An Overview of the HFL Model Checking Project (at UTokyo)

Naoki Kobayashi The University of Tokyo

In collaboration with: Kazuyuki Asada, Florian Bruze, Adrien Champion, Grigory Fedyukobich, Aarti Guputa, Atushi Igarashi, Etienne Lozes, Takeshi Nishikawa, Ryosuke Sato, Takeshi Tsukada, Hiroshi Unno, and (ex-)students at UTokyo

This Talk

- An Overview of Our Project on Automated Program Verification Based on Higher-Order Fixpoint Logic (HFL)
 - HFL [Viswanathan&Viswanathan 04] as a higher-order extension of the modal μ -calculus
 - HFL(Z) (HFL with integers) as an extension of Constrained Horn Clauses (CHC, a.k.a. CLP) with higher-order predicates and fixpoint alternation
 - Natural reduction from higher-order program verification to HFL(Z) model checking [K+ ESOP18][Watanabe+ PEPM19]
 - More uniform approach than our previous approach based on HORS model checking [K, POPL09][K+ POPL10][K+ PLDI11][K, JACM13]...
 - Automated techniques for HFL(Z) model checking
 based on CHC solving [K+ SAS19][Hosoi+ APLAS19][K+ TACAS19][Katsura+ APLAS20] ...
 - Machine learning techniques for CHC solving [Champion+ TACAS18] ...

Introduction to HFL and HFL(Z)

- What is higher-order fixpoint logic?
- HFL model checking as a higher-order extension of finite state model checking
- HFL(Z) as an extension of Constrained Horn Clauses (CHC)
- Reductions from program verification to HFL(Z) model checking
- Solving HFL(Z) model checking using types, CHC solving, and higher-order model checking
- Machine learning techniques for CHC solving

Introduction to HFL and HFL(Z)

- What is higher-order fixpoint logic?
- HFL model checking as a higher-order extension of finite state model checking
- HFL(Z) as an extension of Constrained Horn Clauses (CHC)
- Reductions from program verification to HFL(Z) model checking
- Solving HFL(Z) model checking using types, CHC solving, and higher-order model checking
- Machine learning techniques for CHC solving

Higher-Order Modal Fixpoint Logic (HFL)

[Viswanathan&Viswanathan 04]

\blacklozenge Higher-order extension of the modal μ -calculus

φ ::=	true	
	$\phi_1 \wedge \phi_2$	
	$\phi_1 \lor \phi_2$	
	[a]φ	φ <i>must</i> hold after a
	<a>φ	φ <i>may</i> hold after a
	Χ	variable
	μΧ.φ	<i>least</i> fixpoint (the least X such that X= ϕ)
	νΧ.φ	greatest fixpoint (the greatest X such that X= ϕ)
e.g.	μ X. true \vee <a< td=""><td>>X</td></a<>	>X

"b" may occur after a finite number of "a" transitions (i.e., there exists a transition sequence in which "b" occurs after a finite number of "a" transitions)

Higher-Order Modal Fixpoint Logic (HFL)

[Viswanathan&Viswanathan 04]

\blacklozenge Higher-order extension of the modal μ -calculus

 $\phi ::= true$

ĸ

$\phi_1 \wedge \phi_2$	
$\phi_1 \lor \phi_2$	
[a]φ	φ must hold after a
<a> φ	φ may hold after a
X	predicate variable
μΧ ^κ .φ	<i>least</i> fixpoint (the least X such that X= ϕ)
ν Χ^κ. φ	greatest fixpoint (the greatest X such that X= ϕ)
λ Χ ^κ . φ	(higher-order) predicate
φ ₁ φ ₂	application
:::= •	the type of propositions
κ ₁ →κ ₂	

Selected Typing Rules for HFL

$$\begin{array}{c}
\Gamma \vdash \operatorname{true:} \bullet \\
\hline \Gamma \vdash \varphi : \bullet \\
\hline \Gamma \vdash \varphi \land \psi : \bullet \\
\hline \Gamma \vdash \varphi \land \psi : \bullet \\
\hline \Gamma \vdash \varphi \land \psi : \bullet \\
\hline \Gamma, X : \kappa \vdash X : \kappa \\
\hline
\end{array}$$

$$\begin{array}{c}
\Gamma \vdash \varphi : \kappa_{1} \rightarrow \kappa_{2} \quad \Gamma \vdash \psi : \kappa_{1} \\
\hline \Gamma \vdash \varphi : \kappa_{1} \rightarrow \kappa_{2} \quad \Gamma \vdash \psi : \kappa_{1} \\
\hline \Gamma \vdash \varphi : \kappa_{2} \quad \Gamma \vdash \psi : \kappa_{1} \\
\hline \Gamma \vdash \psi : \kappa_{2} \\
\hline
\end{array}$$

Example

- $(vF^{\bullet \rightarrow \bullet}.\lambda X. X \land [a](F ([b]X)) < c >$
- = $(\lambda X. X \wedge [a](vF...)([b]X)) < c>$
- = <c> \wedge [a](($vF^{\bullet \rightarrow \bullet}$. λX . X \wedge [a](F ([b]X)) ([b]<c>))
- = <c> \land [a]((λ X. X \land [a](ν F...) ([b]X)) ([b]<c>))
- = <c> ^ [a]([b]<c> ^ [a](vF...) ([b][b]<c>))
- = <c> \land [a][b]<c> \land [a]²[b]² <c> \land ...

After any transitions of the form $a^n b^n$, <c> holds

HFL Model Checking

[Viswanathan&Viswanathan 2004]

Given

L: (finite-state) labeled transition system

φ: HFL formula,

does L satisfy ϕ ?

e.g.
$$L \models \varphi$$
 for:
L:
b
b
b

An alternative notation:

F <c> where

F X =_v X^ [a](F ([b]X))

HFL Model Checking

[Viswanathan&Viswanathan 2004]

(Given
	L: (finite-state) labeled transition system
	φ: HFL formula,
	does L satisfy φ?

- k-EXPTIME complete for order-k HFL [Axelsson+ 07] but a practical algorithm exists [Hosoi+ 19] (order(\bullet) = 0, order($\kappa_1 \rightarrow ... \rightarrow \kappa_n \rightarrow \bullet$) = 1+max(order(κ_1), ..., order(κ_n)))

Polynomial time translation exists
 between HFL model checking and HORS model checking [K+ POPL17]

The other kind of higher-order model checking [Ong 06]

HFL(Z): An extension of HFL with integers

 $\varphi ::= \text{true } | \varphi_1 \land \varphi_2 | \varphi_1 \lor \varphi_2 | [a]\varphi | <a>\varphi$ $| X | \mu X^{\kappa}.\varphi | \nu X^{\kappa}.\varphi | \lambda X^{\tau}.\varphi | \varphi_1 \varphi_2$ $| \varphi e | e_1 = e_2$ $e ::= n | X | e_1 + e_2$ $\kappa ::= o | \tau \rightarrow \kappa$ $\tau ::= \kappa | \text{int}$

Example:

$$\begin{array}{l} (\mu E.\lambda x. \ x=0 \lor E(x-2))n \\ \equiv \ (\lambda x. \ x=0 \lor (\mu E.\lambda x. \ ...)(x-2))n \\ \equiv \ n=0 \lor (\mu E.\lambda x. \ x=0 \lor E(x-2))(n-2) \\ \equiv \ n=0 \lor n-2=0 \lor \dots \end{array}$$

= "n is an even non-negative integer"

 $(\nu X.\lambda x. P(x) \land X(x+1))0$ $\equiv (\lambda x. P(x) \land (\nu X.\lambda x. ...)(x+1))0$ $\equiv P(0) \land (\nu X.\lambda x. P(x) \land X(x+1)) 1$ $\equiv P(0) \land P(1) \land ...$ $\equiv \forall x \ge 0. P(x)$

HFL(Z) Model/Validity Checking

```
HFL(Z) Model Checking:
```

Given

L: (finite-state) labeled transition system

φ: a closed HFL(Z) formula,

does L satisfy φ?

HFL(Z) Validity Checking:

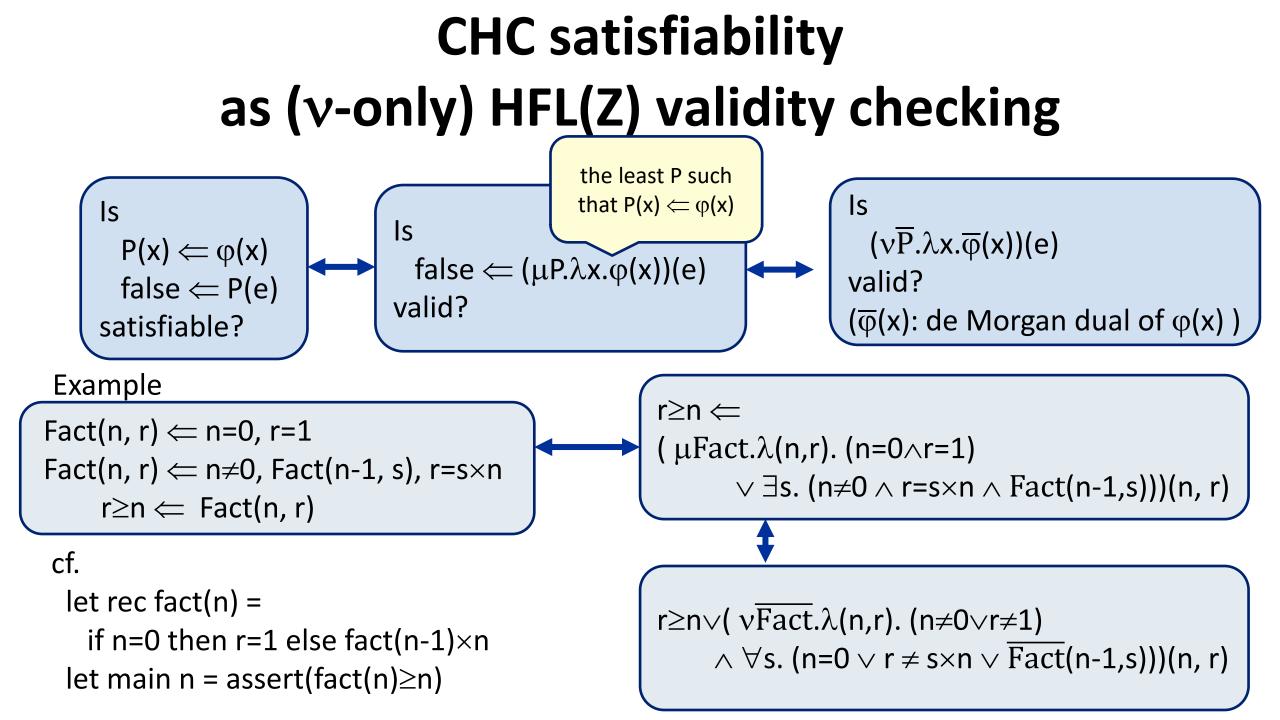
Given

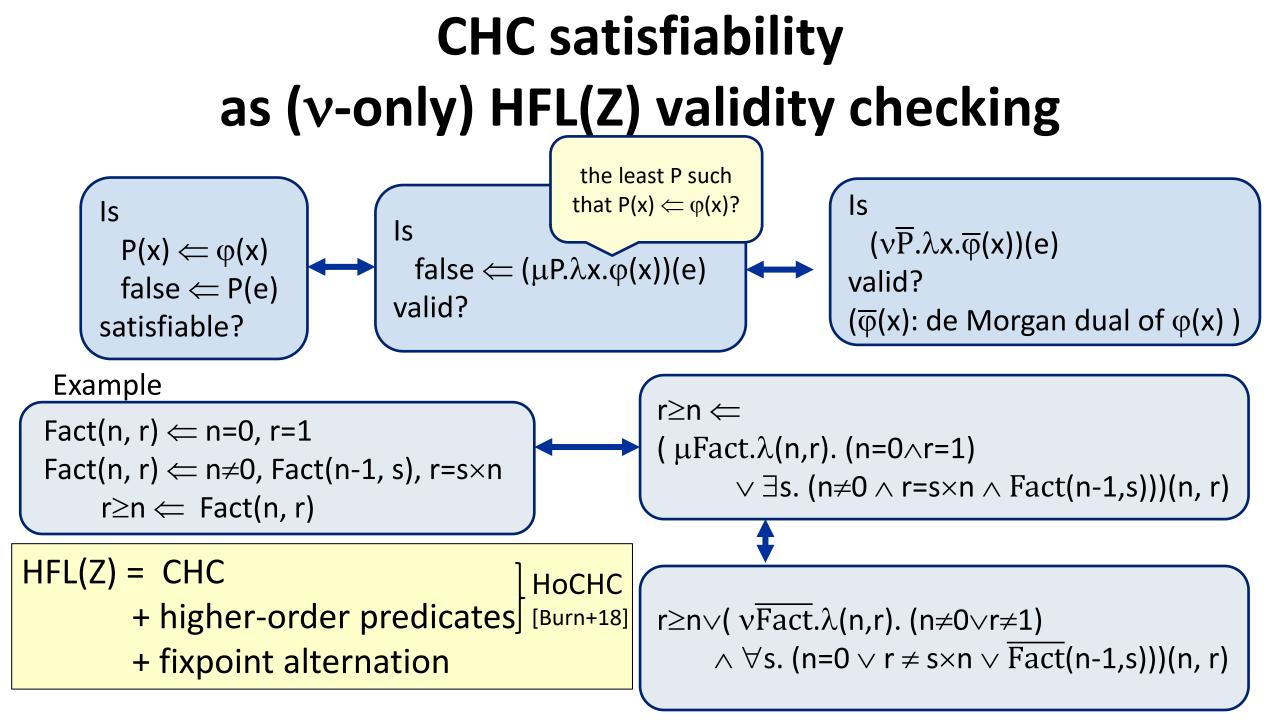
```
φ: a closed HFL(Z) formula without modalities ([a], <a>),
is φ valid?
```

```
(or, does the trivial model satisfy \phi ?)
```

Introduction to HFL and HFL(Z)

- What is higher-order fixpoint logic?
- HFL model checking as a higher-order extension of finite state model checking
- HFL(Z) as an extension of Constrained Horn Clauses (CHC)
- Reductions from program verification to HFL(Z) model checking
- Solving HFL(Z) model checking using types, CHC solving, and higher-order model checking
- Machine learning techniques for CHC solving

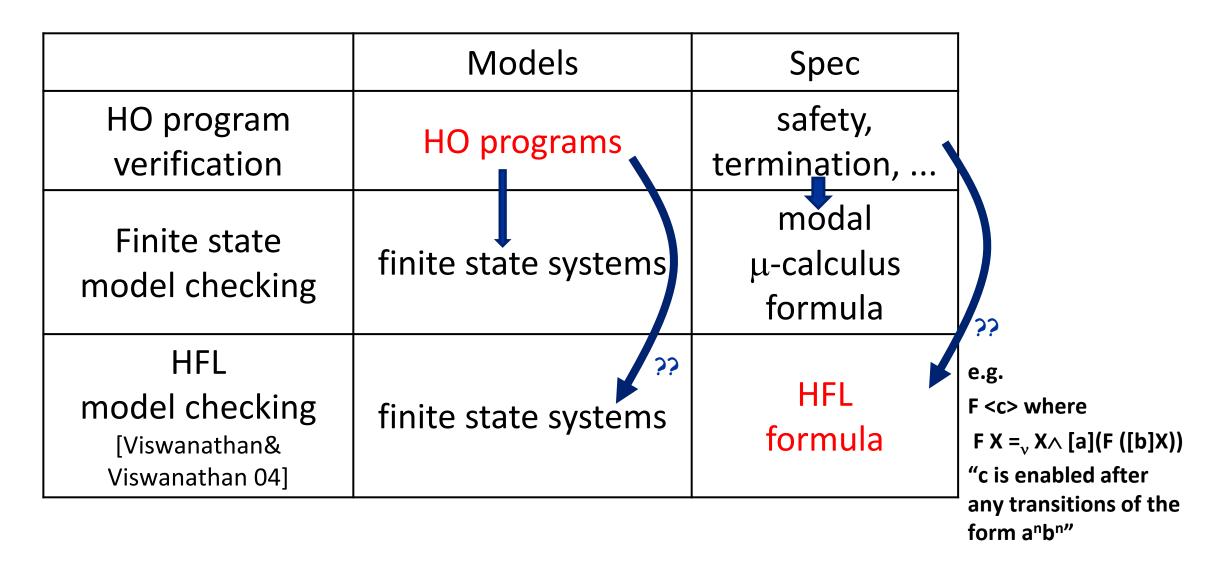




Introduction to HFL and HFL(Z)

- What is higher-order fixpoint logic?
- HFL model checking as a higher-order extension of finite state model checking
- HFL(Z) as an extension of Constrained Horn Clauses (CHC)
- Reductions from program verification to HFL(Z) model checking
- Solving HFL(Z) model checking using types, CHC solving, and higher-order model checking
- Machine learning techniques for CHC solving

Higher-Order Program Verification vs HFL Model Checking



Higher-Order Program Verification vs HFL Model Checking

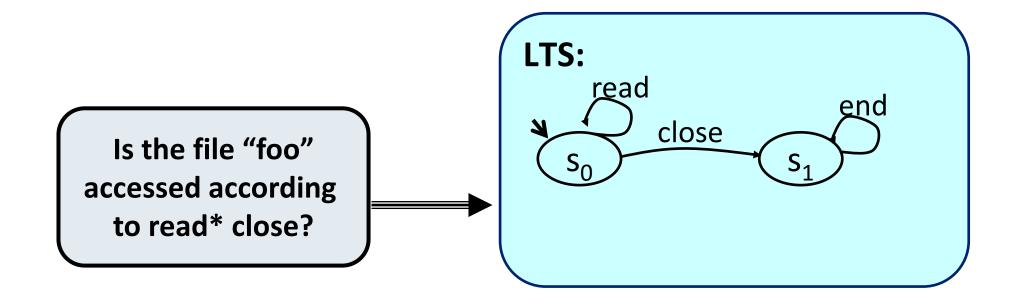
	Models	Spec	
HO program verification	HO programs	safety, termination,	
Finite state model checking	finite state systems	modal μ-calculus formula	
HFL model checking [Viswanathan& Viswanathan 04]	finite state systems	HFL formula	
	<u>'</u>	"The program's behavior is correct"	

From Program Verification to HFL Model Checking: Example

let y = open "foo"
in
read(y); close(y)

HFL formula that says "the behavior of the program is correct"

<read><close><end>true

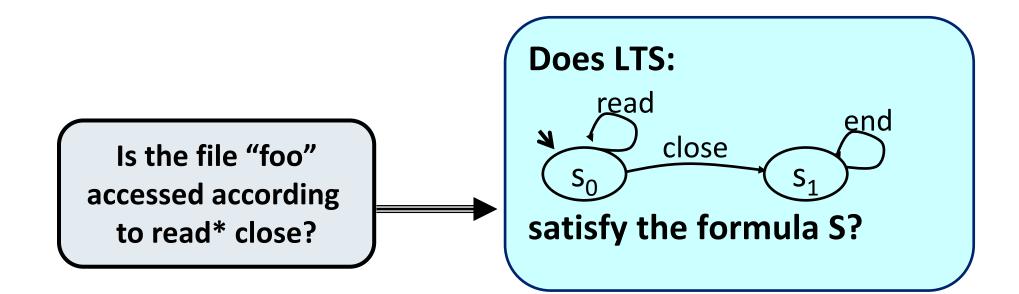


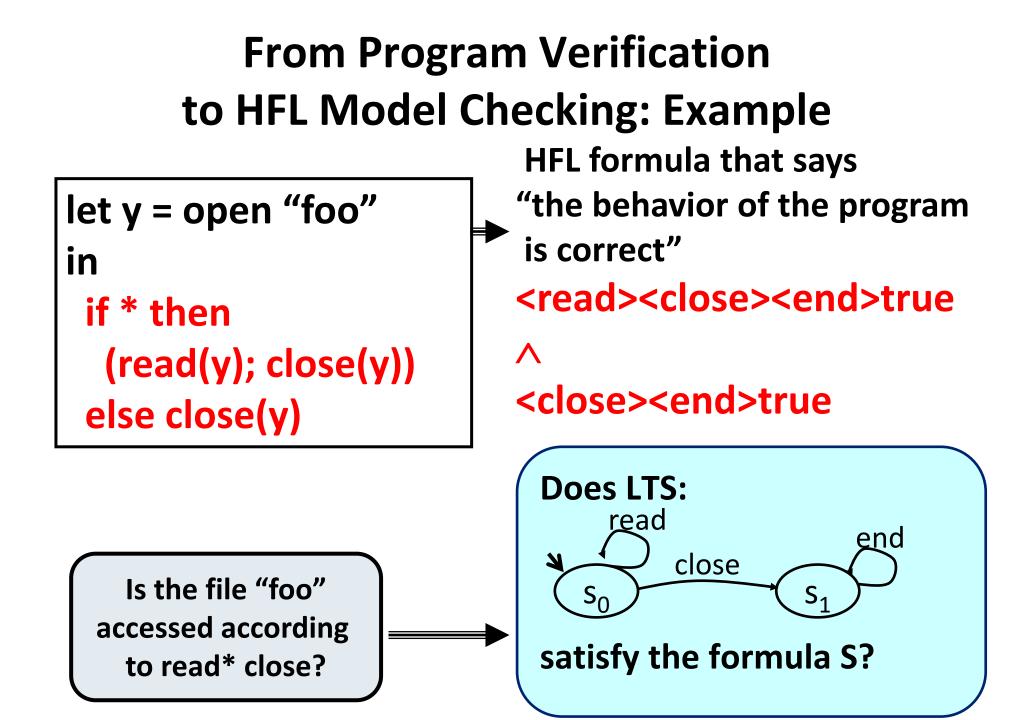
From Program Verification to HFL Model Checking: Example

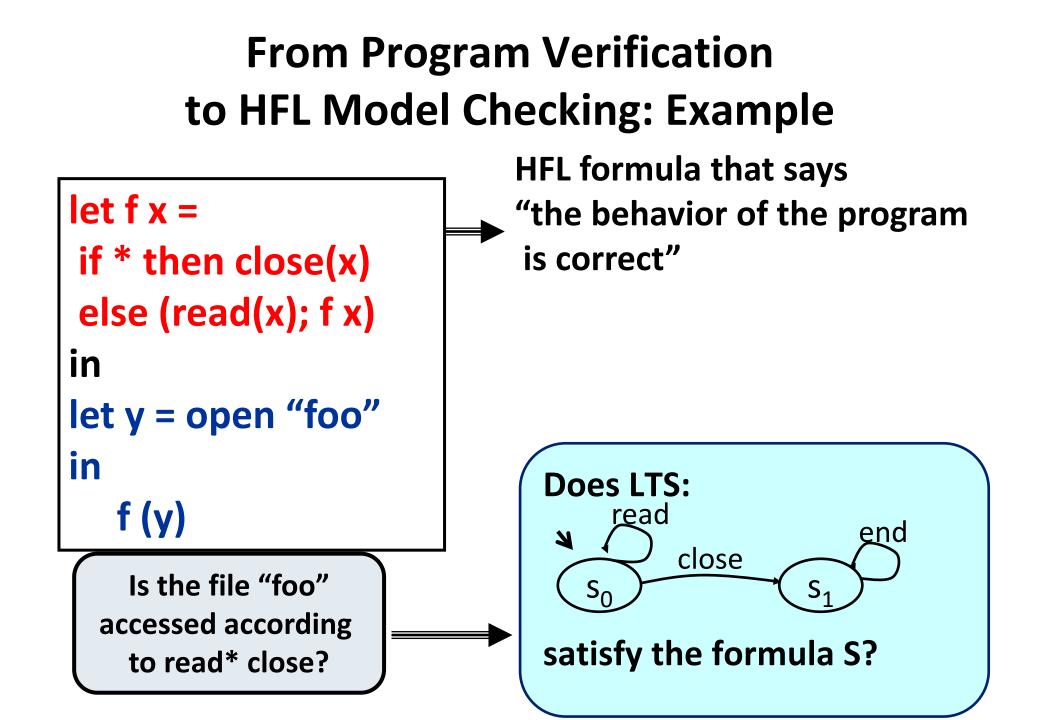
let y = open "foo"
in
read(y); close(y)

HFL formula that says

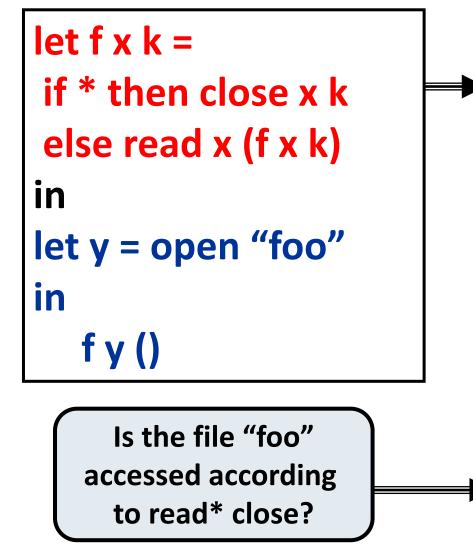
"the behavior of the program is correct"
<read><close><end>true





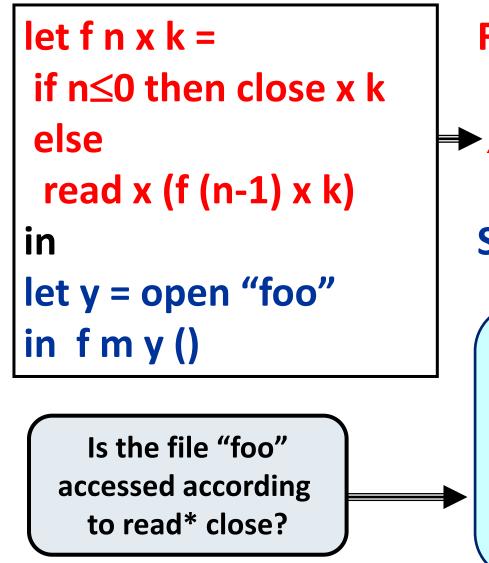


From Program Verification to HFL Model Checking: Example

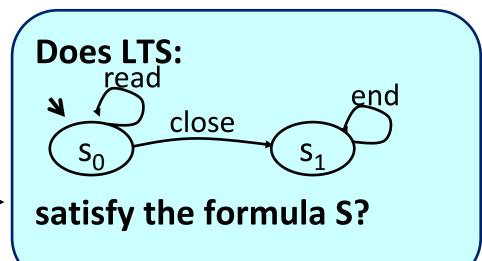


HFL formula that says "the behavior of the program is correct" $F x k = \sqrt{close}$ ∧ (<read>(F x k)) $S =_{v} F$ true (<end>true) **Does LTS:** read end N close satisfy the formula S?

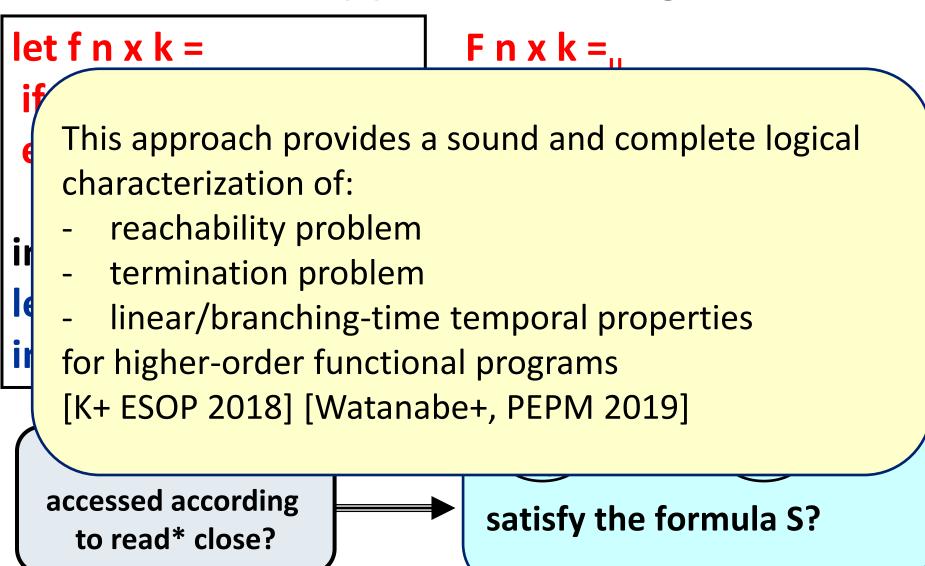
From Program Verification to HFL(Z) Model Checking



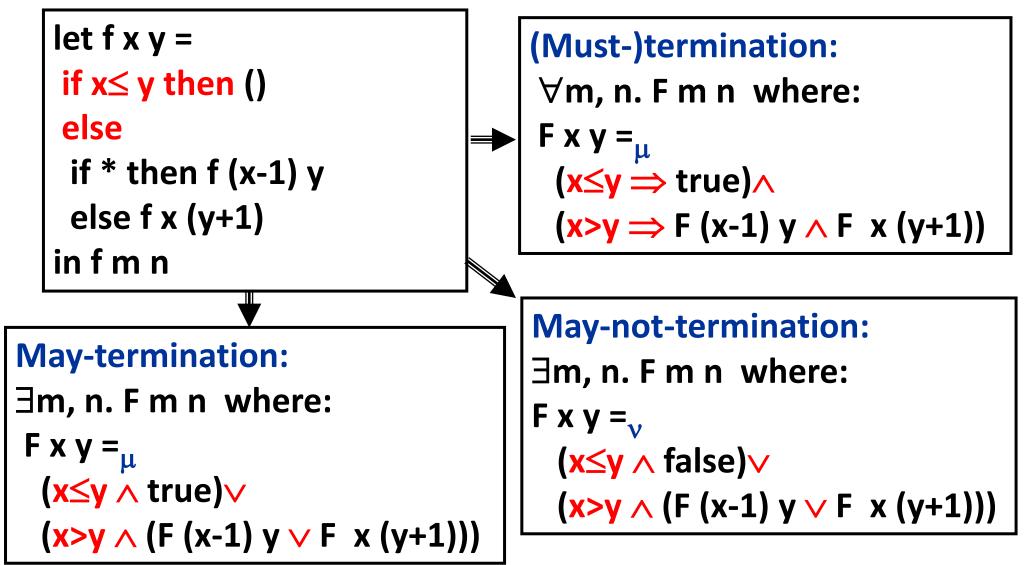
F n x k =_µ (n≤0 ⇒<close>k) → $(\neg n \le 0 \Rightarrow$ <read>(F (n-1) x k)) S =_µ F m true (<end>true)



From Program Verification to HFL(Z) Model Checking



From Termination Verification to HFL(Z) Model Checking



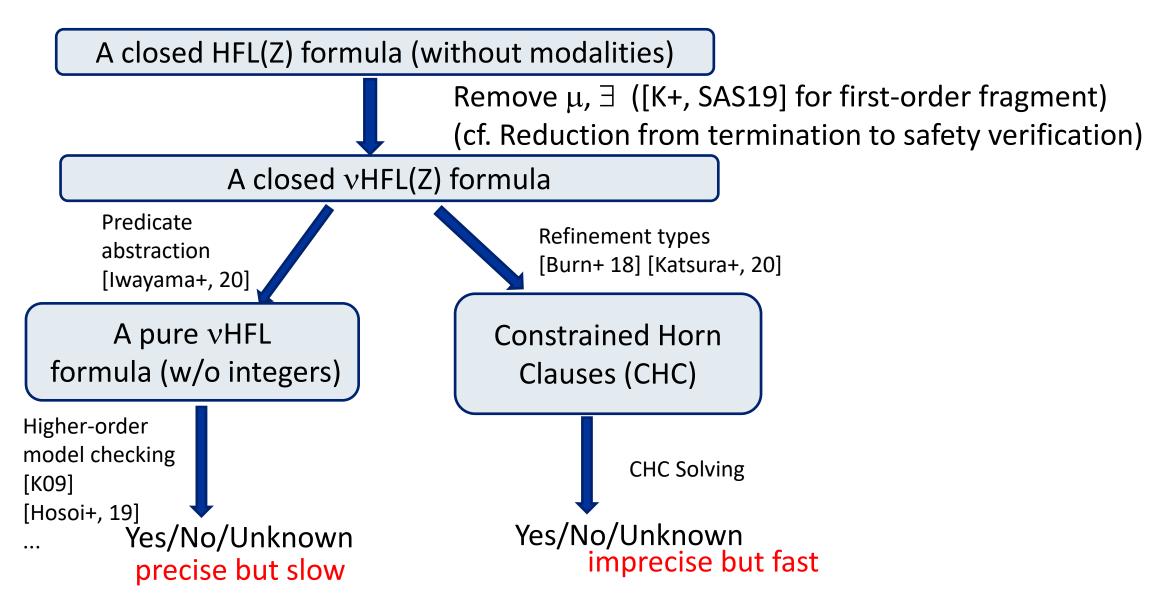
Introduction to HFL and HFL(Z)

Reductions from program verification to HFL(Z) model checking

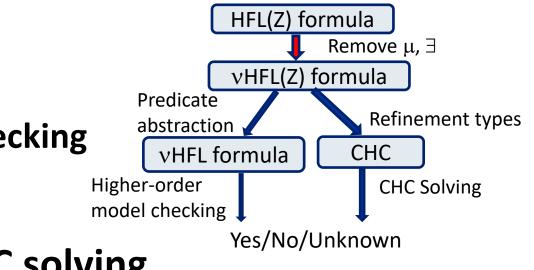
- HFL(Z) validity checking using types, CHC solving, and higherorder model checking
 - Overview
 - From HFL(Z) to vHFL(Z)
 - Two approaches to vHFL(Z) validity checking
 - Fold/unfold transformation

Machine learning techniques for CHC solving

HFL(Z) Validity Checking



- Introduction to HFL and HFL(Z)
- Reductions from program verification to HFL(Z) model checking
- HFL(Z) validity checking using types, CHC solving, and higherorder model checking
 - Overview
 - From HFL(Z) to vHFL(Z)
 - Two approaches to vHFL(Z) validity checking
 - Fold/unfold transformation
- Machine learning techniques for CHC solving



From HFL(Z) to ν -only HFL(Z)

(higher-order case: ongoing, first-order case: [K+, SAS19], inspired by termination verification [Fedyukovich+, CAV18])

• Approximate μ by finite unfolding

 μ X.F(X) \geq Fⁿ(\perp)

= $(vX'.\lambda z. z > 0 \land F(X'(z-1)))$ n

= ∀u≥n. (∨X'.λz. z>0∧ F(X' (z-1))) u

(approximate)

(representation by v)

(trick to help solvers)

Example:

 $\forall i. (\mu X.\lambda y. y \leq 0 \lor X(y-1)) i$

From HFL(Z) to v-only HFL(Z)

(higher-order case: ongoing, first-order case: [K+, SAS19], inspired by termination verification [Fedyukovich+, CAV18])

 \blacklozenge Approximate μ by finite unfolding

 $\mu X.F(X) \geq F^n(\perp)$

= (νX'.λz. z>0∧ F(X' (z-1))) n

(approximate)

(representation by $\nu)$

 $= \forall u \ge n. (vX'.\lambda z. z > 0 \land F(X' (z-1))) u$ (trick to help solvers)

Example:

∀i. <u>(μX.λy. y≤0 ∨ X(y-1)) i</u>

- = i≤0 ∨ (μX.λy. ...)(i-1)
- = i \leq 0 \vee i-1 \leq 0 \vee (μ X. λ y. ...)(i-2)
- $= i \leq 0 \lor i \leq 1 \lor i \leq 2 \lor \dots$

From HFL(Z) to v-only HFL(Z)

(higher-order case: ongoing, first-order case: [K+, SAS19], inspired by termination verification [Fedyukovich+, CAV18])

 \blacklozenge Approximate μ by finite unfolding

 $\mu X.F(X) \geq F^{n}(\perp)$ (approximate)

= (νX'.λz. z>0∧ F(X' (z-1))) n

n (representation by v)

 $= \forall u \ge n. (vX'.\lambda z. z > 0 \land F(X' (z-1))) u$ (trick to help solvers)

Example:

∀i. (μX.λy. y≤0 ∨ X(y-1)) i

 $\geq \forall i. \forall u \geq \max(i+1,1). (vX'.\lambda(z, y). z>0 \land (y \leq 0 \lor X'(z-1, y-1))) (u, i)$

= \forall i. \forall u≥max(i+1,1). ((µX'.λ(z, y). z≤ 0 ∨ (y>0 ∧ X'(z-1, y-1))) (u, i) ⇒ false) Valid by the satisfiability of the CHC (let X'(z,y)≡ z ≤ 0 ∨ z ≤ y) :

 $\left\{ X'(z,y) \Leftarrow z \leq 0, \ X'(z,y) \Leftarrow y > 0 \land X'(z-1, y-1), \ \text{false} \Leftarrow u \geq i+1 \land u \geq 1 \land X'(u,i) \right\}$

Mu2CHC [K+ SAS19]

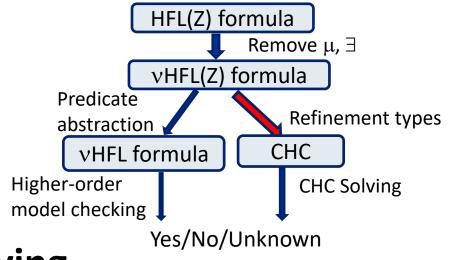
Reduce

- μ -calculus properties (which subsume CTL/LTL/CTL*) of while-programs
- LTL properties of first-order recursive programs

to CHC solving via first-order HFL(Z) formulas

nental results		on CTL verification benchmark (Cook&Ko $\varphi \qquad \neq \varphi$				
Property	[CK13]	Mu2CHC	[CK13]	Mu2CHC		
1. AG(p⇒AFq)	4.6	0.40	12.5	0.41		
2. AG(p⇒AFq)	9.1	0.10	3.5	0.32		
3. AG(p⇒EFq)	9.5	0.23	18.1	1.57		
4. AG(p⇒EFq)	1.5	0.65	105.7	0.82		
5. AG(p⇒AFq)	2.1	0.49	6.5	3.91		
6. AG(p⇒AFq)	1.8	0.15	1.2	2.91		
7. AG(p⇒EFq)	3.7	4.91	8.7	6.33		
8. AG(p⇒EFq)	1.5	5.55	5.6	4.25		
9. AG(p⇒AFq)	38.9	0.65	1930.9	3.27		
10. AG(p⇒AFq)	148.0	28.20	1680.7	29.53		
:		•		•		

- Introduction to HFL and HFL(Z)
- Reductions from program verification to HFL(Z) model checking
- HFL(Z) validity checking using types, CHC solving, and higherorder model checking
 - Overview
 - From HFL(Z) to vHFL(Z)
 - From vHFL(Z) to (extended) CHC
 - Fold/unfold transformation
- Machine learning techniques for CHC solving



Refinement Types for v**HFL(Z)** [Katsura+ 20] (cf. refinement types for HoCHC [Burn+18])

 $\tau ::= \bullet[\psi]$ (types for propositions that hold whenever ψ holds)

 $| x:int \rightarrow \tau \ (dependent types for integer predicates)$

 $\mid \tau_1 \rightarrow \tau_2$ (non-dependent types for higher-order predicates)

 ψ ::= a formula of linear integer arithmetic

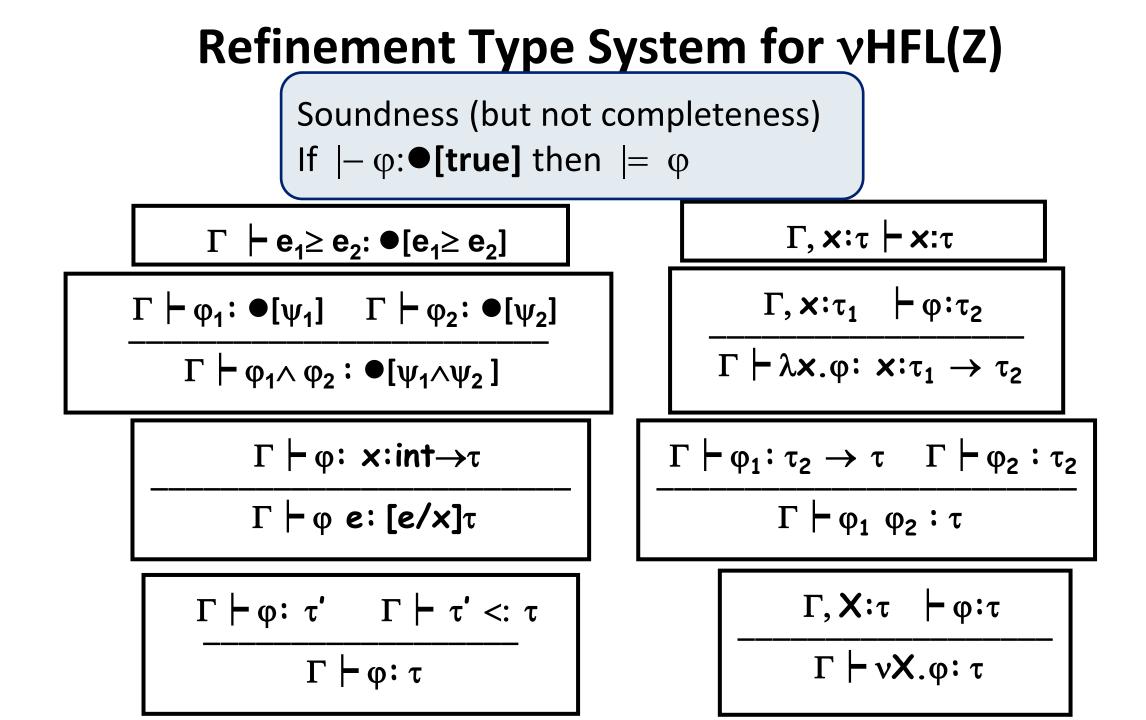
Examples:

 $\lambda x.x \ge 0$: (x:int $\rightarrow \bullet [x>0]$)

the type of integer predicates that are true (at least) for positive integers

$$\lambda p^{int \rightarrow \bullet}.p 1: (x:int \rightarrow \bullet[x>0]) \rightarrow \bullet[true]$$

the type of (higher-order) predicates on integer predicates that are true (at least) for integer predicates p such that p x holds for any x>0



Refinement Type Inference (see [Katsura+ 20] for details)

- ♦ A standard template-based type inference algorithm yields:
 - CHC, for vHFL(Z) formulas obtained from (un)reachability verification problems
 Standard CHC solvers such as Z3 Spacer and Holce can be used
 - *Extended* CHC (with disjunctions in heads):

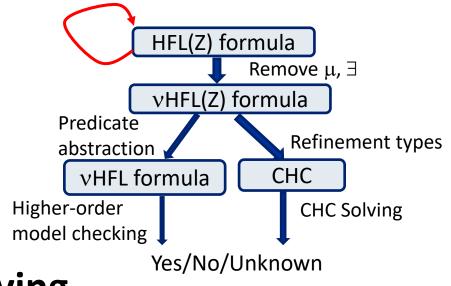
 $\mathbf{H}_{1} \lor \ldots \lor \mathbf{H}_{k} \Leftarrow \mathbf{B}_{1} \land \ldots \land \mathbf{B}_{n}$

for general vHFL(Z) formulas

=> Extended CHC solvers such as PCSat [Unno+ 20] are required

Outline

- Introduction to HFL and HFL(Z)
- Reductions from program verification to HFL(Z) model checking
- HFL(Z) validity checking using types, CHC solving, and higherorder model checking
 - Overview
 - From HFL(Z) to vHFL(Z)
 - From vHFL(Z) to (extended) CHC
 - Fold/unfold transformation



Fold/Unfold Transformations for CHC [De Angelis+ 18]

Even(n) \Leftarrow n=0 \vee Even(n-2).

false \Leftarrow Even(n) \land Even(n+1).

is SAT, but the witness requires a mod constraint: $Even(n) \equiv n \mod 2=0$.

Can we prove SAT without using the mod constraint?

Prepare a new predicate $E2(n) := Even(n) \land Even(n+1)$. $E2(n) \leftarrow Even(n) \land Even(n+1)$

 $\leftarrow \text{Even}(n) \land (n+1=0 \lor \text{Even}(n-1))$

 $\Leftarrow (n+1=0 \land Even(n)) \lor (Even(n-1) \land Even(n))$

 $\Leftarrow (n+1=0 \land Even(n)) \lor E2(n-1)$

(unfold)

(fold)

Even(n) \Leftarrow n=0 \lor Even(n-2). E2(n) \Leftarrow (n+1=0 \land Even(n)) \lor E2(n-1) false \Leftarrow E2(n) has a trivial model: Even(n) = n \ge 0, E2(n) = false

Fold/Unfold Transformations for HFL(Z)?

CHC

Even(n) \leftarrow n=0 \vee Even(n-2).

false \Leftarrow Even(n) \land Even(n+1).

Corresponding HFL(Z) formula

Even(n) \lor Even(n+1) where Even(n) = $_{v}$ n \neq 0 \land Even(n-2).

Even(n) \lor Even(n+1)

 $= Even(n) \lor (n+1 \neq 0 \land Even(n-1)) \quad (unfold)$ = (Even(n) \vee n+1 \neq 0) \lapha (Even(n-1) \vee Even(n))

E2(n), where

 $E2(n) =_{v} (Even(n) \lor n+1 \neq 0) \land E2(n-1)$

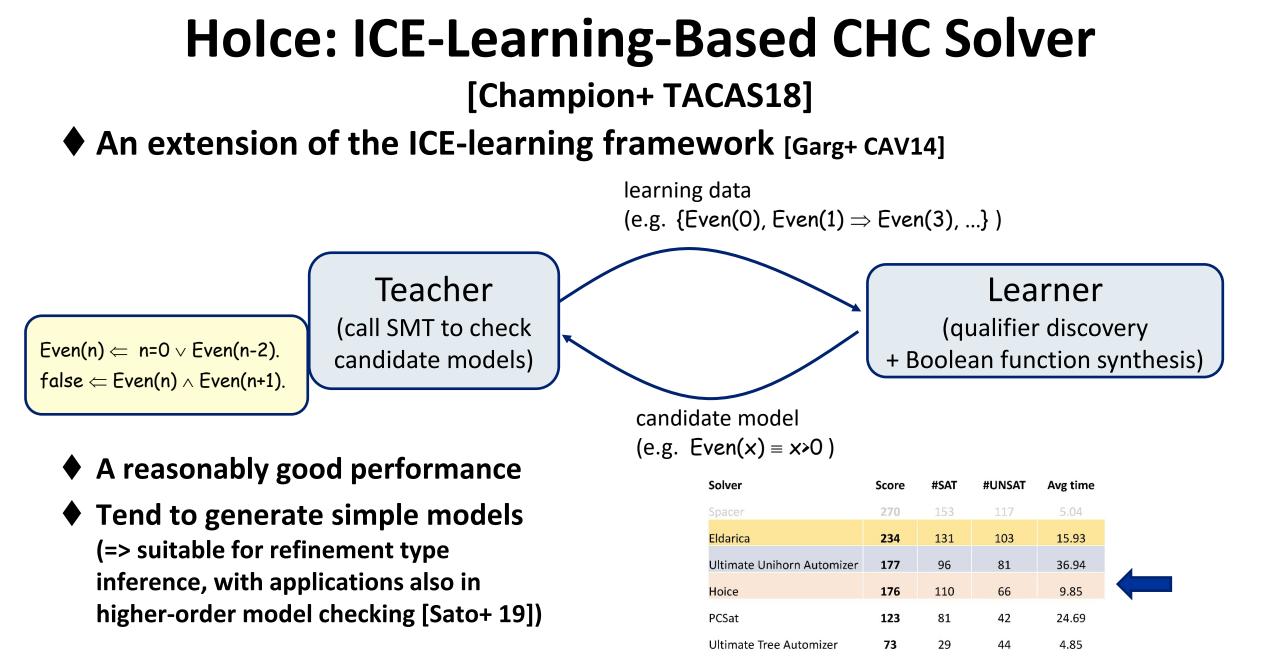
Even(n) = $_v n \neq 0 \land Even(n-2)$.

- Q: Is fold/unfold transformation applicable to arbitrary alternations of μ and ν?
- A: Yes, but with a certain sanity condition.

See [K+, TACAS 20] for first-order HFL(Z). See also [Kori+, CSL 21] on cyclic proofs for HFL.

Outline

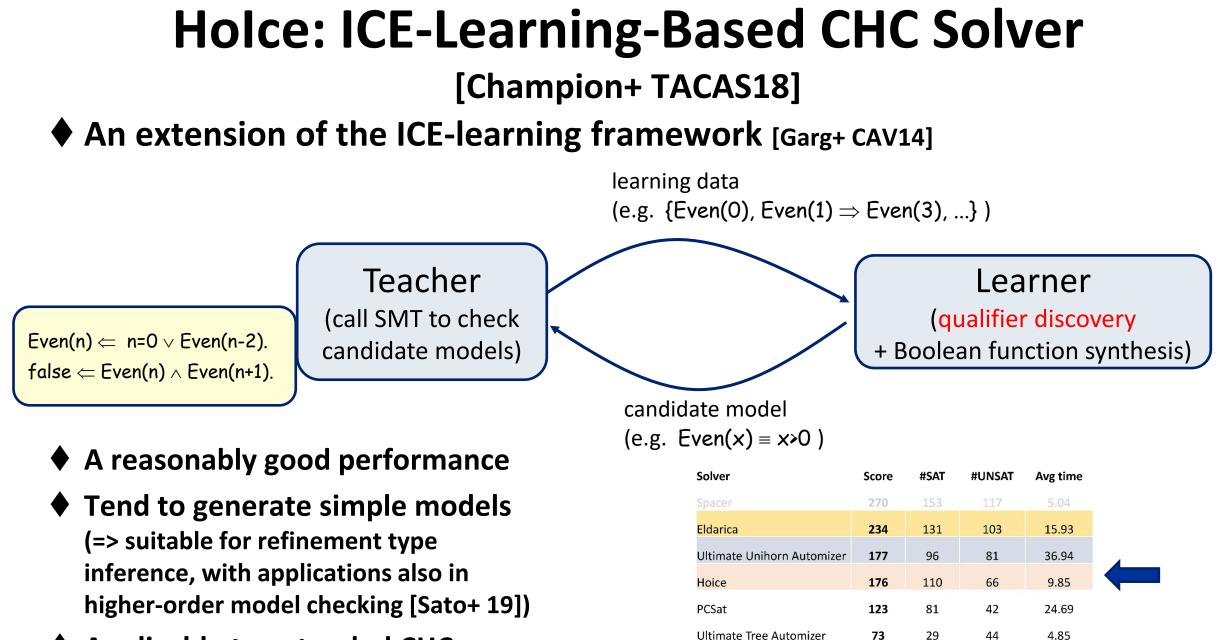
- Introduction to HFL and HFL(Z)
- Reductions from program verification to HFL(Z) model checking
- HFL(Z) validity checking using types, CHC solving, and higherorder model checking
- Machine learning techniques for CHC solving
 - ICE learning for CHC
 - Neural networks for qualifier discovery



(Result of CHC-Comp19, LIA-Nonlin category)

From https://chc-comp.github.io/2019/chc-comp19.pdf)

* 283 instances total



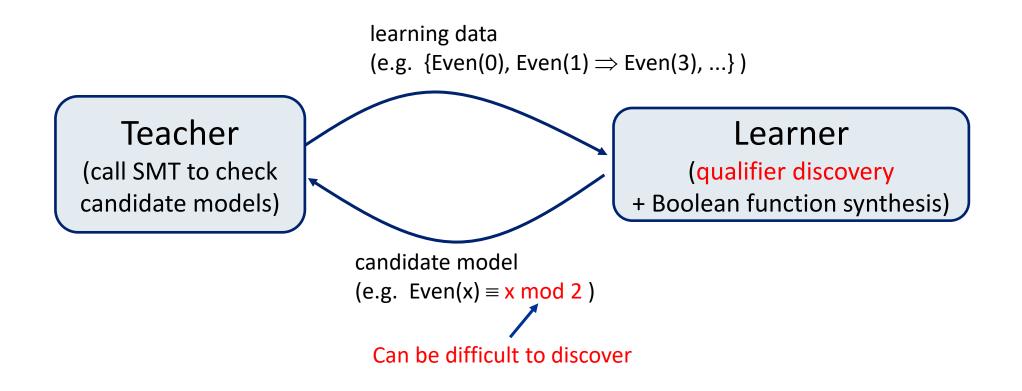
 Applicable to extended CHCs (with disjunctions in heads)

(Result of CHC-Comp19, LIA-Nonlin category)

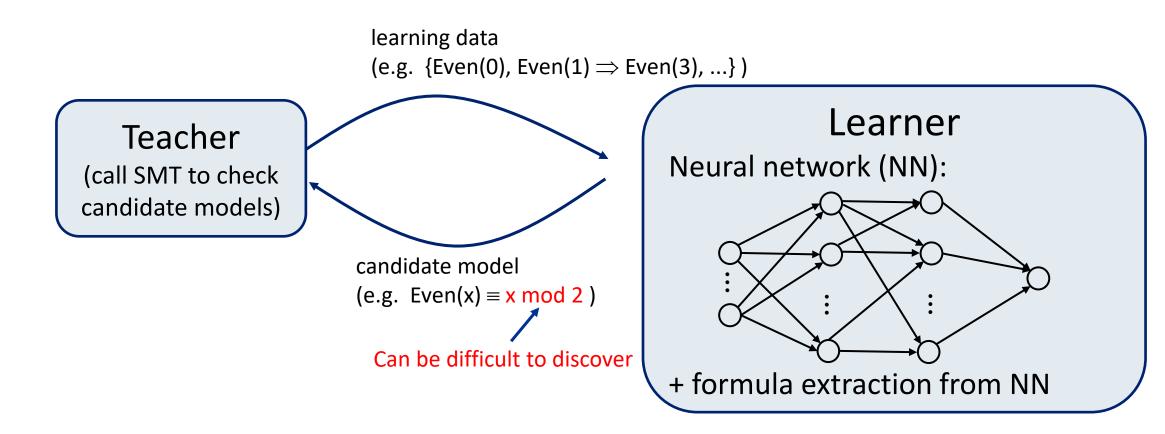
From https://chc-comp.github.io/2019/chc-comp19.pdf)

* 283 instances total

Neural Networks for Qualifier Discovery (Ongoing work)



Neural Networks for Qualifier Discovery (Ongoing work)



Conclusion

Automated program verification project based on HFL(Z)

- HFL(Z) may be viewed as an extension of CHC with higher-order predicates and fixpoint alternation
- Provide a uniform verification framework for temporal properties (safety, termination, liveness, ...) of higher-order functional programs
- Many of the existing techniques for CHC solving and program verification can be lifted to those for HFL(Z) validity checking (e.g. fold/unfold transformation)
- CHC solvers are important building blocks for HFL(Z) validity checking
 - Sometimes we need more than pure CHC solving (e.g. disjunctions in heads, for refinement-type-based approach to HFL(Z) validity checking)
 - Any improvement of CHC solvers would be appreciated!

References

Relationship between HORS/HFL model checking

- K, Lozes, Bruze, "On the relationship between higher-order recursion schemes and higher-order fixpoint logic", POPL 17
- (pure) HFL model checking algorithm
 - Hosoi, K, Tsukada, "A Type-Based HFL Model Checking Algorithm", APLAS 19
- From program verification to HFL(Z) model/validity checking
 - K, Tsukada, Watanabe, "Higher-Order Program Verification via HFL Model Checking", ESOP 18
 - Watanabe, Tsukada, K, "Reduction from branching-time property verification of higher-order programs to HFL validity checking", PEPM 19
- ♦ From (first-order) HFL(Z) to v-only HFL(Z)
 - K, Nishikawa, Igarashi, Unno, "Temporal Verification of Programs via First-Order Fixpoint Logic", SAS 19

References

Solving v-only HFL(Z) validity checking

- Iwayama, K, Suzuki, Tsukada, "Predicate Abstraction and CEGAR for vHFLz Validity Checking", SAS 20
- Katsura, Iwayama, K, Tsukada, "A New Refinement Type System for Automated vHFL_z Validity Checking", APLAS 20
- Fold/unfold transformation for (first-order) HFL(Z)
 - K, Fedyukovich, Gupta, "Fold/Unfold Transformations for Fixpoint Logic", TACAS 20
 - (related) Kori, Tsukada, K, "A Cyclic Proof System for HFL_N", CSL 21
- Machine learning techniques for CHC solving
 - Champion, Chiba, K, Sato, "ICE-Based Refinement Type Discovery for Higher-Order Functional Programs", TACAS 18