
An Overview of
the HFL Model Checking Project

(at UTokyo)

Naoki Kobayashi
The University of Tokyo

In collaboration with: Kazuyuki Asada, Florian Bruze, Adrien Champion, Grigory Fedyukobich, Aarti Guputa,
Atushi Igarashi, Etienne Lozes, Takeshi Nishikawa, Ryosuke Sato, Takeshi Tsukada, Hiroshi Unno,
and (ex-)students at UTokyo

This Talk
 An Overview of Our Project on Automated Program Verification

Based on Higher-Order Fixpoint Logic (HFL)
– HFL [Viswanathan&Viswanathan 04] as a higher-order extension

of the modal µ-calculus
– HFL(Z) (HFL with integers) as an extension of Constrained Horn Clauses

(CHC, a.k.a. CLP) with higher-order predicates and fixpoint alternation
– Natural reduction from higher-order program verification

to HFL(Z) model checking [K+ ESOP18][Watanabe+ PEPM19]
• More uniform approach than our previous approach based on HORS model checking

[K, POPL09][K+ POPL10][K+ PLDI11][K, JACM13]...

– Automated techniques for HFL(Z) model checking
based on CHC solving [K+ SAS19][Hosoi+ APLAS19][K+ TACAS19][Katsura+ APLAS20] ...

– Machine learning techniques for CHC solving [Champion+ TACAS18] ...

Outline
 Introduction to HFL and HFL(Z)

– What is higher-order fixpoint logic?

– HFL model checking as a higher-order extension of finite state model
checking

– HFL(Z) as an extension of Constrained Horn Clauses (CHC)

Reductions from program verification to HFL(Z) model checking

Solving HFL(Z) model checking using types, CHC solving, and
higher-order model checking

Machine learning techniques for CHC solving

Outline
 Introduction to HFL and HFL(Z)

– What is higher-order fixpoint logic?

– HFL model checking as a higher-order extension of finite state model
checking

– HFL(Z) as an extension of Constrained Horn Clauses (CHC)

Reductions from program verification to HFL(Z) model checking

Solving HFL(Z) model checking using types, CHC solving, and
higher-order model checking

Machine learning techniques for CHC solving

Higher-Order Modal Fixpoint Logic (HFL)
[Viswanathan&Viswanathan 04]

Higher-order extension of the modal µ-calculus
ϕ ::= true

ϕ1 ∧ ϕ2

ϕ1 ∨ ϕ2

[a]ϕ ϕ must hold after a
<a>ϕ ϕ may hold after a
X variable
µX.ϕ least fixpoint (the least X such that X=ϕ)
νX.ϕ greatest fixpoint (the greatest X such that X=ϕ)

e.g. µX. true ∨ <a>X
“b” may occur after a finite number of “a” transitions

(i.e., there exists a transition sequence in which “b” occurs after a finite
number of “a” transitions)

Higher-Order Modal Fixpoint Logic (HFL)
[Viswanathan&Viswanathan 04]

Higher-order extension of the modal µ-calculus
ϕ ::= true

ϕ1 ∧ ϕ2
ϕ1 ∨ ϕ2
[a]ϕ ϕ must hold after a
<a>ϕ ϕ may hold after a
X predicate variable
µXκ.ϕ least fixpoint (the least X such that X=ϕ)
νXκ.ϕ greatest fixpoint (the greatest X such that X=ϕ)
λXκ.ϕ (higher-order) predicate
ϕ1 ϕ2 application

κ ::= the type of propositions
κ1→κ2

Selected Typing Rules for HFL

Γ, X:κ ┝ X:κ

Γ, X:κ1 ┝ ϕ:κ2
−−−−−−−−−−−−−−−−−−

Γ┝ λX.ϕ: κ1 → κ2

Γ┝ ϕ: κ1 → κ2 Γ┝ ψ: κ1
−−−−−−−−−−−−−−−−−−−−−−−−

Γ┝ ϕ ψ: κ2

Γ, X:κ ┝ ϕ:κ
−−−−−−−−−−−−−−−−−−

Γ┝ µX.ϕ: κ

Γ ┝ true: Γ ┝ ϕ:
−−−−−−−−−−−−−−−−−−

Γ┝ [a]ϕ:
Γ┝ ϕ: Γ┝ ψ:

−−−−−−−−−−−−−−−−−−−−−−−−
Γ┝ ϕ∧ψ:

Example
(νF→.λX. X ∧ [a](F ([b]X)) <c>

= (λX. X ∧ [a](νF...) ([b]X)) <c>
= <c> ∧ [a]((νF→.λX. X ∧ [a](F ([b]X)) ([b]<c>))
= <c> ∧ [a]((λX. X ∧ [a](νF...) ([b]X)) ([b]<c>))
= <c> ∧ [a]([b]<c> ∧ [a](νF...) ([b][b]<c>))
= <c> ∧ [a][b]<c> ∧ [a]2[b]2 <c> ∧ ...

After any transitions of the form anbn, <c> holds

HFL Model Checking
[Viswanathan&Viswanathan 2004]

e.g. L |= ϕ for:
L:

Given
L: (finite-state) labeled transition system
ϕ: HFL formula,

does L satisfy ϕ?

ϕ: (νF→.λX. X ∧ [a](F ([b]X)) <c>
An alternative notation:

F <c> where
F X =ν X∧ [a](F ([b]X))

a a

cb
b

HFL Model Checking
[Viswanathan&Viswanathan 2004]

Given
L: (finite-state) labeled transition system
ϕ: HFL formula,
does L satisfy ϕ?

- k-EXPTIME complete for order-k HFL [Axelsson+ 07]
but a practical algorithm exists [Hosoi+ 19]
(order() = 0, order(κ1 →... → κn →) = 1+max(order(κ1), ..., order(κn)))

- Polynomial time translation exists
between HFL model checking and HORS model checking [K+ POPL17]

The other kind of higher-order
model checking [Ong 06]

HFL(Z): An extension of HFL with integers
ϕ ::= true | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [a]ϕ | <a>ϕ

| X | µXκ.ϕ | νXκ.ϕ | λXτ. ϕ | ϕ1 ϕ2

| ϕ e | e1=e2

e ::= n | X | e1 + e2

κ ::= o | τ →κ
τ ::= κ | int

Example:
(µE.λx. x=0 ∨ E(x-2))n
≡ (λx. x=0 ∨(µE.λx. ...)(x-2))n
≡ n=0 ∨(µE.λx. x=0 ∨ E(x-2))(n-2)
≡ n=0 ∨ n-2=0 ∨ ...
≡ “n is an even non-negative integer”

pure HFL

(νX.λx. P(x) ∧ X(x+1))0
≡ (λx. P(x) ∧ (νX.λx. ...)(x+1))0
≡ P(0) ∧ (νX.λx. P(x) ∧ X(x+1)) 1
≡ P(0) ∧ P(1) ∧ ...
≡ ∀x≥0. P(x)

HFL(Z) Model/Validity Checking

HFL(Z) Validity Checking:
Given
ϕ: a closed HFL(Z) formula without modalities ([a], <a>),

is ϕ valid?
(or, does the trivial model satisfy ϕ ?)

HFL(Z) Model Checking:
Given
L: (finite-state) labeled transition system
ϕ: a closed HFL(Z) formula,

does L satisfy ϕ?

Outline
 Introduction to HFL and HFL(Z)

– What is higher-order fixpoint logic?

– HFL model checking as a higher-order extension of finite state model
checking

– HFL(Z) as an extension of Constrained Horn Clauses (CHC)

Reductions from program verification to HFL(Z) model checking

Solving HFL(Z) model checking using types, CHC solving, and
higher-order model checking

Machine learning techniques for CHC solving

CHC satisfiability
as (ν-only) HFL(Z) validity checking

Is
P(x) ⇐ ϕ(x)
false ⇐ P(e)

satisfiable?

Is
false ⇐ (µP.λx.ϕ(x))(e)

valid?

Is
(ν�P.λx.�ϕ(x))(e)

valid?
(�ϕ(x): de Morgan dual of ϕ(x))

the least P such
that P(x) ⇐ ϕ(x)

Example
Fact(n, r) ⇐ n=0, r=1
Fact(n, r) ⇐ n≠0, Fact(n-1, s), r=s×n

r≥n ⇐ Fact(n, r)

r≥n ⇐
(µFact.λ(n,r). (n=0∧r=1)

∨ ∃s. (n≠0 ∧ r=s×n ∧ Fact(n-1,s)))(n, r)

r≥n∨(νFact.λ(n,r). (n≠0∨r≠1)
∧ ∀s. (n=0 ∨ r ≠ s×n ∨ Fact(n-1,s)))(n, r)

cf.
let rec fact(n) =

if n=0 then r=1 else fact(n-1)×n
let main n = assert(fact(n)≥n)

CHC satisfiability
as (ν-only) HFL(Z) validity checking

Is
P(x) ⇐ ϕ(x)
false ⇐ P(e)

satisfiable?

Is
false ⇐ (µP.λx.ϕ(x))(e)

valid?

Is
(ν�P.λx.�ϕ(x))(e)

valid?
(�ϕ(x): de Morgan dual of ϕ(x))

the least P such
that P(x) ⇐ ϕ(x)?

Example
Fact(n, r) ⇐ n=0, r=1
Fact(n, r) ⇐ n≠0, Fact(n-1, s), r=s×n

r≥n ⇐ Fact(n, r)

r≥n ⇐
(µFact.λ(n,r). (n=0∧r=1)

∨ ∃s. (n≠0 ∧ r=s×n ∧ Fact(n-1,s)))(n, r)

r≥n∨(νFact.λ(n,r). (n≠0∨r≠1)
∧ ∀s. (n=0 ∨ r ≠ s×n ∨ Fact(n-1,s)))(n, r)

HFL(Z) = CHC
+ higher-order predicates
+ fixpoint alternation

HoCHC
[Burn+18]

Outline
 Introduction to HFL and HFL(Z)

– What is higher-order fixpoint logic?

– HFL model checking as a higher-order extension of finite state model
checking

– HFL(Z) as an extension of Constrained Horn Clauses (CHC)

Reductions from program verification to HFL(Z) model checking

Solving HFL(Z) model checking using types, CHC solving, and
higher-order model checking

Machine learning techniques for CHC solving

Models Spec
HO program
verification HO programs safety,

termination, ...

Finite state
model checking finite state systems

modal
µ-calculus
formula

HFL
model checking

[Viswanathan&
Viswanathan 04]

finite state systems HFL
formula

Higher-Order Program Verification
vs HFL Model Checking

??
??

e.g.
F <c> where
F X =ν X∧ [a](F ([b]X))

“c is enabled after
any transitions of the
form anbn”

Models Spec
HO program
verification

HO programs safety,
termination, ...

Finite state
model checking finite state systems

modal
µ-calculus
formula

HFL
model checking

[Viswanathan&
Viswanathan 04]

finite state systems HFL
formula

Higher-Order Program Verification
vs HFL Model Checking

“The program’s
behavior is correct”

From Program Verification
to HFL Model Checking: Example

let y = open “foo”
in

read(y); close(y)

Is the file “foo”
accessed according

to read* close?

HFL formula that says
“the behavior of the program
is correct”
<read><close><end>true

LTS:

s0 s1
close

read end

From Program Verification
to HFL Model Checking: Example

let y = open “foo”
in

read(y); close(y)

Is the file “foo”
accessed according

to read* close?

HFL formula that says
“the behavior of the program
is correct”
<read><close><end>true

Does LTS:

satisfy the formula S?
s0 s1

close
read end

From Program Verification
to HFL Model Checking: Example

let y = open “foo”
in

if * then
(read(y); close(y))

else close(y)

Is the file “foo”
accessed according

to read* close?

HFL formula that says
“the behavior of the program
is correct”
<read><close><end>true
∧
<close><end>true

Does LTS:

satisfy the formula S?

s0 s1
close

read end

From Program Verification
to HFL Model Checking: Example

let f x =
if * then close(x)
else (read(x); f x)
in
let y = open “foo”
in

f (y)
Is the file “foo”

accessed according
to read* close?

Does LTS:

satisfy the formula S?

s0 s1
close

read end

HFL formula that says
“the behavior of the program
is correct”

From Program Verification
to HFL Model Checking: Example

let f x k =
if * then close x k
else read x (f x k)
in
let y = open “foo”
in

f y ()

Is the file “foo”
accessed according

to read* close?

HFL formula that says
“the behavior of the program
is correct”
F x k =ν <close>k

∧ (<read>(F x k))
S =ν F true (<end>true)

Does LTS:

satisfy the formula S?

s0 s1
close

read end

From Program Verification
to HFL(Z) Model Checking

let f n x k =
if n≤0 then close x k
else
read x (f (n-1) x k)

in
let y = open “foo”
in f m y ()

Is the file “foo”
accessed according

to read* close?

F n x k =µ
(n≤0 ⇒<close>k)

∧ (¬n≤0 ⇒
<read>(F (n-1) x k))

S =µ F m true (<end>true)

Does LTS:

satisfy the formula S?

s0 s1
close

read end

From Program Verification
to HFL(Z) Model Checking

let f n x k =
if n≤0 then close x k
else
read x (f (n-1) x k)

in
let y = open “foo”
in f m y ()

Is the file “foo”
accessed according

to read* close?

F n x k =µ
(n≤0 ⇒<close>k)

∧ (¬n≤0 ⇒
<read>(F (n-1) x k))

S =µ F m true (<end>true)

Does LTS:

satisfy the formula S?

s0 s1
close

read end

This approach provides a sound and complete logical
characterization of:
- reachability problem
- termination problem
- linear/branching-time temporal properties
for higher-order functional programs
[K+ ESOP 2018] [Watanabe+, PEPM 2019]

From Termination Verification
to HFL(Z) Model Checking

let f x y =
if x≤ y then ()
else
if * then f (x-1) y
else f x (y+1)

in f m n

(Must-)termination:
∀m, n. F m n where:
F x y =µ

(x≤y ⇒ true)∧
(x>y ⇒ F (x-1) y ∧ F x (y+1))

May-not-termination:
∃m, n. F m n where:
F x y =ν

(x≤y ∧ false)∨
(x>y ∧ (F (x-1) y ∨ F x (y+1)))

May-termination:
∃m, n. F m n where:
F x y =µ

(x≤y ∧ true)∨
(x>y ∧ (F (x-1) y ∨ F x (y+1)))

Outline
 Introduction to HFL and HFL(Z)

Reductions from program verification to HFL(Z) model checking

HFL(Z) validity checking using types, CHC solving, and higher-
order model checking
– Overview

– From HFL(Z) to νHFL(Z)

– Two approaches to νHFL(Z) validity checking

– Fold/unfold transformation

Machine learning techniques for CHC solving

HFL(Z) Validity Checking
A closed HFL(Z) formula (without modalities)

A closed νHFL(Z) formula

Remove µ, ∃ ([K+, SAS19] for first-order fragment)
(cf. Reduction from termination to safety verification)

Predicate
abstraction
[Iwayama+, 20]

Refinement types
[Burn+ 18] [Katsura+, 20]

A pure νHFL
formula (w/o integers)

Yes/No/Unknown

Higher-order
model checking
[K09]
[Hosoi+, 19]
...

Constrained Horn
Clauses (CHC)

Yes/No/Unknown

CHC Solving

precise but slow imprecise but fast

Outline
 Introduction to HFL and HFL(Z)

Reductions from program verification to HFL(Z) model checking

HFL(Z) validity checking using types, CHC solving, and higher-
order model checking
– Overview

– From HFL(Z) to νHFL(Z)

– Two approaches to νHFL(Z) validity checking

– Fold/unfold transformation

Machine learning techniques for CHC solving

HFL(Z) formula

νHFL(Z) formula
Predicate
abstraction

νHFL formula
Higher-order
model checking

CHC

Yes/No/Unknown

CHC Solving

Refinement types

Remove µ, ∃

From HFL(Z) to ν-only HFL(Z)
(higher-order case: ongoing, first-order case: [K+, SAS19],

inspired by termination verification [Fedyukovich+, CAV18])
 Approximate µ by finite unfolding

µX.F(X) ≥ Fn(⊥) (approximate)

= (νX’.λz. z>0∧ F(X’ (z-1))) n (representation by ν)

= ∀u≥n. (νX’.λz. z>0∧ F(X’ (z-1))) u (trick to help solvers)

Example:
∀i. (µX.λy. y≤0 ∨ X(y-1)) i

From HFL(Z) to ν-only HFL(Z)
(higher-order case: ongoing, first-order case: [K+, SAS19],

inspired by termination verification [Fedyukovich+, CAV18])
 Approximate µ by finite unfolding

µX.F(X) ≥ Fn(⊥) (approximate)

= (νX’.λz. z>0∧ F(X’ (z-1))) n (representation by ν)

= ∀u≥n. (νX’.λz. z>0∧ F(X’ (z-1))) u (trick to help solvers)

Example:
∀i. (µX.λy. y≤0 ∨ X(y-1)) i

= i≤0 ∨ (µX.λy. ...)(i-1)
= i≤0 ∨ i-1≤0 ∨ (µX.λy. ...)(i-2)
= i≤0 ∨ i≤1 ∨ i≤2 ∨ ...

From HFL(Z) to ν-only HFL(Z)
(higher-order case: ongoing, first-order case: [K+, SAS19],

inspired by termination verification [Fedyukovich+, CAV18])
 Approximate µ by finite unfolding

µX.F(X) ≥ Fn(⊥) (approximate)

= (νX’.λz. z>0∧ F(X’ (z-1))) n (representation by ν)

= ∀u≥n. (νX’.λz. z>0∧ F(X’ (z-1))) u (trick to help solvers)

Example:
∀i. (µX.λy. y≤0 ∨ X(y-1)) i
≥ ∀i. ∀u≥max(i+1,1). (νX’.λ(z, y). z>0 ∧ (y≤0 ∨ X’(z-1, y-1))) (u, i)
= ∀i. ∀u≥max(i+1,1). ((µX’.λ(z, y). z≤ 0 ∨ (y>0 ∧ X’(z-1, y-1))) (u, i) ⇒ false)
Valid by the satisfiability of the CHC (let X’(z,y)≡ z ≤ 0 ∨ z ≤ y) :

{X’(z,y) ⇐ z≤ 0, X’(z,y) ⇐ y>0 ∧ X’(z-1, y-1), false ⇐ u≥i+1 ∧ u≥1 ∧ X’(u,i) }

Mu2CHC [K+ SAS19]
 Reduce

– µ-calculus properties (which subsume CTL/LTL/CTL*) of while-programs
– LTL properties of first-order recursive programs
to CHC solving via first-order HFL(Z) formulas

Experimental results on CTL verification benchmark (Cook&Koskinen [13])

Outline
 Introduction to HFL and HFL(Z)

Reductions from program verification to HFL(Z) model checking

HFL(Z) validity checking using types, CHC solving, and higher-
order model checking
– Overview

– From HFL(Z) to νHFL(Z)

– From νHFL(Z) to (extended) CHC

– Fold/unfold transformation

Machine learning techniques for CHC solving

HFL(Z) formula

νHFL(Z) formula
Predicate
abstraction

νHFL formula
Higher-order
model checking

CHC

Yes/No/Unknown

CHC Solving

Refinement types

Remove µ, ∃

Refinement Types for νHFL(Z)
[Katsura+ 20] (cf. refinement types for HoCHC [Burn+18])

τ ::= [ψ] (types for propositions that hold whenever ψ holds)
| x:int → τ (dependent types for integer predicates)
| τ1 → τ2 (non-dependent types for higher-order predicates)

ψ ::= a formula of linear integer arithmetic
Examples:
λx.x≥0 : (x:int → [x>0])

the type of integer predicates that are true (at least) for positive integers

λpint→.p 1 : (x:int → [x>0]) → [true]
the type of (higher-order) predicates on integer predicates
that are true (at least) for integer predicates p such that p x holds for any x>0

Refinement Type System for νHFL(Z)

Γ, x:τ┝ x:τ

Γ, x:τ1 ┝ ϕ:τ2
−−−−−−−−−−−−−−−−−−
Γ┝ λx.ϕ: x:τ1 → τ2

Γ┝ ϕ: x:int→τ
−−−−−−−−−−−−−−−−−−−−−−−−

Γ┝ ϕ e: [e/x]τ

Γ, X:τ ┝ ϕ:τ
−−−−−−−−−−−−−−−−−−

Γ┝ νX.ϕ: τ

Γ ┝ e1≥ e2: [e1≥ e2]

Γ┝ ϕ1: [ψ1] Γ┝ ϕ2: [ψ2]
−−−−−−−−−−−−−−−−−−−−−−−−

Γ┝ ϕ1∧ ϕ2 : [ψ1∧ψ2]

Γ┝ ϕ1: τ2 → τ Γ┝ ϕ2 : τ2
−−−−−−−−−−−−−−−−−−−−−−−−

Γ┝ ϕ1 ϕ2 : τ

Γ┝ ϕ: τ’ Γ┝ τ’ <: τ
−−−−−−−−−−−−−−−−−−

Γ┝ ϕ: τ

Soundness (but not completeness)
If |− ϕ:[true] then |= ϕ

Refinement Type Inference
(see [Katsura+ 20] for details)

 A standard template-based type inference algorithm yields:
– CHC, for νHFL(Z) formulas obtained from (un)reachability verification problems

=> Standard CHC solvers such as Z3 Spacer and HoIce can be used

– Extended CHC (with disjunctions in heads):
H1 ∨ ... ∨ Hk ⇐ B1 ∧ ... ∧ Bn

for general νHFL(Z) formulas

=> Extended CHC solvers such as PCSat [Unno+ 20] are required

Outline
 Introduction to HFL and HFL(Z)

Reductions from program verification to HFL(Z) model checking

HFL(Z) validity checking using types, CHC solving, and higher-
order model checking
– Overview

– From HFL(Z) to νHFL(Z)

– From νHFL(Z) to (extended) CHC

– Fold/unfold transformation

Machine learning techniques for CHC solving

HFL(Z) formula

νHFL(Z) formula
Predicate
abstraction

νHFL formula
Higher-order
model checking

CHC

Yes/No/Unknown

CHC Solving

Refinement types

Remove µ, ∃

Fold/Unfold Transformations for CHC
[De Angelis+ 18]

Even(n) ⇐ n=0 ∨ Even(n-2).
false ⇐ Even(n) ∧ Even(n+1).
is SAT, but the witness requires a mod constraint: Even(n) ≡ n mod 2=0.
Can we prove SAT without using the mod constraint?

Prepare a new predicate E2(n) := Even(n) ∧ Even(n+1).
E2(n) ⇐ Even(n) ∧ Even(n+1)

⇐ Even(n) ∧ (n+1=0 ∨ Even(n-1)) (unfold)
⇐ (n+1=0 ∧ Even(n)) ∨ (Even(n-1) ∧ Even(n))
⇐ (n+1=0 ∧ Even(n)) ∨ E2(n-1) (fold)

Even(n) ⇐ n=0 ∨ Even(n-2).
E2(n) ⇐ (n+1=0 ∧ Even(n)) ∨ E2(n-1)
false ⇐ E2(n)
has a trivial model: Even(n) ≡ n≥0, E2(n) ≡ false

Fold/Unfold Transformations for HFL(Z)?

Even(n) ⇐ n=0 ∨ Even(n-2).
false ⇐ Even(n) ∧ Even(n+1).

E2(n), where
E2(n) =ν (Even(n) ∨ n+1 ≠0) ∧ E2(n-1)
Even(n) =ν n≠0 ∧ Even(n-2).

Even(n) ∨ Even(n+1) where
Even(n) =ν n≠0 ∧ Even(n-2).

CHC

Corresponding HFL(Z) formula

Even(n) ∨ Even(n+1)
= Even(n) ∨ (n+1≠0 ∧ Even(n-1)) (unfold)
= (Even(n) ∨ n+1 ≠0) ∧ (Even(n-1) ∨ Even(n))

Q: Is fold/unfold transformation
applicable to arbitrary alternations of
µ and ν?

A: Yes, but with a certain sanity condition.

See [K+, TACAS 20] for first-order HFL(Z).
See also [Kori+, CSL 21] on cyclic proofs
for HFL.

Outline
 Introduction to HFL and HFL(Z)

Reductions from program verification to HFL(Z) model checking

HFL(Z) validity checking using types, CHC solving, and higher-
order model checking

Machine learning techniques for CHC solving

– ICE learning for CHC

– Neural networks for qualifier discovery

HoIce: ICE-Learning-Based CHC Solver
[Champion+ TACAS18]

 An extension of the ICE-learning framework [Garg+ CAV14]

 A reasonably good performance
 Tend to generate simple models

(=> suitable for refinement type
inference, with applications also in
higher-order model checking [Sato+ 19])

Teacher
(call SMT to check
candidate models)

Learner
(qualifier discovery

+ Boolean function synthesis)

candidate model
(e.g. Even(x) ≡ x>0)

learning data
(e.g. {Even(0), Even(1) ⇒ Even(3), ...})

Even(n) ⇐ n=0 ∨ Even(n-2).
false ⇐ Even(n) ∧ Even(n+1).

(Result of CHC-Comp19, LIA-Nonlin category)
From https://chc-comp.github.io/2019/chc-comp19.pdf)

https://chc-comp.github.io/2019/chc-comp19.pdf

HoIce: ICE-Learning-Based CHC Solver
[Champion+ TACAS18]

 An extension of the ICE-learning framework [Garg+ CAV14]

 A reasonably good performance
 Tend to generate simple models

(=> suitable for refinement type
inference, with applications also in
higher-order model checking [Sato+ 19])

 Applicable to extended CHCs
(with disjunctions in heads)

Teacher
(call SMT to check
candidate models)

Learner
(qualifier discovery

+ Boolean function synthesis)

candidate model
(e.g. Even(x) ≡ x>0)

learning data
(e.g. {Even(0), Even(1) ⇒ Even(3), ...})

Even(n) ⇐ n=0 ∨ Even(n-2).
false ⇐ Even(n) ∧ Even(n+1).

(Result of CHC-Comp19, LIA-Nonlin category)
From https://chc-comp.github.io/2019/chc-comp19.pdf)

https://chc-comp.github.io/2019/chc-comp19.pdf

Neural Networks for Qualifier Discovery
(Ongoing work)

Teacher
(call SMT to check
candidate models)

candidate model
(e.g. Even(x) ≡ x mod 2)

learning data
(e.g. {Even(0), Even(1) ⇒ Even(3), ...})

Can be difficult to discover

Learner
(qualifier discovery

+ Boolean function synthesis)

Neural Networks for Qualifier Discovery
(Ongoing work)

Teacher
(call SMT to check
candidate models)

Learner
Neural network (NN):

+ formula extraction from NN

candidate model
(e.g. Even(x) ≡ x mod 2)

learning data
(e.g. {Even(0), Even(1) ⇒ Even(3), ...})

Can be difficult to discover

... ...

...

Conclusion
 Automated program verification project based on HFL(Z)

– HFL(Z) may be viewed as an extension of CHC
with higher-order predicates and fixpoint alternation

– Provide a uniform verification framework for temporal properties
(safety, termination, liveness, ...) of higher-order functional programs

– Many of the existing techniques for CHC solving and program
verification can be lifted to those for HFL(Z) validity checking
(e.g. fold/unfold transformation)

– CHC solvers are important building blocks for HFL(Z) validity checking

• Sometimes we need more than pure CHC solving (e.g. disjunctions in heads, for
refinement-type-based approach to HFL(Z) validity checking)

• Any improvement of CHC solvers would be appreciated!

References
 Relationship between HORS/HFL model checking

– K, Lozes, Bruze, “On the relationship between higher-order recursion schemes
and higher-order fixpoint logic”, POPL 17

 (pure) HFL model checking algorithm
– Hosoi, K, Tsukada, “A Type-Based HFL Model Checking Algorithm”, APLAS 19

 From program verification to HFL(Z) model/validity checking
– K, Tsukada, Watanabe, “Higher-Order Program Verification via HFL Model

Checking”, ESOP 18
– Watanabe, Tsukada, K, “Reduction from branching-time property verification

of higher-order programs to HFL validity checking”, PEPM 19

 From (first-order) HFL(Z) to ν-only HFL(Z)
– K, Nishikawa, Igarashi, Unno, “Temporal Verification of Programs via

First-Order Fixpoint Logic”, SAS 19

References
 Solving ν-only HFL(Z) validity checking

– Iwayama, K, Suzuki, Tsukada, “Predicate Abstraction and CEGAR for νHFLZ
Validity Checking”, SAS 20

– Katsura, Iwayama, K, Tsukada, “A New Refinement Type System for
Automated νHFLZ Validity Checking”, APLAS 20

 Fold/unfold transformation for (first-order) HFL(Z)
– K, Fedyukovich, Gupta, “Fold/Unfold Transformations for Fixpoint Logic”,

TACAS 20
– (related) Kori, Tsukada, K, “A Cyclic Proof System for HFLN”, CSL 21

Machine learning techniques for CHC solving
– Champion, Chiba, K, Sato, “ICE-Based Refinement Type Discovery for

Higher-Order Functional Programs”, TACAS 18

	An Overview of �the HFL Model Checking Project� (at UTokyo)
	This Talk
	Outline
	Outline
	Higher-Order Modal Fixpoint Logic (HFL) [Viswanathan&Viswanathan 04]
	Higher-Order Modal Fixpoint Logic (HFL) [Viswanathan&Viswanathan 04]
	Selected Typing Rules for HFL
	Example
	HFL Model Checking �[Viswanathan&Viswanathan 2004]
	HFL Model Checking �[Viswanathan&Viswanathan 2004]
	HFL(Z): An extension of HFL with integers
	HFL(Z) Model/Validity Checking
	Outline
	CHC satisfiability �as (n-only) HFL(Z) validity checking
	CHC satisfiability �as (n-only) HFL(Z) validity checking
	Outline
	スライド番号 24
	スライド番号 25
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL(Z) Model Checking
	From Program Verification �to HFL(Z) Model Checking
	From Termination Verification�to HFL(Z) Model Checking
	Outline
	HFL(Z) Validity Checking
	Outline
	From HFL(Z) to n-only HFL(Z)�(higher-order case: ongoing, first-order case: [K+, SAS19],�inspired by termination verification [Fedyukovich+, CAV18])
	From HFL(Z) to n-only HFL(Z)�(higher-order case: ongoing, first-order case: [K+, SAS19],�inspired by termination verification [Fedyukovich+, CAV18])
	From HFL(Z) to n-only HFL(Z)�(higher-order case: ongoing, first-order case: [K+, SAS19],�inspired by termination verification [Fedyukovich+, CAV18])
	Mu2CHC [K+ SAS19]
	Outline
	Refinement Types for nHFL(Z)�[Katsura+ 20] (cf. refinement types for HoCHC [Burn+18])
	Refinement Type System for nHFL(Z)
	Refinement Type Inference�(see [Katsura+ 20] for details)
	Outline
	Fold/Unfold Transformations for CHC�[De Angelis+ 18]
	Fold/Unfold Transformations for HFL(Z)?
	Outline
	HoIce: ICE-Learning-Based CHC Solver �[Champion+ TACAS18]
	HoIce: ICE-Learning-Based CHC Solver �[Champion+ TACAS18]
	Neural Networks for Qualifier Discovery�(Ongoing work)
	Neural Networks for Qualifier Discovery�(Ongoing work)
	Conclusion
	References
	References

