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Abstract. Kobayashi and Igarashi proposed model checking of µHORS
(recursively-typed higher-order recursion schemes), by which a wide range
of programs such as object-oriented programs and multi-threaded pro-
grams can be precisely modeled and verified. In this work, we present a
procedure for µHORS model checking that improves the procedure based
on automata-based abstraction refinement proposed by Kobayashi and
Li. The new procedure optimizes each step of the abstract-check-refine
paradigm of the previous procedure. Specially, it combines the strengths
of automata-based and type-based abstraction refinement as equivalence-
based abstraction refinement. We have implemented the new procedure,
and confirmed that it always outperformed the original automata-based
procedure on runtime efficiency, and successfully verified all benchmarks
which were previously impossible.

1 Introduction

The model checking of higher-order recursion schemes (HORS) can be considered
as a generalization of finite-state and pushdown model checking, and has been
recently applied to automated verification of higher-order programs [6, 10, 13]. A
HORS [5, 12] is a simply-typed higher-order grammar that generates a possibly
infinite tree called a value tree. The model checking problem for HORS is to
check whether the value tree generated by HORS satisfies a given tree property.
The problem is decidable [12] and a few efficient algorithms had been developed
for it [14, 3], despite its extremely high worst-case complexity. Since HORS can
be considered as a simply-typed higher-order functional program with recursion
and tree constructors, the verification of functional programs (after predicate
abstraction if necessary) can be naturally reduced to HORS model checking.

Although HORS can serve as a precise model for simply-typed higher-order
functional programs, it could not be used for describing more expressive pro-
grams, such as functional programs with recursive types, object-oriented pro-
grams, and multi-threaded programs. To improve the expressiveness of HORS,
Kobayashi and Igarashi introduced µHORS, an extension of HORS with re-
cursive types, and studied a model checking problem for it [7]. Using µHORS,
object-oriented programs and multi-threaded programs can be precisely mod-
eled. They showed that µHORS model checking is undecidable, and developed
a sound procedure for it based on the inference of recursive intersection types



that certify the safety of the grammar. The procedure is also relatively complete
with respect to recursive intersection types: the grammar is eventually proved
to be safe, if it is typable under some recursive intersection type system.

Kobayashi and Li later proposed an automata-based abstraction refinement
procedure for µHORS model checking [8]. Following the abstract-check-refine
paradigm, their procedure abstracts the configuration graph (that is the prod-
uct reduction) of the grammar and the property automaton[6] as a finite graph,
called abstract configuration graph (ACG), such that each term is abstracted
as a state of a given finite tree automaton during the reduction, and the tree
automaton is gradually refined for abstraction by counterexamples. Their pro-
cedure is sound and relatively complete with respect to a regular set of term
trees: the grammar is eventually proved to be safe if there exists a regular set of
term trees that is a safety inductive invariants for the grammar. Although their
procedure is more efficient than the one proposed by Kobayashi and Igarashi, it
is still not scalable enough as exhibited by their experiments.

To boost the scalability of µHORS model checking, we present a procedure
that improves each step in the abstract-check-refine paradigm of the previous
automata-based procedure as follows:

1) It combines the strengths of automata-based and type-based abstraction
refinement as equivalence-based abstraction refinement: terms are identified to
be equivalent during the reduction if and only if they are abstracted as the same
state of the tree automaton and inhabit the same (non-recursive) intersection
type; and such an equivalence relation is gradually refined by counterexamples.

2) The ACG construction is optimized so that the abstraction is more precise
(i.e., the resulting ACG is in smaller size) than that of the original procedure, and
therefore, our procedure is expected to scale better as confirmed by experiments.

3) An ACG is constructed by expanding different kinds of nodes in a spe-
cific order and by classifying the edges as two kinds of abstract and concrete
reduction, respectively, so that the feasibility checking step (as to whether a
counterexample is spurious or not) can be replaced by a simple and lightweight
traversal of the error trace.

We have implemented the new procedure, and our empirical study showed
that, it always outperformed the original procedure on runtime efficiency, and
successfully verified all benchmarks from [8] which were previously impossible.

On the technical side, our new procedure also preserves the properties of
the automata-based procedure, i.e., it is sound and relatively complete with
respect to safety invariants in terms of a regular tree language. Note that, we
are concerned with µHORS model checking in this work, but our techniques are
applicable to the type-based abstraction refinement procedure for simply-typed
HORS model checking [14].

The rest of the paper is organized as follows: Section 2 reviews µHORS model
checking. Section 3 describes an improved procedure for µHORS model check-
ing and its properties. Section 4 reports the implementation and experimental
results. Section 5 discusses related work and Section 6 concludes the paper. The
proofs of the theorems can be found in a full version of the paper [11].



2 Preliminaries

Let N+ be the set of positive integers, and let E be a (finite) set. A tree D is a
prefix-closed subset of N∗+ such that πj ∈ D implies {π, π1, . . . , π(j − 1)} ⊆ D,
and an E-labeled tree is a map from a tree to E. We write dom(f) for the domain
of a map f . A ranked alphabet Σ is a map from a finite set of symbols to non-
negative integers, such that Σ(a) denotes the arity of each symbol a ∈ dom(Σ).
A Σ-labeled ranked tree T is a Σ-labeled tree satisfying that T (π) = a implies
{i | πi ∈ dom(T )} = {1, . . . , Σ(a)} for any π ∈ dom(T ). Here, an element
a ∈ dom(Σ) is used as a tree constructor.

The set of recursive types, ranged over by κ, is defined by:

κ (recursive types) ::= α | κ1 → · · · → κm → o | µα.κ

where m ≥ 0, α is a type variable, and µα.κ is an equi-recursive type with
α bound by µ within the scope κ [2]. Here, → binds tighter than the binding
operator µ. Intuitively, the type o represents (term) trees, and µα.κ represents a
solution (that is a finite or infinite regular tree) to the type equation α = κ, and
therefore µα.κ = [µα.κ/α]κ, e.g., µα.α → o and (µα.α → o) → o are identical.
The type κ1 → · · · → κm → o describes a function value that takes as arguments
of type κ1, . . . , κm and returns a tree. As usual, we call a type κ closed if all the
type variables in κ are bound. We only consider closed types in the sequel.

Given a set of variables V, a set of function symbols F that is disjoint with V,
and a ranked alphabet Σ, the set of applicative terms (or shortly terms), ranged
over by t, is defined by: t (terms) ::= x | a | t1t2, where x ranges over V ∪F , and
a ranges over dom(Σ). A ground term is a term that contains no variables in V.

A type environment K for recursive types is a map from V ∪ F ∪ dom(Σ)
to recursive types. The type judgement relation K ` t : κ is the least relation
closed under the following rules:

K, x : κ ` x : κ K ` a : o→ · · · → o︸ ︷︷ ︸
Σ(a)

→ o
K ` t0 : κ1 → κ2 K ` t1 : κ1

K ` t0t1 : κ2

Definition 1. A µHORS G is a tuple (N , Σ,R, S), where

– N is a map from a set of non-terminal symbols to their recursive types.

– Σ is a ranked alphabet, and dom(Σ) is called a set of terminal symbols.

– R is a set of rewriting rules in the form F x1 · · · xm → t where F is a
non-terminal symbol and N (F ) = κ1 → · · · → κm → o, and t is an applicative
term such that N , x1 : κ1, . . . , xm : κm ` t : o. There exists exactly one rewriting
rule for each non-terminal symbol F in dom(N ).

– S ∈ dom(N ) is called start symbol with N (S) = o.

A µHORS [7] is a HORS [12] extended with recursive types, and can be con-
sidered a higher-order, call-by name, and recursively-typed functional program
that generates a (possibly infinite) term tree.

Given a µHORS G, the rewrite relation −→G on terms is defined by:



F x̃→ t ∈ R
F s̃ −→G [s̃/x̃]t

ti −→G t′i i ∈ [1..Σ(a)]

a t1 · · · ti · · · tΣ(a) −→G a t1 · · · t′i · · · tΣ(a)

where x̃ and s̃ denote sequences of variables and terms, respectively.
Let ⊥ 6∈ dom(Σ) be a fresh symbol. Let Σ⊥ be the ranked alphabet that

extends Σ with ⊥ such that Σ⊥(⊥) = 0. For a ground term t of type o, we
define the Σ⊥-labeled ranked tree t⊥ inductively as follows:

(a t1 · · · tΣ(a))
⊥

= a (t1
⊥) · · · (tΣ(a)

⊥) (F s̃ )
⊥

= ⊥

We define a partial order v on Σ⊥-labeled ranked trees such that C[⊥] v C[t]
for any tree t and tree context C. Let

⊔
be the least upper-bound of trees with

respect to v. The value tree Tree(G) of G is a Σ⊥-labeled tree
⊔
{t⊥ | S −→∗G t}.

Example 1. Let G1 = (Σ,N ,R, S) where Σ = {a 7→ 3, b 7→ 1, c 7→ 0},
N = {S 7→ o, F 7→ µα.(α→ (o→ o)→ (o→ o)→ o), B 7→ (o→ o)→ o→ o},
R = {S → F F b b, B hx→ b(hx)

F f k g → a (kc) (g(gc)) (f f (Bk) (Bg))}
S is reduced as follows:

S → F F b b→ a (b c) (b2 c) (F F (B b) (B b))→ · · ·

Tree(G1) is shown to the right.

a

b

c

b2

c

a

b2

c

b4

c

...

Definition 2. A trivial tree automaton (TTA) A is a tuple (Σ,Q, δ,Q0),
where Σ is a ranked alphabet, Q is a set of states, δ ⊆ Q × dom(Σ) × Q∗ sat-
isfying that m = Σ(a) if (q, a, q1 · · · qm) ∈ δ, and Q0 ⊆ Q. Given a Σ-labeled
ranked tree T . A run tree of A over T is a Q-labeled ranked tree R such that (i)
dom(R) = dom(T ), (ii) R(ε) ∈ Q0, and (iii) (R(π), T (π), R(π1) · · ·R(πΣ(a)) ∈
δ for any π ∈ dom(R). A accepts T if there is a run tree of A over T . We de-
note by L(A) the set of trees accepted by A, and by L(A, q) the set of trees
accepted by the automaton (Σ,Q, δ, {q}). A is top-down deterministic if (i)
|Q0| = 1 and (ii) (q, a, q1 · · · qm), (q, a, q′1 · · · q′m) ∈ δ implies qi = q′i for each
i ∈ [1..m]; and is moreover total if there exists (q, a, q1 · · · qΣ(a)) ∈ δ for any
q ∈ Q and a ∈ dom(Σ). We often write δ(q, a) = q1 · · · qm for (q, a, q1 · · · qm) ∈
δ when A is top-down deterministic. Dually, A is bottom-up deterministic if
(q, a, q1 · · · qm), (q′, a, q1 · · · qm) ∈ δ implies q = q′, and is total if there exists
(q, a, q1 · · · qΣ(a)) ∈ δ for any q1, . . . , qΣ(a) ∈ Q and a ∈ dom(Σ).

Trivial automata are originally considered by Aehlig [1] as non-deterministic
Büchi tree automata where all the states are accepting. Note that, for finite trees,
a topdown (resp bottom-up) deterministic TTA is just an ordinary topdown
(resp bottom-up) deterministic finite tree automaton [4]. In this paper, we only
consider topdown deterministic TTA.

We fix a µHORS G = (N , Σ,R, S) and a topdown deterministic TTA A =
(Σ,Q, δ, q0) for the rest of paper. Let A⊥ denote the automaton (Σ⊥, Q, δ ∪
{(q,⊥, ε) | q ∈ Q}, δ, q0). A µHORS model checking problem is to decide whether



Tree(G) ∈ L(A⊥). The µHORS model checking problem is undecidable [7], and
we are concerned with sound and incomplete procedures for it.

Example 2. Let A1 be (Σ, {q0, q1, q2, q3}, δ, {q3}) where Σ is as given in Exam-
ple 1, and δ is given as follows:

{(q3, a, q2q0q3), (q0, b, q1), (q1, b, q0), (q2, b, q2), (q2, c, ε), (q0, c, ε), (q3, c, ε)}.
A1 accepts Tree(G1) in Example 1.

At the heart of practical procedures for higher-order model checking (e.g., [6,
8, 14]) is an algorithm for expanding a configuration graph of G and A, starting
with the root (S, q0). A node in the graph is a pair (t, q) where t is a term and
q ∈ Q is a state of A, and the edges obey the relation −→G,A defined by the
following rules:

– (F t1 · · · tm, q) −→G,A ([t1/x1, . . . , tm/xm]s, q) if F x1 · · · xm → s ∈ R.
– (a t1 · · · tm, q) −→G,A (ti, qi) if (q, a, q1 · · · qm) ∈ δ for i ∈ [1..m].
– (a t1 · · · tm, q) −→G,A fail if δ(q, a) is undefined in A.

Let −→∗G,A be the transitive and reflexive closure of −→G,A.

Fact 3 (S, q0) −→∗G,A fail if and only if Tree(G) 6∈ L(A⊥).

We consider the counterexample-guided abstraction refinement paradigm for
model checking, and explore the following two finite means of guiding the ab-
straction refinement procedure: term automata and intersection types.

Term Automata [8]. A term automaton B = (ΣB, QB, δB, qB,0) is a bottom-
up deterministic and total finite tree automaton that accepts a regular set of
well-typed ground term trees (with respect to the types of G on terminal and
non-terminal symbols, and the type judgement relation K ` t : κ defined above).

We define an equivalence relation ∼B on terms over ΣB by, for any t and t′,
t ∼B t′ if and only if ∀q ∈ QB. t ∈ L(B, q) ⇔ t′ ∈ L(B, q). That is, t and t′ are
equivalent if and only if they are accepted and rejected by the same states of B.

Intersection Types. The higher-order model checking problem can be char-
acterized as an intersection type inference problem [6, 9, 7]. Here, we limit our
focus to non-recursive intersection types for rejection of the grammar by the
complement of A, and refer it shortly as intersection types or rejection types.
The set of intersection types for A is given as follows:

τ (strict types) ::= q | σ → τ σ (intersection types) ::=
∧
{τ1, . . . , τk}

where q ∈ Q and k ≥ 0. We write > for the empty intersection
∧
∅. Note that,

non-recursive intersection types are finitely many because the set of base types,
i.e., the states of A, is finite.

A type environment Γ is a set of type bindings in the form h : τ , where
h ∈ dom(N ) ∪ dom(Σ) ∪ V. Note that, a type environment may have multiple
type bindings for h. The type judgement Γ `A t : τ is defined below following



[3]. Note that, since we are concerned with a top-down deterministic TTA as the
property automaton, the rejection types used in our setting has a specific form.

Γ, x : τ `A x : τ

δ(q, a) = (q1 · · · qm) ∀i.i ∈ [1..m]

Γ `A a : > → . . .→ >︸ ︷︷ ︸
i−1

→ qi → >→ . . .→ >︸ ︷︷ ︸
m−i

→ q

δ(q, a) is undefined

Γ `A a : > → . . .→ >︸ ︷︷ ︸
Σ(a)

→ q

Γ `A t1 :
∧
{τ1, . . . , τn} → τ

Γ `A t2 : τi (∀i. i ∈ [1..n])

Γ `A t1t2 : τ

For any term t, we define T[Γ ](t) =
∧
{τ | Γ `A t : τ}.

We define an equivalence relation on terms by, for any terms t and t′, t ∼Γ t′
if and only if ∀τ.Γ `A t : τ ⇔ Γ `A t′ : τ . That is, t and t′ are equivalent if they
inhabit the same intersection types in Γ .

Example 3. Consider A1 in Example 2. We have T[∅](a) =
∧
{τ1, τ2, τ3, τi | i ∈

{0, 1, 2}}. where τ1 = q1 → > → > → q3, τ2 = > → q0 → > → q3, τ3 = > →
> → q3 → q3, and τi = > → > → > → qi. T[∅](b) =

∧
{q1 → q0, q0 → q1, q2 →

q2,> → q3}. T[∅](c) =
∧
{q1}.

Definition 4. An inductive invariant I for G is a set I of ground terms satisfy-
ing that, (i) S ∈ I; (ii) if t ∈ I and t −→G t′, then t′ ∈ I. An inductive invariant
I is regular if it is accepted by a finite tree automaton. A safety invariant for
G (with respect to A) is a regular inductive invariant I such that t ∈ I implies
t⊥ ∈ L(A⊥), i.e., I contains no invalid term trees [8].

Fact 5 If there exists a safety invariant for G wrt A, then Tree(G) ∈ L(A⊥).

A procedure for µHORS model checking is sound in the sense that, the gram-
mar is safe if the procedure reports so, and relatively complete if the procedure
eventually terminates and reports that the grammar is safe if there exists a safety
invariant for G with respect to A. The procedure may not terminate.

3 The Model Checking Procedure

We give an overview of the new procedure MC∼(G,A) in Figure 1 which depicts
the high-level abstract-check-refine diagram explored in the procedure. The pro-
cedure takes as inputs a µHORS G, a TTA A, and an equivalence relation ∼ of
a finite index on terms (i.e., ∼ induces a finite number of equivalence classes)
which is used for directing the abstraction and refinement. Here, we combine the
automata-based abstraction refinement [8] with the type-based approach [14],
by taking ∼=∼B ∩ ∼Γ .

Initially, ∼0 =∼B0
∩ ∼Γ0

provided with an initial term automata B0 1 and
Γ0 = ∅. Starting with ∼=∼0, the procedure works as follows: The abstraction

1 Note that, the choice of B0 would not affect relative completeness but practical
efficiency of the procedure. An interested reader may wish to consult [8] for some
approaches to constructing B0.



construct an ACG
with strategies
(Section 3.1)

G:    HORS
A: trivial tree automata

abstraction
refinement

(Section 3.3)

:  the initial 
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no error
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real error
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∼

∼0

simplified 
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(Section 3.2)

Fig. 1. Overview of the model checking procedure MC∼(G,A) for µHORS

step constructs a finite abstract configuration graph (ACG) as an abstraction of
the configuration graph for G and A, with various strategies (Section 3.1) and
with the following twist that unifies [8] and [14]: any two nodes (t, q) and (t′, q′)
are identified as equivalent and collapsed if and only if t ∼ t′ and q = q′. Since
∼ has a finite index, there can be finitely many distinguished nodes in an ACG.
If a closed ACG is constructed without containing any fail node, we conclude
that the grammar is safe. Otherwise, a counterexample CE is raised during the
ACG construction, and checked as to whether it is spurious or not (i.e., whether
CE corresponds to a concrete reduction sequence that leads to fail). Thanks to
the strategies applied to the ACG construction, this step is done by a simple and
lightweight traversal of CE , called simplified feasibility checking (Section 3.2). If
CE is a real error, we conclude that the grammar is unsafe. Otherwise, we refine
the abstraction ∼ by refining ∼B [8] and ∼Γ (Section 3.3), independently, so
that the same CE would not occur in the future iterations. The loop is iterated
until the grammar is proved or disproved. The procedure may not terminate
since the model checking problem is undecidable in general.

3.1 Constructing Abstract Configuration Graph with Strategies

Overview of the Original ACG Construction. At the heart of model check-
ing procedures in [8, 14] is an algorithm for constructing an ACG. Below we
review the automata-based algorithm (i.e., take ∼=∼B). Let L be a set of la-
bels. A node in an ACG is either fail or a pair (t, q) of a state q in A and an
abstract applicative term t given by: t ::= a | F | x` | t1t2, where a ∈ dom(Σ),
F ∈ dom(N ), and x` is an abstract variable annotated with a label ` ∈ L. Be-
sides the graph, a map ρ is constructed from abstract variables to terms they
are bound with. A map lα from edges to reduction labels is also maintained.

Starting with the root (S, q0), the algorithm non-deterministically and fairly
takes a node N in the graph and expands it as follows (Here, by fairness, we mean
any node to be expanded would be eventually chosen, so that if the grammar



is unsafe, an error trace would be eventually detected. It can be achieved for
instance using an FIFO queue):

– Call ExpandN (N) for N = (F s1 · · · sm, q): given F x1 · · · xm → t ∈
R, for each i ∈ [1..m], an abstract variable x`ii is generated for representing

the real argument si, where `i ∈ L is fresh, and ρ(x`ii ) = si. A node N ′ =

([x`11 /x1, . . . , x
`m
m /xm]t, q) is generated and lα(N,N ′) = F .

– Call ExpandΣ(N) for N = (a s1 · · · sm, q): if there exists (q, a, q1, · · · , qm)
in δ, a node N ′ = (si, qi) is generated for each i ∈ [1..m] and lα(N,N ′) = (a, i);
Otherwise, a fail node is generated.

– For each x`
′ ∈ dom(ρ), call ExpandV(N, (l, l′)) for N = (x` s1 · · · sm, q): a

node N ′ = (t s1 · · · sm, q) is generated by replacing x` with the term t = ρ(x`
′
)

and lα(N,N ′) = ε. Besides, the edge (N,N ′) is labelled by (`, `′).

For each abstract variable x` such that ρ(x`) = s for some s, we define a
term ρ+(x`) = [ρ+(x`11 )/x`11 , . . . , ρ

+(x`nn )/x`nn ]s, where x`11 , . . . , x
`n
n are variables

occurring in s. Note that, a fresh label ` is always used in the construction. So
the above equation cannot be circular and ρ+(x`) is well defined. We extend
the definition to any term t by ρ+(t) = [ρ+(x`11 )/x`11 , . . . , ρ

+(x`nn )/x`nn ]t, where
x`11 , . . . , x

`n
n are variables in t.

Any two nodes N = (C[x`11 , . . . , x
`n
n ], q) and N ′ = (C[x

`′1
1 , . . . , x

`′n
n ], q) are

equivalent, denoted by N ≡ N ′, if and only if ρ+(x`ii ) ∼ ρ+(x
`′i
i ) for each i ∈

[1..n]. During the expansion, all ≡-equivalent nodes are merged in the graph, by
which an abstraction is applied to the reduction. The effect of the abstraction is
reflected when expanding the variable-headed nodes. We call an ACG closed if
no more nodes or edges can be added above. A closed ACG always exists and is
finite, given that ∼ has a finite index.

Constructing an ACG with Strategies. Based on the original ACG con-
struction above, Algorithm 1 constructs an ACG with various strategies for
giving directions to the graph expansion:

1) A set E of expandable label pairs is constructed (line 35, 37), and it main-
tains the label pairs that can be used for expanding variable-headed nodes (line
12, 49), where E† denotes the disjoint union of E and {(`, `) | ` ∈ L}. Those
labels pairs in E result from merging the node N = (C[x`11 , . . . , x

`n
n ], q) with

N ′ = (C[x
`′1
1 , . . . , x

`′n
n ], q) (line 34-35), defined by

EqLabels(N ′, N) = {(`′i, `i) | ∀i ∈ [1..n]. `i 6= `′i}

When new expandable pairs are found, those related variable-headed nodes are
expanded with more successors (line 10-15).

2) A specific order of expanding the graph is enforced using two worksets
ws0 and ws1 for managing the nodes to be expanded. When taking a node from
worksets (line 17-26), it always first takes a node from ws0 if it is non-empty,
and it takes a node from ws1, otherwise. We classify edges −→C of the graph
into two disjoint sets such that −→C=−→C,1 ∪ −→C,0 (line 1-9).



Algorithm 1: Constructing an ACG with Strategies

1 proc Update(N,N ′, tag)
2 begin
3 if not tag then
4 −→C,0 := −→C,0 ∪ {(N,N ′)};
5 add N ′ to ws0
6 else
7 −→C,1 := −→C,1 ∪ {(N,N ′)};
8 add N ′ to ws1
9 end

10 proc NewExpand(Enew)
11 begin
12 foreach (`, `′) ∈ Enew do

13 foreach N = (x` s̃, q) ∈ C do
14 N ′ := ExpandV(N, (l, l′)));
15 Update(N,N ′, 1)

16 end

17 proc TakeNode(ws0,ws1)
18 begin
19 if ws0 6= ∅ then
20 take N ′ from ws0
21 else
22 if ws1 6= ∅ then
23 take N ′ from ws1
24 else raise an exception

25 return N ′

26 end

27 −→C,0 := ∅; −→C,1 := ∅;
28 ws0 := ∅; ws1 := ∅; E := ∅;
29 add (S, q0) to ws0;
30 while ws0 6= ∅ and ws1 6= ∅ do
31 N := TakeNode(ws0,ws1);
32 InferType(C, N);
33 if N ≡ N ′ for some N ′ 6= N ∈ C then
34 merge N with N ′;
35 Enew := EqLabels(N ′, N) \ E ;
36 NewExpand(Enew);
37 E := E ∪ Enew;

38 else
39 if t = F s̃ then
40 N ′ := ExpandN (N);
41 Update(N,N ′, 0)

42 if t = a s̃ then
43 Succs := ExpandΣ(N);
44 foreach N ′ ∈ Succs do
45 Update(N,N ′, 0);
46 if N ′ = fail then
47 return a counterexample

48 if t = x` s̃ then

49 foreach (`, `′) ∈ E† do
50 N ′ := ExpandV(N, (l, l′)));
51 if ` = `′ then Update(N,N ′, 0)
52 else Update(N,N ′, 1)

53 return the grammar is safe;

For nodes expanded from variable-headed nodes such that the head variable x`

is replaced with the term ρ(x`
′
) with ` 6= `′, they are added to ws1, and the

resulting edges belong to −→C,1 (line 15, 52). For other nodes, they are added
to ws0 and the resulting edges belong to −→C,0 (line 41, 45, 51).

Enforcing expandable label pairs in E reduces redundant reduction sequences
in an ACG that do not have any corresponding concrete reduction sequences.
Thus, the abstraction becomes more precise. The advantage of 2) will be seen in
Section 3.2 for simplifying the feasibility checking step.

Example 4. Recall G1 in Example 1 and A1 in Example 2. Assume Bb 6∼ b,
BBb ∼ Bb, and Bbc 6∼ c (e.g., ∼=∼Γ0

). Figure 2 shows a snapshot of part of
an ACG for G1 and A1 without optimization, where for simplicity, we omit
generating abstract variables for representing arguments of function calls to
B hx→ b(hx) 2. The binding relations are given as follows:

2 It does not change the graph structure by doing so, because the arguments of B
occurring in the reduction could never be merged according to the assumption on ∼



ρ(f1) = F ρ(g2) = ρ(k3) = b ρ(g4) = B g2

ρ(k5) = B k3 ρ(g6) = B g4 ρ(k7) = B k5

The node (Ff1(Bk5)(Bg4), q3) has a child (a(k7c)(g6(g6c))(f1f1(Bk7)(Bg6)), q3),
which is merged with the node (a(k5c)(g4(g4c))(f1f1(Bk5)(Bg4)), q3). If the
graph is constructed by Algorithm 1, we have E = {(5, 7), (4, 6)} by merging the
two nodes above, so that the entire subgraph circled by the dashed lines is not
generated. Indeed, none of them has a corresponding concrete reduction.

(S ,q3)

(F F bb ,q3)

(a(k 3c)(g 2(g 2c))( f 1 f 1(B k 3)(B g 2)) , q3)
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Fig. 2. A snapshot of an abstract configuration graph C

3.2 Simplified Feasibility Checking

Given a counterexample CE , feasibility checking checks whether CE is spurious
or not, i.e., whether there is a concrete reduction sequence that leads to fail

by taking the same reduction labels along CE . When a cyclic CE is considered,
it examines those (finite) abstract reduction sequences by unfolding CE up to
a certain depth. Thanks to the order-guided ACG construction in Algorithm 1,
we can conclude the following theorem, and the feasibility checking is replaced
by a simple traversal of CE as to whether there exists an edge in −→C,1.



Theorem 1. Let CE be the first counterexample raised by Algorithm 1. Then,
(i) if there does not exist any edge on CE that belongs to −→C,1, then CE is a
real error and the grammar is unsafe; and (ii) CE is spurious otherwise.

The claim (ii) in Theorem 1 does not hold in general if CE is raised by a non-
deterministic algorithm for constructing an ACG. The key is that, the usage of
ws0 and ws1 in Algorithm 1 ensures that, for the edge N −→C,1 N ′ in CE nearest
to fail, the complete subgraph rooted with N only having edges in −→C,0 has
been constructed. Since it does not contain fail, CE must be spurious.

Remark 1. By the first counterexample above, we mean that it is firstly encoun-
tered during the model checking procedure, by taking the error trace that can
be visited first obeying the expansion order than other options if any.

Example 5. Recall the ACG shown in Figure 2, excluding the part enclosed
by the dashed line. There is a counterexample CE leading to fail. Since CE
contains an edge ((g4(g4c), q0) −→C,1 ((B g4(g4c), q0) labelled with (4, 6), we
know it is spurious by Theorem 1.

3.3 Abstraction Refinement of ∼ = ∼B ∩ ∼Γ

1: if N is Γ-rejected then {
2: take CE = e0 . . . en from C

that leads from (S, q0) to N;

3: if {e0, . . . , en} ⊆ −→C,0 then

4: return the grammar is unsafe;

5: else {
6: take a rejecting trail σ from CE;

7: infer a type environment Γ ′ from σ;
8: refine B to be B′ by CE [8];

9: call MC∼(G,A) with ∼ = ∼B′ ∩ ∼Γ ′;

10: }}

Fig. 3. InferType(C, N): A sub-procedure for rejection
type inference where C is an open ACG, and N = (t, q)
is a node in C to be expanded.

Fig. 3 gives a sub-procedure
InferType(C, N) that infers
rejection types from a coun-
terexample CE , when type-
based abstraction refinement
is combined with automata-
based procedure as called at
line 32 in Algorithm 1. The
procedure takes as inputs an
open ACG C and the cur-
rent node N ∈ C to be ex-
panded in the graph. Sim-
ilar to the notion defined
in [14], we say (t, q) is Γ -
rejected if Γ `A t : q. If N
is Γ -rejected, the procedure
takes a counterexample CE
from C (line 2). If CE does not contain any edge in −→C,1, then it is a real error
(line 3-4). Otherwise, a rejecting trail is taken from CE (line 6) from which a
type environment Γ ′ is computed (line 7). By separately refining ∼B as in [8]
(line 8), ∼ is refined and another round of model checking is triggered (line 9).

Our choice of rejecting trail is similar to the rejecting region defined in [14]
(that is a subgraph of an ACG in which each node reaches to a Γ -rejected leaf),
except that we are concerned with an open graph whereas a closed ACG is
required by [14] for their abstraction and refinement.



Definition 6. A trail is an alternating sequence of vertices and edges of a graph
that starts and ends with vertices. Given CE = e0 . . . en where N0 = (S, q0),
Nn+1 = N and ei = (Ni, Ni+1) ∈−→C for each i ∈ [0..n]. A rejecting trail
σ = NkekNk+1ek+1 . . . Nn+1 (k ∈ [0..n+1]) for CE is the longest trail, satisfying,

(a) {ek, . . . , en}∩ −→C,1= ∅; and
(b) For any j ∈ [k..n], (Nj , N

′) 6∈−→C,1 for any N ′ if Nj = (x` s̃, q).

The first condition says that σ only contains edges in −→C,0, and the second
condition requires that, for any variable-headed node Nj in σ, Nj does not have
any open successor to be reduced in the graph since C is an open graph. Note
that, σ is unique for a given CE and could be just the Γ -rejected node N .

Given the rejecting trail σ = NkekNk+1ek+1 . . . Nn+1, rejection types are
inferred from σ similar to [14, 9]. Starting with the Γ -rejected node Nn, types are
extracted backwards along the trail as follows: for each node Ni = (hs1 . . . sm, q)
in σ where i ∈ [0..n− k] and h ∈ Σ ∪ dom(N ) ∪ V, if h ∈ dom(N ) ∪ V (i.e., if h
is headed by a non-terminal or a variable), we have

Γ (j)(h) = Γ (j+1)(h)∧ τj with τj =
∧
T[Γ (j+1)](s1)→ . . .→

∧
T[Γ (j+1)](sm)→ q

and otherwise, Γ (j)(h) = Γ (j+1)(h) when h is a terminal symbol, where j = n−i
and Γ (n+1) = Γ . For any variable or non-terminal h that do not appear in head
positions of nodes in σ, their types keep unchanged, i.e., Γ (j)(h) = Γ (j+1)(h).

Theorem 2. Given Γ is computed by the procedure in Figure 3. For any node
N = (t, q) in the ACG, N is Γ -rejected implies that (ρ+(t), q) −→∗G,A fail.

By Theorem 2, we can safely raise a counterexample once a Γ -rejected node
N is found, with no need for expanding it.

Example 6. Recall the previous error path CE in Figure 2. Let Γ = ∅. The
rejecting node is (c , q1), and the rejecting trail σ is the sequence from the node
(Bg4(g4c), q0) to the node (c , q1). By type inference, we have Γ ′:

{g2 : q1 → q0, g
4 : q1 → q1, B : (q1 → q0)→ q1 → q1, B : (q1 → q1)→ q1 → q0}

which ensures that B b 6∼Γ ′ BB b, so that the grammar can be proved safe in
the next iteration of model checking.

3.4 Properties of the Procedure

Given a closed ACG C constructed by Algorithm 1, and let C be the configuration
graph (CG) for G and A. We show that there exists a weak simulation relation
between C and C.

Let C = (NodeC ,−→C), where NodeC is a finite set of nodes and −→C=−→C,0
∪ −→C,1 is a set of edges. Let GNodeC ⊆ NodeC be the set of nodes where for
any (t, q) in GNodeC , t is headed by a terminal or a non-terminal symbol, and let
VNodeC = NodeC \GNodeC be the set of variable-headed nodes. Let →τ=−→C
∩(VNodeC×NodeC), and the reflexive and transitive closure of→τ is denoted by



→∗τ . Let→α=−→C ∩(GNodeC×NodeC). Let =⇒C⊆→α→∗τ ∩(GNodeC×GNodeC).
Recall that lα(N,N ′) = ε for any (N,N ′) ∈→τ . We extend lα to =⇒C by, for any
(N,N ′) ∈=⇒C where N →α N

′′ →∗τ N ′, lα(N,N ′) = lα(N,N ′′).
Let C = (NodeC,→γ) for G and A, where NodeC is the (possibly infinite) set

of nodes, and →γ⊆ NodeC ×NodeC is the set of edges, respectively. Let lγ be a

map from edges in C to reduction labels as usual. We also write M
a−→γ M

′ if
M −→γ M

′ and a = lγ(M,M ′).

Definition 7. For any abstract term t, we define h(t) as the least set of ground
terms satisfying: (a) h(x`) ⊇ h(x`

′
) if (`, `′) ∈ E; (b) h(x`) ⊇ h(ρ(x`)); (c) h(t1t2)

⊇ {t′1t′2 | t′1 ∈ h(t1), t′2 ∈ h(t2)}; and (d) h(a) ⊇ {a} for any a ∈ dom(Σ) ∪
dom(N ). A binary relation �⊆ NodeC × GNodeC is defined by, for any node
M = (s, q) in NodeC and any node N = (t, q′) in GNodeC,

M � N if and only if s ∈ h(t) and q = q′.

Definition 8. A relation R ⊆ NodeC×NodeC is a weak simulation if for every
(M,N) ∈ R, (i) M � N , and (ii) for any node M ′ and for any a such that

M
a−→γ M ′, there exists a node N ′ such that N =⇒C N ′, (M ′, N ′) ∈ R, and

lα(N,N ′) = lγ(M,M ′). Let M0 and N0 be the unique entry nodes of a CG and
an ACG, respectively. We say that the ACG weakly simulates the CG if there
exists a weak simulation R such that (M0, N0) ∈ R.

Theorem 3 (soundness). � is a weak simulation.

It immediately follows Theorem 3 that, if a closed ACG does not contain any
fail nodes, then the grammar is safe.

Theorem 4 (relative completeness). MC∼(G,A) terminates and verifies
that the grammar is safe, if there exists a safety invariant for G wrt A.

4 Experiments

We have implemented a prototype of the optimized procedure based on the
model checker MuHorSar[8], and the tool is written in OCaml. We use Z3 4.3.3
(http://z3.codeplex.com/) as the backend constraint solver for automata-
based abstraction refinement. We have evaluated the tools on examples from two
categories of applications, including verification problems of FJ (Featherweight
Java) programs and that of multi-threaded boolean programs with recursion.
We are concerned with checking safety properties of the target programs. For
multi-threaded programs, we studied properties of mutual exclusion (e.g., the
Peterson’s algorithm), deadlock-freedom (e.g., for various solutions to the dining
philosopher problem), and checking of assertion violation (e.g., for simplified
variants of Bluetooth drivers). Most of examples are taken from [7, 8] with a
few examples newly-added as negative instances. Due to space, we only show
those examples that couldn’t be verified efficiently by the original procedure.



An interested reader may wish to consult [7, 8] for details of those examples and
safety properties that have been checked against them. All experiments were
conducted on a machine having a Mac OS X v.10.9.2, 1.7 GHz Intel Core i7
processor and 8GB RAM.

Table 1. Results for verifying FJ programs

scheme #G #A R MuHorSar MuHorSar+ MuHorSar+
∼

L-filter 122 1 Y 1.391 (6) 0.867 0.919
L-risers 122 1 Y 1.402 (6) 0.877 0.916

stack-br 39 1 Y 0.309 (13) 0.071 (1) 0.060 (1)
3 0.391 (13) 0.063 (1) 0.066 (1)
5 0.408 (13) 0.065 (1) 0.063 (1)

queue-br 61 1 Y 0.253 (2) 0.194 0.203
3 0.251 (2) 0.213 0.206
5 0.261 (2) 0.196 0.200

nat 35 1 Y 17.723 (147) 0.110 0.122

Table 2. Results for verifying multi-threaded Boolean programs with recursion

scheme #G #A R MuHorSar MuHorSar+ MuHorSar+
∼

locks-e 103 5 N 0.168 (1) 0.155 0.139
dining-e 135 5 N 2.948 (28) 0.541 0.406

dining-sp-e 193 5 N 11.685 (97) 0.884 0.833
bluetooth 129 1 N 2.484 (26) 2.722 (14) 0.947 (5)

bluetooth-v1 158 1 N — 68.819 (141) 3.658 (9)
bluetooth-v2 166 1 N — 13.820 (54) 1.869 (9)

plotter-e 90 4 N 0.278 (3) 0.221 0.181
dining-tan-e 303 5 N — 5.923 (7) 5.824 (5)

peterson-e 74 2 N 0.589 (4) 0.257 0.270

locks 95 5 Y 0.742 0.222 0.238
plotter 88 4 Y 0.204 0.226 0.314

peterson 74 2 Y 3.548 (2) 0.477 0.662
peterson-d 80 9 Y — 1.514 2.138

dekker 94 2 Y — 0.447 0.657
pc-monitor 71 5 Y 0.331 0.222 0.354

pc-sp 111 5 Y 2.238 0.219 0.370
dining-tan 303 5 Y — 18.229 23.007

The preliminary experimental results for comparing the verification time
taken by MuHorSar with and without optimizations are summarized in Table
1 for verifying FJ programs and in Table 2 for verifying multi-threaded pro-
grams, respectively. The column “scheme” shows the names of the examples.
The columns “#G” and “#A” show the number of rules of the schemes and



the size of the property automaton for each example, respectively. The column
“R” gives the answer whether the property is satisfied (Y) or violated (N). The
column “MuHorSar” gives the runtime taken by the original procedure. The
column “MuHorSar+” gives the runtime with optimizing the abstraction re-
finement in MuHorSar, like enforcing E , etc. The column “MuHorSar+

∼”
shows the runtime by further combining the procedure with type-based abstrac-
tion refinement. The runtime is given in seconds, or “—” for timeout which is
set to be 3 minutes. The number enclosed by parentheses shows the number of
required abstraction refinement iterations, and we omit to show it in the table
when it is zero, i.e., no abstraction refinement is needed.

As shown in both tables, the new procedure effectively improves the runtime
of the original procedure. In particular, it successfully verified all of the bench-
marks that were previously impossible. We found that enforcing expandable label
pairs by E is very effective in scaling-up the model checking procedure, expected
by reducing a large portion of redundant reduction sequences in an ACG.

5 Related Work

This work is an optimization and improvement of the automata-based procedure
for µHORS model checking proposed by Kobayashi and Li [8]. Their abstraction-
refinement approach explores a finite tree automaton for abstracting and identi-
fying term trees (as states of the automaton) for constructing the abstract con-
figuration graph, and often outperforms the first procedure for µHORS model
checking proposed in [7]. Their idea is inspired by the type-directed abstraction
refinement approach in [14], but is different in achieving (relative) completeness.
In fact, the type-based approach applied to simply-typed HORS model checking
in [14] would not ensure the same relative completeness as that is achieved by
the automata-based procedure in [8], if applied to µHORS model checking.

This work makes an attempt to further improve the line of work. We combine
automata-based and type-based abstraction refinement as an equivalence-based
abstraction refinement, to take strengths of both approaches. We also proposed
various optimizations to improve each step of the abstract-check-refine paradigm.
Our improvements target on µHORS model checking but the ideas are applicable
to improve the state-of-the-art model checker Preface for simply-typed HORS
as well [14]. Preface is the model checker for HORS that first reported to scale
to recursion schemes of several thousand rules. We expect that our approaches,
such as enforcing expandable label pairs to reduce the size of an ACG, distin-
guishing abstract and concrete reductions in an ACG and working with an open
configuration graph, etc., would be useful for further improving its scalability.

6 Conclusion

We have proposed systematic approaches to improve the runtime efficiency of the
automata-based abstraction refinement procedure for µHORS model checking.



First, our approach combines the existing work on automata-based and type-
based abstraction refinement techniques for higher-order model checking [8, 14,
7]. Next, we propose techniques for improving each step of the abstract-check-
refine paradigm explored by the procedure. The new model checking procedure
preserves the soundness and relative completeness properties of the original
automata-based procedure [8]. We have implemented the new procedure, and
confirmed by empirical study on examples of µHORS that, it always outper-
forms the original µHORS model checker MuHorSar, and successfully verified
all benchmarks that were previously impossible. We are concerned with µHORS
model checking but our approaches are applicable to the state-of-the-art model
checker Preface for simply-typed HORS [14], and we expect our approaches
would be useful for improving its scalability as well.
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Appendix

A Proof of Theorem 1

Lemma 1. For any node N = (t, q) in an ACG C, it satisfies that, if N −→∗C,0
fail, then (ρ+(t), q) −→∗G,A fail.

Proof. It is not hard to show that, (t, q) −→C,0 (t′, q′) implies (ρ+(t), q) −→∗G,A
(ρ+(t′), q′). By induction on t,

– case t = x`s1 . . . sk: we have (t, q) −→C,0 (t′, q) where t′ = ρ(x`)s1 . . . sk.
By definition, ρ+(t) = ρ+(x`)ρ+(s1) . . . ρ+(sm) = ρ+(t′), which implies
(ρ+(t), q) −→∗G,A (ρ+(t′), q).

– case t = as1 . . . sk: consider some i, such that (t, q) −→C,0 (si, qi). We know
by definition that ρ+(t) = aρ+(s1) . . . ρ+(sk), which implies (ρ+(t), q) −→∗G,A
(ρ+(si), qi).

– case t = Fs1 . . . sk: given that Fx1 . . . xk → s ∈ R, we have that (t, q) −→C,0
(t′, q′) where t′ = [s1/x1, . . . , sk/xk]s. We know by definition that ρ+(t) =
Fρ+(s1) . . . ρ+(sk), which implies that
(ρ+(t), q) −→∗G,A ([ρ+(s1)/x1, . . . , ρ

+(sk)/xk]s, q) = (ρ+(t′), q).

By induction on the depth of −→∗C,0, we further have that (t, q) −→∗C,0 (t′, q′)

implies (ρ+(t), q) −→∗G,A (ρ+(t′), q′), whereby the lemma is proved.

Lemma 2. Consider Algorithm 1. If a node N (taken from the worksets at line
31) is to be expanded, such that N ′ −→C,1 N , then the subgraph rooted with N ′

that contains only edges in −→C,0 has already been fully constructed in the graph.

Proof. By Algorithm 1 and the assumption of Lemma 2, we know N ′ is a
variable-headed node and it is expanded during line 48-52 in Algorithm 1. The
sibling N ′′ of N such that N ′ −→C,0 N ′′ was once added to ws0 at the same
iteration when N was added to ws1, and it has been expanded in earlier time



(since, N is taken from ws1 which implies that ws0 is now empty). By a similar
analysis (by induction on the depth of N ′ −→∗C,0 N ′′), we know that the sub-
graph rooted with N ′ that contains only edges in −→C,0 has already been fully
constructed in the graph.

Proof of Theorem 1

– The claim (i) follows immediately Lemma 1.
– To show claim (ii), let (N,N ′) be the edge on CE that is labeled with some

(`, `′) where ` 6= `′ and be such an edge nearest to fail. Let N = (t, q)
and N ′ = (t′, q). By assumption, we trivially have that (t′, q) −→∗C,0 fail

which implies that (ρ+(t′), q) −→∗G,A fail by Lemma 1. We also have that

(t, q) 6−→∗C,0 fail which implies that (ρ+(t), q) 6−→∗G,A fail.
Otherwise, if (t, q) −→∗C,0 fail, then it violates the assumption that CE is
the first raised counterexample. By Lemma 2, the subgraph that is rooted
with N and consists in only edges in −→C,0 has been already expanded,
before (N,N ′) is added to the graph. So another counterexample say CE ′

will be raised before CE . Note that, CE ′ is different from CE by assumption.
So we have that ρ+(t) 6−→∗G,A fail.

It means that the term ρ+(t) is a valid term tree but ρ+(t′) is an invalid
term tree. Then CE must be spurious.

�

B Proof of Theorem 2

Recall the following notion [9, 14]: a type environment Γ is co-consistent wrt
(G,A) if, for each F : τ ∈ Γ such that F ∈ dom(N ) and F x̃→ t ∈ R, we have
Γ `A λx̃.t : τ and there is a finite witness (type derivation tree) for it.

Consider the type inference algorithm in Section 3.3. Our choice of a rejecting
trail over an open configuration graph is a restricted and conservative case of
a rejecting region in [14], and the way we collect rejection types is standard as
[14, 6]. So the soundness property (as well as the progress property) of the type-
directed abstraction refinement in [14] applies to our setting, as summarized
below in Fact 9.

Fact 9 The following invariant holds on the procedure in Figure 3: If Γ is co-
consistent wrt (G,A), then the updated Γ ′ is co-consistent wrt (G,A). Since
Γ = ∅, initially, and it is trivially co-consistent wrt (G,A), we can conclude that
Γ is co-consistent throughout the model checking procedure.

Proof of Theorem 2 We show that a node N = (t, q) is Γ -rejected implies that
(t, q) −→∗C,0 fail. The assumption (t, q) is Γ -rejected means that Γ `A t : q. By
induction on t.

– case t = as1 . . . sk: (i) if δ(q, a) is undefined in A, then (t, q) −→C,0 fail

and the claim trivially holds; (ii) otherwise, there exists some i such that
Γ `A si : qi and (t, q) −→C,0 (si, qi).



– case t = Fs1 . . . sk: given Fx1 . . . xk → s, by Fact 9, we have that Γ `A
[s1/x1, . . . , sk/xk]s : q, and (t, q) −→C,0 ([s1/x1, . . . , sk/xk]s, q).

Since Γ is co-consistent wrt (G,A), any term t such that Γ `A t : q has a finite
witness of proof. It is not hard to see that (t, q) −→∗C,0 fail, eventually. Then
the claim immediately follows the above statement and Lemma 1. �

C Proof of Theorem 3

Lemma 3. Given a ground term t and a variable x` such that t ∈ h(x`). Then
there exists some l′ such that ρ(x`

′
) is defined, t ∈ h(ρ(x`

′
)), and (l, l′) ∈ E∗.

Proof. It immediately follows Definition 7 by induction on the transitive and
reflexive closure of E . ut

Lemma 4. Assume that a node (t2, q) is merged with an existing node (t1, q)
during the construction of the ACG. Then h(t2) ⊆ h(t1).

Proof. Let t1 = C[x`11 , . . . , x
`k
k ] and t2 = C[x

`′1
1 , . . . , x

`′k
k ]. If (t2, q) is merged with

(t1, q) in the graph, then according to the algorithm construction, (`i, `
′
i) ∈ E for

each i ∈ [1..k] where `i 6= `′i. By Definition 7 (a), it holds that h(x`ii ) ⊇ h(x
`′i
i ),

which implies that h(t2) ⊆ h(t1). ut

Lemma 5. Given a ground term s and a variable-headed node (t, q) ∈ VNodeC
in an ACG such that s ∈ h(t). Then there exists some t′ such that (t′, q) ∈
GNodeC, s ∈ h(t′) and (t, q)→∗τ (t′, q).

Proof. Let t = x`t1 . . . tk. By s ∈ h(t), we have that s = s0s1 . . . st such that (i)
s0 ∈ h(x`) and (ii) ∀i ∈ [1..k]. si ∈ h(ti). By (i) and Lemma 3, there exists some l′

such that ρ(x`
′
) is defined, s0 ∈ h(ρ(x`

′
)), and (l, l′) ∈ E∗. Let t′ = ρ(x`

′
)t1 . . . tk.

Then s ∈ h(t′) and (t, q)→ (t′, q). If (t′, q) ∈ GNodeC , then the lemma is proved.
Otherwise, we repeat the above analysis given the ground term s and a variable-
headed node N ′ = (t′, q) ∈ VNodeC where s ∈ h(t′). Since the domain of the
binding function is finite, and for any variable headed node N = (x`t1 . . . tk, q) in
the graph and any (`, `′) ∈ E†, the algorithm will expand it and generate an edge
N →∗τ N ′ where N ′ = (ρ(x`

′
)t1 . . . tk, q) (by line 14 and 50 in Algorithm 1), we

will finally find such l′′ and variable y such that ρ(y`
′′
) is defined, s0 ∈ h(ρ(y`

′′
)),

(t′, q) ∈ GNodeC , s ∈ h(t′) and (t, q)→∗τ (t′, q) where t′ = ρ(y`
′′
)t1 . . . tk. ut

Proof of Theorem 3 First, � is not empty since M0 � N0 for M0 = (S, q0) and
N0 = (S, q0). Consider any M = (s, q) ∈ NodeC and N = (t, q) ∈ NodeC such
that M � N . By definition, s ∈ h(t). By induction on the structure of s:

– s = as1 . . . sk where a ∈ dom(Σ) and k = dom(Σ): we have that t = at1 . . . tk
and ∀i.si ∈ h(ti). Consider any M ′ = (si, qi) for some i ∈ [1..k] and M →γ

M ′. By the algorithm construction, there exists some node N ′ = (ti, qi) such
that N →α N

′, and lγ(M,M ′) = lα(N,N ′)) = (a, i).



If N ′ is not merged with any existing node, then it follows immediately that
si ∈ h(ti). Otherwise, if N →α N ′′ and N ′′ = (ti, qi) is merged with the
existing node N ′ = (t′, qi), then by Lemma 4, h(ti) ⊆ h(t′) and then we still
have si ∈ h(t′).
If N ′ ∈ GNodeC , then M ′ � N ′. Otherwise, ti is variable-headed, and by
Lemma 5, there exists some N ′′ = (t′, qi) ∈ GNodeC such that N ′ →∗τ N ′′
and si ∈ h(t′), and then M ′ � N ′′. Besides, lα(N,N ′) = lα(N,N ′′).

– s = Fs1 . . . sk where F ∈ dom(N ): we have that t = Ft1 . . . tk and ∀i.si ∈
h(ti). Let Fx1 . . . xk → u ∈ R. By the algorithm construction, M →γ M

′

where M ′ = (s′, q) and s′ = [s1/x1, . . . , sk/xk]u, and N →α N ′ where
N ′ = (t′, q) and t′ = [x`11 /x1, . . . , x

`k
k /xk]u, and lγ(M,M ′) = lα(N,N ′) = F .

IfN ′ is not merged with any existing node, then h(x
`j
j ) ⊇ h(tj) since ρ(x

`j
j ) =

tj for each j, by Definition 7. Then s′ ∈ h(t′). Otherwise, if it is the case that
N →α N

′′ and N ′′ = (t′′, q) is merged with N ′ = (t′, q), then by Lemma 4,
h(t′′) ⊆ h(t′) and we still have s′ ∈ h(t′′) ⊆ h(t′).
If N ′ ∈ GNodeC , then M ′ � N ′. Otherwise, N ′ is variable-headed, and by
Lemma 5, there exists some N ′′ = (t′′, q) ∈ GNodeC such that N ′ →∗τ N ′′
and si ∈ h(t′′), and then M ′ � N ′′. Besides, lα(N,N ′) = lα(N,N ′′).

So in either case, for any M ′ and for any a, such that M
a−→γ M

′, then there
exists N ′ such that N =⇒C N ′, M ′ � N ′, and lα(N,N ′) = lγ(M,M ′). �

D Proof of Theorem 4

We show the new procedure MC∼(G,A) is relatively complete, i.e., MC∼(G,A)
terminates and verifies that the grammar is safe, if there exists a safety invariant
I for G with respect to A. Let B∗ be a term automaton that accepts such a safety
invariant I.

For the original automata-based abstraction refinement procedure, relative
completeness is achieved by (gradually increasing k) cloning for k copies the
states and transitions of the initial tree automaton B0, denoted by Bk0 , from
which a refined automaton B ⊆ Bk0 is extracted. It is ensured that each refinement
iteration takes a different B so that the all those counterexamples occurred in
the previous iterations will no longer occur in the following iterations. Since
the choice of B is finitely many for each k, we will finally find a B∗ such that
L(B∗) = I, by gradually increasing k until k = |B∗|.

The new procedure consists in abstraction refinement of the term automaton
B and (non-recursive) rejection types, as a refinement of an equivalence relation
∼=∼B ∩ ∼Γ . According to [15, 3], given a type environment Γ of rejection
types, one can construct a finite (alternating) tree automaton BΓ that accepts
{t | Γ `A t : q0} (recall that q0 is the initial state of A). Therefore, for the new
procedure combining the type-based abstraction refinement, the refinement of
∼ can be seen as performed on the product automaton B of B0 and BΓ . For the
same reason above, we will finally find a refined automaton B∗ accepting I.


