm for checking constraints of the form [[U]] ⊆ Φ, the time com-
plexity of our analysis seems comparable to that of Foster et al.’s analysis [Foster
et al. 2002]: the worst case time complexity of both analyses is O(n2).

Vault’s type system can check dependencies between multiple resources (e.g., the
property that a certain set of resources are guarded by a lock), while our present
type system cannot. The type system of Vault and Foster et al.’s type system [Foster
et al. 2002] can deal with pointers, while the target language of our analysis is
a purely functional language. We expect that our analysis can be extended to
deal with these points by using techniques we developed elsewhere [Igarashi and
Kobayashi 2003].

8.2 Other Related Type Systems

Technical ideas of our type-based analysis are similar to the quasi-linear type sys-
tem [Kobayashi 1999] for memory management and type systems for concurrent
processes (especially, those for deadlock-free processes) [Igarashi and Kobayashi
2003; Kobayashi 2000b; Kobayashi et al. 2000; Sumii and Kobayashi 1998]. The
quasi-linear type system distinguishes between candidates for the last access (la-
beled with 1) to a heap value and other accesses (labeled with δ or ω), and guar-
antees that heap values judged to be quasi-linear are never accessed after they are
accessed by an operation labeled with 1. Similar typing rules are used to keep
track of the access order (although the details are different). The idea of usage
expressions was borrowed from type systems for concurrent processes [Igarashi and
Kobayashi 2003; Kobayashi 2000b; Kobayashi et al. 2000; Sumii and Kobayashi
1998]. In those type systems, usage expressions express how each communication
channel is used.

The problem of linearity analysis [Gustavsson and Svenningsson 2000; Turner
et al. 1995; Wadler 1990; Wansbrough and Peyton Jones 1999] can be viewed as
an instance of the resource usage analysis problem: By removing information on
label names and access order from usage information, we get linearity information.
Our type-based analysis subsumes the linear type system of Igarashi and Kobayashi
[2000a].

Among previous work on region-based memory management, most closely related
would be Walker et al. [2000; 2001] and Grossman et al. [2002]. Given programs
explicitly annotated with region operations, their type systems check the safety of

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

40 · A. Igarashi and N. Kobayashi.

the region operations through a type system. (On the other hand, most of other
work on region-based memory management [Aiken et al. 1995; Birkedal et al. 1996;
Tofte and Talpin 1994] inserts region operations automatically.) However, unlike in
our type-based usage analysis, programs have to be explicitly annotated with type
information that guides the program analysis in their type systems.

Freund and Mitchell [1999] proposed a type system for Java bytecode that guar-
antees that every object is initialized before being used. Although the problem
of checking this property is an instance of the usage analysis problem, our type-
based analysis presented in Section 4 is not powerful enough to guarantee the same
property. The main difficulty is that in typical Java bytecode, a pointer to an unini-
tialized object is duplicated into two pointers, one of which is used to initialize the
object, and then the other is used to access the object. The successor of our type
system [Kobayashi 2003] can, however, deal with that problem.

Flanagan and Abadi [1999a; 1999b] studied a type system that ensures that a
certain lock is acquired before a shared resource is accessed. Our present type
system cannot be used for that purpose since our type system cannot keep track
of dependencies between multiple resources. As we mentioned above, we expect
that our type system can be extended to analyze ordering between accesses to
different resources by introducing techniques developed for type systems for the
π-calculus [Igarashi and Kobayashi 2003].

8.3 Other Methods for Resource Usage Analysis

There are other approaches to verification of similar properties of programs, using
dataflow analysis [Das et al. 2002], model checking, and theorem provers [Ball and
Rajamani 2002; Henzinger et al. 2002; Flanagan et al. 2002]. One advantage of type-
based approaches in general seem to be that modular analyses can be performed
using standard techniques for type inference and that there is a standard, syntactic
technique for proving soundness (using the subject reduction property). Besides
this general difference, Das et al.’s method [2002] seems to suffer from a problem
similar to that of the region/effect-based approach explained in Section 7; when
different resources may flow into the same argument of a resource access primitive,
their analysis seems unable to determine whether the primitive is indeed applied
to the resources. On the other hand, their approach has an advantage that it
can deal with value-dependent behavior, unlike the type-based approaches [DeLine
and Fähndrich 2002; Foster et al. 2002] including ours. For example, consider the
following program fragment:

if(d){lock(l);}
...
if(d){unlock(l);}

Their analysis [Das et al. 2002] can check that lock primitives are correctly used,
while the type-based approaches including ours cannot.

9. CONCLUSION

We have formalized a resource usage analysis problem as generalization of various
program analysis problems concerning resource access order. Our intention is to
provide a uniform view for various problems attacked individually so far, and to
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 41

stimulate development of general methods to solve those problems. As a starting
point towards the development of general methods for resource usage analysis, we
have also presented a type-based method.

Much work is left for future work. In order to deal with various kinds of resources
and programming styles, it is probably necessary to extend our type-based method
as discussed in Section 7. In fact, our current type-based method does not subsume
many solutions proposed for individual problems [Freund and Mitchell 1999; Walker
et al. 2000]. It is also left for future work to choose a language appropriate to specify
valid trace sets (Φ), and design a practical algorithm to check that inferred usages
conform to the specification (i.e., [[U]] ⊆ Φ).

We used the call-by-value simply typed λ-calculus as a target language of our
type-based analysis. It would be interesting to develop a method for usage analysis
for other languages such as imperative languages, low-level languages (like assembly
languages and bytecode languages), and concurrent languages. A rather different
method may be necessary to analyze those languages.

APPENDIX

A. PROPERTIES OF THE SUBUSAGE RELATION

Lemma A.1. The relation ≤ satisfies the following propositions:

(1) ≤ is reflexive and transitive,
(2) if U1 ¹ U2, then U1 ≤ U2,
(3) 0 ∼= 0 ¯ U ,
(4) U ∼= 0 ; U ∼= U ; 0 ∼= U ⊗ 0 ∼= 0 ⊗ U ,
(5) U ∼= l ¯ U ,
(6) U1 ⊗ U2

∼= U2 ⊗ U1,
(7) (U1 ⊗ U2) ⊗ U3

∼= U1 ⊗ (U2 ⊗ U3),
(8) U1 ⊗ U2 ≤ U1 ; U2,
(9) if U1

⇓, then U1 ; U2 ≤ U1 ⊗ U2,
(10) if U1

⇓ and U2
⇓, then U1 ; U2

∼= U1 ⊗ U2,
(11) (U1 ; U2) ⊗ (U3 ; U4) ≤ (U1 ⊗ U3) ; (U2 ⊗ U4),
(12) (U1 ⊗ U3) & (U2 ⊗ U3) ∼= (U1 & U2) ⊗ U3,
(13) (U1 ¯ U2) ¯ U3

∼= U1 ¯ (U2 ¯ U3),
(14) 3(U1 ¯ U2) ∼= U1 ¯ 3U2,
(15) U1 ¯ U2

∼= 3U1 ¯ U2,
(16) (U1 ¯ U ′) ⊗ (U2 ¯ U ′) ∼= (U1 ⊗ U2) ¯ U ′,
(17) (U ′ ¯ U1) ⊗ (U ′ ¯ U2) ∼= U ′ ¯ (U1 ⊗ U2),
(18) (U1 ; U2) ¯ U ′ ≤ (U1 ¯ U ′) ⊗ (U2 ¯ U ′),
(19) 33U ∼= 3U ≤ U ,
(20) 3(U1 ⊗ U2) ∼= 3U1 ⊗ 3U2,
(21) 3(U1 ¯ U2) ≤ 3U1 ¯ 3U2,
(22) U ≤ _U ,
(23) _U1 ⊗ _U2 ≤ _(U1 ⊗ U2),

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

42 · A. Igarashi and N. Kobayashi.

(24) If U ≤ C[U], then U ≤ µα.C[α],
(25) [[U]] = [[3U]], and
(26) If U1 ≤ U2, then [[U2]] ⊆ [[U1]].

Proof. 1, 2, 25, and 26 immediately follow from definitions. Proofs of 3–24 are
similar to each other. We give only a proof of U ≤ 0 ; U (a part of 4) below. Let S
be the following binary relation on usages:

{(C[U1, . . . , Un], C[0 ; U1, . . . ,0 ; Un])
| U1, . . . , Un ∈ U , C is a usage context with n holes}.

The required property U ≤ 0 ; U follows if we show S ⊆ ≤. Therefore, it suffices to
show that any (U1, U2) ∈ S satisfies the following three conditions:

(1) (C[U1], C[U2]) ∈ S for any usage context C;

(2) If U2
l−→ U ′

2, then U1
l−→ U ′

1 and (U ′
1, U

′
2) ∈ S for some U ′

1.
(3) If U2

↓, then U1
↓.

The first and third conditions are trivial. We show the second condition by induc-
tion on derivation of U2

l−→ U ′
2, with case analysis on the last rule used.

—Case (UR-Zero): This case cannot happen.
—Case (UR-ParL): In this case, it must be the case that:

U1 = C1[V1, . . . , Vm] ⊗ C2[Vm+1, . . . , Vn]
U2 = C1[0 ; V1, . . . ,0 ; Vm] ⊗ C2[0 ; Vm+1, . . . ,0 ; Vn]
C1[0 ; V1, . . . ,0 ; Vm] l−→ U ′

21

U ′
2 = U ′

21 ⊗ C2[0 ; Vm+1, . . . ,0 ; Vn]

By the induction hypothesis, there exists U ′
11 such that C1[V1, . . . , Vm] l−→ U ′

11

and (U ′
11, U

′
21) ∈ S. So, U ′

1 = U ′
11 ⊗ C2[0 ; Vm+1, . . . ,0 ; Vn] satisfies the required

condition.
—Case (UR-ParR): Similar to the case for (UR-ParL).
—Case (UR-SeqL): Similar to the case for (UR-ParL).
—Case (UR-SeqR): In this case, either of the following conditions holds:

(1) U2 = 0 ; U1, U1
l−→ U ′, and U ′

2 = 0 ; U ′.
(2) U2 = C1[0 ;V1, . . . ,0 ;Vm] ;C2[0 ;Vm+1, . . . ,0 ;Vn], C2[0 ;Vm+1, . . . ,0 ;Vn] l−→

U ′
22, and U ′

2 = C1[0 ; V1, . . . ,0 ; Vm] ; U ′
22.

In the first case, U ′
1 = U ′ satisfies the required condition. A proof for the second

case is similar to the case for (UR-ParL).
—Case (UR-Box): In this case, it must be the case that:

U1 = 3C[V1, . . . , Vm]
U2 = 3C[0 ; V1, . . . ,0 ; Vm]
C[0 ; V1, . . . ,0 ; Vm] l−→ U ′′

2

U ′
2 = 3U ′′

2

By induction hypothesis, there exists U ′′
1 such that C[V1, . . . , Vm] l−→ U ′′

1 and
(U ′′

1 , U ′′
2) ∈ S. So, U ′

1 = 3U ′′
1 satisfies the required condition.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 43

—Case (UR-Unbox): Similar to the case for (UR-Box).
—Case (UR-Mult): Similar to the case for (UR-ParL).
—Case (UR-SMult): Similar to the case for (UR-ParL).
—Case (UR-PCong): In this case,

U2 = C[0 ; V1, . . . ,0 ; Vn] ¹ C ′[0 ; V ′
1 , . . .0 ; V ′

n] l−→ U ′
2,

with C ¹ C ′ and V1 ¹ V ′
1 , . . . , Vn ¹ V ′

n. Since U1 = C[V1, . . . , Vn] ¹ C ′[V ′
1 , . . . , V ′

n],
the induction hypothesis implies that there exists U ′

1 such that

U1 ¹ C ′[V ′
1 , . . . , V ′

n] l−→ U ′
1

and (U ′
1, U

′
2) ∈ S.

Lemma A.2.

(1) If U4
⇓, then ((U1 ; U2) ¯ U3) ¯ U4 ≤ ((U1 ¯ U3) ¯ U4) ; ((U2 ¯ U3) ¯ U4), and

(2) ((U1 ¯ 3U2) ¯ U3) ¯ 3U4 ≤ U1 ¯ 3((U2 ¯ U3) ¯ 3U4), and
(3) if U1 ≤ 1, then (U1 ¯ (µα.1 ⊗ (U2 ¯ α)))¯U3 ≤ U3⊗((U2 ¯ (µα.1 ⊗ (U2 ¯ α)))¯

U3).

Proof.

1. By the following calculation:

((U1 ; U2) ¯ U3) ¯ U4

≤ ((U1 ¯ U3) ⊗ (U2 ¯ U3)) ¯ U4 (Lemma A.1(18))
≤ ((U1 ¯ U3) ; (U2 ¯ U3)) ¯ U4 (Lemma A.1(8))
≤ ((U1 ¯ U3) ¯ U4) ⊗ ((U2 ¯ U3) ¯ U4) (Lemma A.1(18))
≤ ((U1 ¯ U3) ¯ U4) ; ((U2 ¯ U3) ¯ U4) (Lemma A.1(10))

2. By the following calculation:

((U1 ¯ 3U2) ¯ U3) ¯ 3U4

≤ ((U1 ¯ U2) ¯ U3) ¯ 3U4 (Lemma A.1(15) and (14))
≤ U1 ¯ ((U2 ¯ U3) ¯ 3U4) (Lemma A.1(13))
≤ U1 ¯ 3((U2 ¯ U3) ¯ 3U4) (Lemma A.1(19) and (15))

3. By the following calculation:

(U1 ¯ (µα.1 ⊗ (U2 ¯ α))) ¯ U3

≤ (µα.1 ⊗ (U2 ¯ α)) ¯ U3 (U1 ≤ l and Lemma A.1(5))
≤ (1 ⊗ (U2 ¯ µα.1 ⊗ (U2 ¯ α))) ¯ U3 (Lemma A.1(2))
≤ U3 ⊗ ((U2 ¯ (µα.1 ⊗ (U2 ¯ α))) ¯ U3) (Lemma A.1(18) and (5))

B. PROOF OF THEOREM 5.4.2

Lemma B.1 (Inversion) .

(1) If Γ ` x : τ , then Γ ≤ x : 3τ .
(2) If Γ ` true : τ or Γ ` false : τ , then Γ ≤ ∅ and τ = bool.
(3) If Γ ` letR x : U in D : τ , then there exist Γ′ and τ ′ such that Γ′, x : (R, U) `

D : τ ′ with Γ ≤ Γ′ and τ ′ ≤ τ .
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

44 · A. Igarashi and N. Kobayashi.

(4) If Γ ` fun(f, x, M) : τ , then there exist α, U1, U2, τ1, τ2, and Γ1 such that Γ1, f :
(τ1 → τ2, U1), x : τ1 ` M : τ2 and Γ ≤ (U2 ¯ (µα.(1 ⊗ U1 ¯ α))) ¯ 3Γ1 and
(τ1 → τ2, U2) ≤ τ .

(5) If Γ ` D1 D2 : τ , then there exist Γ1,Γ2, τ1, and τ2 such that Γ1 ` D1 : (τ1 →
τ2, 1) and Γ2 ` D2 : τ1 and Γ ≤ Γ1; Γ2 and τ2 ≤ τ .

(6) If Γ ` if D1 then D2 else D3 : τ , then there exist Γ1, Γ2, Γ3, and τ1 such that
Γ1 ` D1 : bool and Γ2 ` D2 : τ1 and Γ3 ` D3 : τ1 and Γ ≤ Γ1; (Γ2 & Γ3) and
τ1 ≤ τ .

(7) If Γ ` newΦ() : τ , then Γ ≤ ∅ and there exists U such that [[U]] ⊆ Φ and
(R, U) ≤ τ .

(8) If Γ ` accl(D) : τ , then τ = bool and there exists Γ1 such that Γ1 ` D : (R, l)
and Γ ≤ Γ1.

(9) If Γ ` let x = D1 in D2 : τ , then there exist Γ1, Γ2, τ1, and τ2 such that
Γ1 ` D1 : τ1 and Γ2, x : τ1 ` D2 : τ2 and Γ ≤ Γ1; Γ2 and τ2 ≤ τ .

(10) If Γ ` D{x} : τ , then there exist Γ1, τ1, τ2 such that Γ1, x : τ1 ` D : τ2 and
Γ ≤ Γ1, x : _τ1 and τ2 ≤ τ .

Proof. Immediate from the fact that a type derivation of Γ ` D : τ must end
with an application of the rule corresponding to the form of D, followed by zero or
more applications of rule T-Sub.

Lemma B.2.

(1) If Γ ` fun(f, x, M) : (τ1 → τ2, U1 ; U2), then there exist Γ1 and Γ2 such that
Γi ` fun(f, x,M) : (τ1 → τ2, U

′
i) and Ui ≤ U ′

i for i = 1, 2 and Γ ≤ Γ1; Γ2.
(2) Similarly, if Γ ` fun(f, x, M) : (τ1 → τ2, U1 ¯ 3U2), then there exists Γ′ such

that Γ′ ` fun(f, x, M) : (τ1 → τ2, U
′
2) and U2 ≤ U ′

2 and Γ ≤ U1 ¯ 3Γ′.

Proof.

(1) By Lemma B.1, Γ ≤ (U ′ ¯ µα.(1 ⊗ (Uf ¯ α)))¯3Γ′ and Γ′, f :(τ ′
1 → τ ′

2, Uf), x:
τ ′
1 ` M :τ ′

2 and (τ ′
1 → τ ′

2, U
′) ≤ (τ1 → τ2, U1 ; U2). By rules T-Fun and T-Sub,

for i = 1, 2,

(Ui ¯ µα.(1 ⊗ (Uf ¯ α))) ¯ 3Γ′ ` fun(f, x, M) : (τ1 → τ2, Ui).

Finally,

Γ ≤ ((U1 ¯ µα.(1 ⊗ (Uf ¯ α)) ¯ 3Γ′); ((U2 ¯ µα.(1 ⊗ (Uf ¯ α))) ¯ 3Γ′)

by Lemma A.2(1).
(2) By Lemma B.1, Γ ≤ (U ′ ¯ µα.(1 ⊗ (Uf ¯ α)))¯3Γ′ and Γ′, f :(τ ′

1 → τ ′
2, Uf), x:

τ ′
1 ` M : τ ′

2 and (τ ′
1 → τ ′

2, U
′) ≤ (τ1 → τ2, U1 ¯ 3U2). By rules T-Fun and

T-Sub,

(U2 ¯ µα.(1 ⊗ (Uf ¯ α))) ¯ 3Γ′ ` fun(f, x, M) : (τ1 → τ2, U2).

Finally,

Γ ≤ ((U1 ¯ 3U2) ¯ µα.(1 ⊗ (Uf ¯ α))) ¯ 3Γ′

≤ U1 ¯ 3((U2 ¯ µα.(1 ⊗ (Uf ¯ α))) ¯ 3Γ′)

by Lemma A.2(2).
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 45

Lemma B.3 (Substitution) . If Γ1, x:τ1 ` M :τ2 and Γ2 ` v:τ1, then Γ1⊗Γ2 `
[v/x]M : τ2.

Proof. We first prove the case where v is true, false, or fun(f, y, M ′) by struc-
tural induction on the derivation of Γ1, x : τ1 ` M : τ2 with a case analysis on the
last rule used. We show a few representative cases below.

Case T-Var. If M = x, then Γ1 = ∅ and τ1 = 3τ2. Since 3τ2 ≤ τ2 and
Γ2 = ∅ ⊗ Γ2, by rule T-Sub, ∅ ⊗ Γ2 ` v : τ2. The other case where M = y 6= x is
also easy.

Case T-Fun. M = fun(f, y,M0)
U = U2 ¯ µα.(1 ⊗ (U1 ¯ α))
Γ1, x : τ1 = U ¯ 3Γ′

1, x : U ¯ 3τ ′
1

Γ′
1, x : τ ′

1, f : (τ21 → τ22, U1), y : τ21 ` M0 : τ22

τ2 = (τ21 → τ22, U2)
By Lemma B.2(2), there exists Γ′

2 such that Γ′
2 ` v : τ ′

1 and τ1 ≤ U ¯ 3τ ′
1 and

Γ2 ≤ U ¯ 3Γ′
2. Thus, by the induction hypothesis, we have

Γ′
1 ⊗ Γ′

2, f : (τ21 → τ22, U1), y : τ21 ` [v/x]M0 : τ22.

By rule T-Fun,

U ¯ 3(Γ′
1 ⊗ Γ′

2) ` fun(f, y, [v/x]M0) : (τ21 → τ22, U2).

By Lemma A.1 (20) and (17),

(U ¯ 3Γ′
1) ⊗ (U ¯ 3Γ′

2) ≤ U ¯ 3(Γ′
1 ⊗ Γ′

2)

and T-Sub finishes the case.
Case T-App. M = M1 M2 Γ1, x : τ1 = Γ11; Γ12

Γ11 ` M1 : (τ11 → τ2, 1) Γ12 ` M2 : τ11

Without loss of genericity, we can assume x ∈ dom(Γ11) ∩ dom(Γ12) and τ1 =
τ11; τ12. By Lemma B.2(1), we have Γ21 and Γ22 such that

Γ21 ` v : τ11 Γ22 ` v : τ12 Γ2 ≤ Γ21; Γ22

Then, by the induction hypothesis, we have

Γ11 ⊗ Γ21 ` [v/x]M1 : (τ11 → τ2, 1) Γ12 ⊗ Γ22 ` [v/x]M2 : τ11

and then by rule T-App,

(Γ11 ⊗ Γ21); (Γ12 ⊗ Γ22) ` [v/x](M1 M2) : τ2.

Finally, by Lemma A.1(11),

(Γ11; Γ12) ⊗ (Γ21; Γ22) ≤ (Γ11 ⊗ Γ21); (Γ12 ⊗ Γ22)

and rule T-Sub finishes the case.
Case T-Now. M = M

{y}
0 Γ = _yΓ0 Γ0 ` M0 : τ

Easy. Note that it cannot be the case that x = y, since _yΓ0 is well defined and τ1

should not be (R, U).
The case where v is a variable, we need to prove a slightly stronger statement.

In particular, straightforward induction fails since Γ ` x : τ1; τ2 does not imply the
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

46 · A. Igarashi and N. Kobayashi.

existence of Γ1 and Γ2 such that Γi ` x : τi for i = 1, 2 and Γ ≤ Γ1; Γ2. Thus, we
prove that, if Γ, x : τx ` M : τ , then Γ⊗ y : τx ` [y/x]M : τ , by structural induction
on the derivation of Γ1, x : τ1 ` M : τ2. The proof itself is straightforward. Then,
by Lemmas B.1 and A.1(19), Γ2 ≤ y : 3τ1 ≤ y : τ1. Finally, use T-Sub.

Lemma B.4. If Γ0 ` D : τ0 and Γ0 ` D′ : τ0, then Γ ` ED[D] : τ iff Γ ` ED[D′] :
τ .

Proof. By structural induction on ED.

Proof of Theorem 5.4.2. By a case analysis on the reduction rule used. We
show a few representative cases below.

Case RD-AppPush. D = ED[letR x : Ux in D1 D2]
D′ = ED[(letR x : Ux1 in D1) (letR x : Ux2 in D2)]
ξ = x

By Lemma B.4, it suffices to show that if Γ0 ` letR x : Ux in D1 D2 : τ0 then there
exist U ′

x1 and U ′
x2 such that Γ0 ` (letR x : U ′

x1 in D1) (letR x : U ′
x2 in D2) : τ0 and

Ux ≤ U ′
x1; U

′
x2.

By Lemma B.1,

Γ′
0, x : (R, Ux) ` D1 D2 : τ ′

0 Γ0 ≤ Γ′
0 τ ′

0 ≤ τ0

and
Γ1, x : (R, U11) ` D1 : (τ22 → τ ′

0, 1) Γ2, x : (R, U12) ` D2 : τ22

Γ′
0 ≤ Γ1; Γ2 Ux ≤ U11; U12 τ ′

0 ≤ τ0

By rule T-Letres,

Γ1 ` letR x : U11 in D1 : (τ22 → τ ′
0, 1)

and

Γ2 ` letR x : U22 in D2 : τ22.

Rules T-App and T-Sub finish the case.
Case RD-App. D = ED[(letR x̃1 : Ũ1 in letR x̃2 : Ũ2 in fun(f, x,M))

(letR x̃1 : Ũ4 in letR x̃3 : Ũ3 in v)]
D′ = ED[letR x̃1 : (Ũ1 ; Ũ4) in letR x̃2 : Ũ2 in

letR x̃3 : Ũ3 in [v/x, fun(f, x, M)/f]M]
By Lemma B.4, it suffices to show that

Γ0 ` (letR x̃1 : Ũ1 in letR x̃2 : Ũ2 in fun(f, x, M))

(letR x̃1 : Ũ4 in letR x̃3 : Ũ3 in v) : τ0

implies

Γ0 ` letR x̃1 : (Ũ1 ; Ũ4) in letR x̃2 : Ũ2 in letR x̃3 : Ũ3 in

[v/x, fun(f, x,M)/f]M : τ0.

By Lemma B.1,

Γ1 ` letR x̃1 : Ũ1 in letR x̃2 : Ũ2 in fun(f, x,M) : (τ2 → τ ′
0, 1) (1)

Γ2 ` letR x̃1 : Ũ4 in letR x̃3 : Ũ3 in v : τ2

Γ0 ≤ Γ1; Γ2 τ ′
0 ≤ τ0

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 47

and, furthermore, by repeating Lemma B.1 it is easy to show that there exist Γ′
1

such that

Γ′
1 ` fun(f, x, M) : τf

Γ1, x̃1 : (R, Ũ1), x̃2 : (R, Ũ2) ≤ Γ′
1

τf ≤ (τ2 → τ ′
0, 1). (2)

Similarly,

Γ′
2 ` v : τ ′′

2 (3)

Γ2, x̃1 : (R, Ũ4), x̃3 : (R, Ũ3) ≤ Γ′
2

τ ′′
2 ≤ τ2. (4)

By (1) and Lemma B.1, there exist α, Uf1, Uf2, τf1, τf2, and Γ′′
1 such that

Γ′′
1 , f : (τf1 → τf2, Uf1), x : τf1 ` M : τf2 (5)

Γ′
1 ≤ (Uf2 ¯ µα.(1 ⊗ (Uf1 ¯ α))) ¯ 3Γ′′

1 (6)
(τf1 → τf2, Uf2) ≤ τf . (7)

By (2), (4), and (7), τ ′′
2 ≤ τf1 and τf2 ≤ τ0 and Uf2 ≤ 1. By (5) and rule T-Fun,

Uf1 ¯ (µα.(1 ⊗ (Uf1 ¯ α))) ¯ 3Γ′′
1 ` fun(f, x, M) : (τf1 → τf2, Uf1). (8)

By (5), (8), (3), and Lemma B.3,

Γ′′
1 ⊗ (Uf1 ¯ µα.(1 ⊗ (Uf1 ¯ α)) ¯ 3Γ′′

1) ⊗ Γ′
2 ` [fun(f, x, M)/f, v/x]M : τf2

Then, by Lemma A.2(3) and Lemma A.1(19),

(Uf2 ¯ µα.(1 ⊗ Uf1 ¯ α)) ¯ 3Γ′′
1 ≤ 3Γ′′

1 ⊗ (Uf1 ¯ µα.(1 ⊗ (Uf1 ¯ α)) ¯ 3Γ′′
1)

≤ Γ′′
1 ⊗ (Uf1 ¯ µα.(1 ⊗ (Uf1 ¯ α)) ¯ 3Γ′′

1)

and thus

Γ′
1 ⊗ Γ′

2 ` [fun(f, x, M)/f, v/x]M : τf2

From (6), for any i, there exists U ′
1i such that U1i ≤ U ′

1i and U ′
1i

⇓. (If x1i 6∈
dom(Γ′′

1), take 0 for U ′
1i.) Then, by Lemma A.1(9), U ′

1i ; U4i ≤ U ′
1i ⊗ U4i, and so

U1i ; U4i ≤ U ′
1i ⊗ U4i. Thus, we have

(Γ1 ⊗ Γ2), x̃1 : (R, Ũ1; Ũ4), x̃2 : (R, Ũ2), x̃3 : (R, Ũ3) ` [fun(f, x, M)/f, v/x]M : τf2.

By rules T-Letres and T-Sub, we have

Γ0 ` letR x̃1 : (Ũ1 ; Ũ4) in letR x̃2 : Ũ2 in letR x̃3 : Ũ3 in

[fun(f, x, M)/f, v/x]M : τ0,

finishing the case.

ACKNOWLEDGMENTS

We would like to thank Manuel Fähndrich, Haruo Hosoya, Jakob Rehof, Tatsuro
Sekiguchi, and Eijiro Sumii for discussions and comments. Comments from anony-
mous reviewers helped us improve the presentation of the article.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

48 · A. Igarashi and N. Kobayashi.

REFERENCES

Aiken, A., Fähndrich, M., and Levien, R. 1995. Improving region-based analysis of higher-order
languages. In Proceedings of ACM SIGPLAN Conference on Programming Language Design
and Implementation. 174–185.

Ball, T. and Rajamani, S. K. 2002. The SLAM project: Debugging system software via static
analysis. In Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles of Program-

ming Languages. 1–3.

Bigliardi, G. and Laneve, C. 2000. A type system for JVM threads. In Proceedings of 3rd ACM

SIGPLAN Workshop on Types in Compilation (TIC2000). Montreal, Canada.

Birkedal, L., Tofte, M., and Vejlstrup, M. 1996. From region inference to von Neumann
machines via region representation inference. In Proceedings of ACM SIGPLAN/SIGACT
Symposium on Principles of Programming Languages. 171–183.

Blanchet, B. 1998. Escape analysis: Correctness, proof, implementation and experimental re-
sults. In Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles of Programming

Languages. 25–37.

Das, M., Lerner, S., and Seigle, M. 2002. Path-sensitive program verification in polynomial

time. In Proceedings of ACM SIGPLAN Conference on Programming Language Design and
Implementation.

DeLine, R. and Fähndrich, M. 2001. Enforcing high-level protocols in low-level software. In
Proceedings of ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation. 59–69.

DeLine, R. and Fähndrich, M. 2002. Adoption and focus: Practical linear types for impera-

tive programming. In Proceedings of ACM SIGPLAN Conference on Programming Language
Design and Implementation.

Emerson, E. A. 1990. Temporal and modal logic. In Handbook of Theoretical Computer Science
Volume B, J. V. Leeuwen, Ed. The MIT press/Elsevier, Chapter 16, 995–1072.

Flanagan, C. and Abadi, M. 1999a. Object types against races. In CONCUR’99. Lecture Notes
in Computer Science, vol. 1664. Springer-Verlag, 288–303.

Flanagan, C. and Abadi, M. 1999b. Types for safe locking. In Proceedings of ESOP 1999.
Lecture Notes in Computer Science, vol. 1576. 91–108.

Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G., Saxe, J. B., and Stata, R.
2002. Extended static checking for Java. In Proceedings of ACM SIGPLAN Conference on

Programming Language Design and Implementation. 234–245.

Foster, J. S., Terauchi, T., and Aiken, A. 2002. Flow-sensitive type qualifiers. In Proceedings
of ACM SIGPLAN Conference on Programming Language Design and Implementation.

Freund, S. N. and Mitchell, J. C. 1999. The type system for object initialization in the
Java bytecode language. ACM Transactions on Programming Languages and Systems 21, 6,
1196–1250.

Girard, J.-Y. 1987. Linear logic. Theoretical Computer Science 50, 1–102.

Gischer, J. 1981. Shuffle languages, Petri nets, and context-sensitive grammars. Commun.
ACM 24, 9, 597–605.

Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., and Cheney, J. 2002. Region-
based memory management in cyclone. In Proceedings of ACM SIGPLAN Conference on

Programming Language Design and Implementation. 282–293.

Gustavsson, J. and Svenningsson, J. 2000. A usage analysis with bounded usage polymorphism
and subtyping. In Proceedings of IFL’00, Implementation of Functional Languages. Lecture
Notes in Computer Science, vol. 2011. 140–157.

Hannan, J. 1995. A type-based analysis for stack allocation in functional languages. In Proceedings
of SAS’95. Lecture Notes in Computer Science, vol. 983. 172–188.

Henzinger, T. A., Jhala, R., Majumdar, R., and Sutre, G. 2002. Lazy abstraction. In Pro-
ceedings of ACM SIGPLAN/SIGACT Symposium on Principles of Programming Languages.

58–70.

Igarashi, A. and Kobayashi, N. 2000a. Garbage collection based on a linear type system. In
Proceedings of 3rd ACM SIGPLAN Workshop on Types in Compilation (TIC2000). Montreal,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Resource Usage Analysis · 49

Canada. Published as Technical Report CMU-CS-00-161, Carnegie Mellon University, Pitts-
burgh, PA.

Igarashi, A. and Kobayashi, N. 2000b. Type reconstruction for linear pi-calculus with I/O
subtyping. Information and Computation 161, 1–44.

Igarashi, A. and Kobayashi, N. 2003. A generic type system for the pi-calculus. Theor. Comput.

Sci. 311, 1–3 (Jan.), 121–163.

Iwama, F. and Kobayashi, N. 2002. A new type system for JVM lock primitives. In Proceedings
of ASIA-PEPM’02. ACM Press. Available at http://www.kb.cs.titech.ac.jp/~kobayasi/

publications.html.

Jȩdrzejowicz, J. and Szepietowski, A. 2001. Shuffle languages are in P. Theor. Comput.
Sci. 250, 1-2, 31–53.

Kanellakis, P. C., Mairson, H. G., and Mitchell, J. C. 1991. Unification and ML Type
Reconstruction. In Computational Logic: Essays in Honor of Alan Robinson, J.-L. Lassez and
G. D. Plotkin, Eds. The MIT Press, 444–478.

Kobayashi, N. 1999. Quasi-linear types. In Proceedings of ACM SIGPLAN/SIGACT Symposium
on Principles of Programming Languages. 29–42.

Kobayashi, N. 2000a. Type-based useless variable elimination. In Proceedings of ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-Based Program Manipulation. 84–93.

Kobayashi, N. 2000b. Type systems for concurrent processes: From deadlock-freedom to livelock-
freedom, time-boundedness. In Proceedings of IFIP International Conference on Theoretical
Computer Science (TCS2000). Lecture Notes in Computer Science, vol. 1872. 365–389. Invited
Talk.

Kobayashi, N. 2003. Time regions and effects for resource usage analysis. In Proceedings of
ACM SIGPLAN International Workshop on Types in Languages Design and Implementation
(TLDI’03). 50–61.

Kobayashi, N., Saito, S., and Sumii, E. 2000. An implicitly-typed deadlock-free process calculus.
In Proceedings of CONCUR2000. Lecture Notes in Computer Science, vol. 1877. Springer-
Verlag, 489–503.

Milner, R. 1989. Communication and Concurrency. Prentice Hall.

Morrisett, G., Felleisen, M., and Harper, R. 1995. Abstract models of memory management.

In Proceedings of Functional Programming Languages and Computer Architecture. 66–76.

Nielson, F., Nielson, H. R., and Hankin, C. 1999. Principles of Program Analysis. Springer-

Verlag.

Rehof, J. and Mogensen, T. 1999. Tractable constraints in finite semilattices. Science of
Computer Programming 35, 2, 191–221.

Sangiorgi, D. and Walker, D. 2001. The Pi-Calculus: A Theory of Mobile Processes. Cambridge
University Press.

Sumii, E. and Kobayashi, N. 1998. A generalized deadlock-free process calculus. In Proc. of
Workshop on High-Level Concurrent Language (HLCL’98). ENTCS, vol. 16(3). 55–77.

Tofte, M. and Talpin, J.-P. 1994. Implementation of the call-by-value lambda-calculus using

a stack of regions. In Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles of
Programming Languages. 188–201.

Turner, D. N., Wadler, P., and Mossin, C. 1995. Once upon a type. In Proceedings of

Functional Programming Languages and Computer Architecture. San Diego, California, 1–11.

Wadler, P. 1990. Linear types can change the world! In Programming Concepts and Methods.
North Holland.

Walker, D., Crary, K., and Morrisett, J. G. 2000. Typed memory management via static
capabilities. ACM Transactions on Programming Languages and Systems 22, 4, 701–771.

Walker, D. and Watkins, K. 2001. On linear types and regions. In Proceedings of ACM
SIGPLAN International Conference on Functional Programming.

Wansbrough, K. and Peyton Jones, S. L. 1999. Once upon a polymorphic type. In Proceedings
of ACM SIGPLAN/SIGACT Symposium on Principles of Programming Languages. 15–28.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

50 · A. Igarashi and N. Kobayashi.

Received May 2002; revised April 2003; accepted February 2004

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

