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Abstract—Knowledge graph embedding has become a promis-
ing method for knowledge graph completion. In this work,
we propose Hybrid-TE, a hybrid translation-based temporal
knowledge graph embedding, which combines two translation
models TransD and HyTE for modeling both temporal and multi-
relational facts. Benefiting from two underlying models, Hybrid-
TE first builds entity and relation embeddings in separate vector
space for modelling multi-relational facts, and then explicitly
learns time information by translational embedding on time-
specific hyperplanes. We observe that a simple combination of
two models does not lead to a satisfactory predictive precision.
We therefore propose to project a triplet to all time-specific
hyperplanes on which it is temporally valid. Besides, we also
explore extra negative relation samplings that differ from positive
samplings in relations. We conduct extensive experiments with
real datasets on link prediction, relation prediction and temporal
scope prediction. Experiments show significant improvements
over previous time-insensitive or time-aware models.

Index Terms—knowledge graph embedding, translation model,
temporal knowledge graph, knowledge graph completion

I. INTRODUCTION

Knowledge graphs (KGs) such as WordNet ,Freebase and
YAGO play an important role in many AI related applications
like question answering, information retrieval and recom-
mender systems. A knowledge graph is a directed graph that
encodes real-world entities with different types and attributes
as nodes and different types of relations on entities as edges.
relational fact in KG is usually represented as a triplet (h, r, t),
where h and t denote the head and tail entity, respectively, and
r models the relationship between entities. Although a typical
KG from the real-world contains millions of relational facts,
they often suffer from imcompleteness [1]. KG completion
aims to predict the most probable missing entities and rela-
tions. Since real-world KGs are huge and heterogeneous with
containing multi-relational facts, tranditional methods based
on symbolic and logical approach are neither scalable nor
suitable for KG completion.

Recently, KG embedding becomes a promising method for
link prediction. It attempts to learn low-dimensional embed-
dings in continuous vector space for each entity and relation in
KGs, and uses a scoring function defined over the embeddings
of entities and relations to measure the plausibility of a triplet.
Among the representation learning methods, translation-based
embedding gives a good tradeoff between model complexity
and the state-of-the-art predictive accuracy. Originated from

transE [2], translation-based methods model relations in KGs
as translation operations on the embeddings of head and
tail entities. These methods embed entities and relations into
a vector space denoted by bold letters. It is expected that
h+r ≈ t holds in the embedding space when (h, r, t) is a valid
triplet. TransE is suitable for modeling 1-to-1 relations, but has
some flaws when dealing with reflexive, 1-to-N, N-to-1 and
N-to-N relations. To fill the gap, a few more translation-based
models, including TransH, TransR/CTransR, TransD, and et
al., are proposed to further improve transE for effectively
modeling various types of multi-relational KGs [3]–[5].

Most existing KG embedding methods have focused on
static graphs. The relational facts in static KGs are supposed
to be universally true. In fact, there are lots of temporal
relational facts in KGs, e.g., (Einstein, diedIn, Princeton)
happened in 1955, and (Obama, presidentOf, USA) was
true only between 2008 and 2017. Time-aware KG embedding
is relatively less studied and not well-understood. Among
the learning representation methods of temporal KGs, HyTE
and RE-NET are the state-of-the-art TKG embedding methods.
HyTE is translation-based and models each timestamp as
a hyperplane with translation operations on it. It explicitly
learns time effects in the embedding representation of entities
and relations. HyTE only handles N-to-1, 1-to-N, N-to-N
type of relations casued by time. That is, it assumed that
most relations are 1-to-1 at a specific time instance. We note
that various types of multi-relational facts would still remain
after projecting to time-specific hyperplanes. RE-NET is a
novel recurrent event network based architecture that models
temporal relations as events over time. It uses RNN as an event
encoder to model temporal and multi-relational interactons
between entities, and uses so-called neighborhood aggregators
to model concurrent interactions within the same timestamp.

This work mainly focuses on translation-based KG embed-
ding that can effectively model temporal and multi-relational
KGs. We limit our focus to model temporal relational data that
are valid within a time span. That is, a temporal relation is
represented in the format of (h, r, t, [τs, τe]), where τs denotes
the starting time and τe denotes the ending time, respectively.
The heterogeneous time expressions can be represented in this
way. For instance, [τ, τ ] can denote a specific time instance τ
and [τ,∞] can denote a time span starting since τ . Inspired by
previous work, we propose a hybrid translation-based method



that combines transD and HyTE. Hybrid-TE builds entity
and relation embeddings in separate vector spaces follow-
ing TransD, considering relations and entities usually have
different semantic meanings. Then it models each sampled
timestamp as a hyperplane and projects entities and relation
to the hyperplane with translation operations over it.

We observed that a simple combination of the two models
does not give us a satisfactory predictive performance. We
therefore propose to sample and model all starting time
involved in temporal triplets as hyperplanes and projects
a triplet to all time-specific hyperplanes over which it is
temporally valid. That is, given a hyperplane corresponds
to the time stamp τh, (h, r, t, [τs, τe]) will be projected to
this hyperplane if τh ∈ [τs, τe]. Previous works like HyTE
only project (h, r, t, [τs, τe]) to the hyperplane corresponding
to τs. This simple trick turns out to be very important and
significantly improves the predictive performance. Besides,
since the learning target of translation models is to minimize
the margin-based ranking loss defined over the golden and
negtive triplet samplings in KGs, we explore the extra set of
negative relation sampling that replaces randomly the relation
in golden triplets with other different relations. It turns out to
be very useful for an accurate relation prediction.

We conduct extensive experiments on benchmark datasets
including YAGO and Wikidata, with performing the tasks of
link prediction and temporal scope prediction. Experiments
show significant improvements over previous time-insensitive
or time-aware translation models. We also compare with RE-
NET, the state-of-the-art neural network based embedding
method for modeling temporal and multi-relational knolwlege
graphs. Experiments show the obvious effectiveness of our
method for temporal link prediction.

II. RELATED WORK

We refer to [6] for a detailed survey of the recent KG
embedding methods and limit our focus here to related work
on time-aware KG embedding methods that are less explored.

There are some notable works on compositional repre-
sentation learning for KGs. RESCAL is a bilinear model
that uses a tensor factorization method for link prediction.
Later a holograhpic embeddings HoLE was proposed to learn
compositional vectore space models for KGs. HoLE improves
the scalability of RESCAL by using correlation as the com-
positional operators.

There are some recent work on combining temporal in-
formation in the translational embedding space. Jiang et al.
proposed a time-aware embedding method for translation mod-
els. They explored the happening time of relational facts and
incorporate the temporal order information of time-sensitive
relations in translation models [7], [8]. Trivedi et al. presented
Know-Evolve that models the non-linearly evolution of facts
as a multivariate point process, for reasoning over dynamic
KGs [9]. Leblay and Chekol presented a method for TKG
representation learning by using side information with refined
scoring functions [10]. As aforementioned, a translation model
called HyTE was proposed for TKG completion [11]. We note

that many relational facts are beyond 1-to-1 after projecting
to time-specific hyperplanes, which also directly motivates
this work to model both temporally evolving dynamics and
diversity of multi-relational data.

There are recent work on learning embedding representa-
tions of TKGs based on neural networks. Garcı́a-Durán et al.
utilized recurrent neural network (RNN) to learn embedding
representations and conduct completion tasks of TKGs [12].
Their approach can be combined with exisiting embedding
models and they showed that their models TA-TRANSE and
TA-DISTMULT are robust and effective to tackle with sparse
and heterogeneous temporal expressions. Recently, Jin et al.
proposed RE-NET (Recurrent Event Network) for modeling
temporal and multi-relational TKGs [13]. They explored a
recurrent event encoder to capture interactions between en-
titities and relations, and used neighborhood aggregators to
sumarze concurrent, multi-hop entity interactions within each
timestamp. They showed the effectiveness of their model
RE-NET by comparison with state-of-the-arts baselines for
temporal link prediction including HoLE, TA-TRANSE, TA-
DISTMULT and HyTE.

III. OUR METHOD

In this section, we present our translation-based embedding
method Hybrid-TE, which combines transD and HyTE for
modeling both temporal and multi-relational KGs.

A. Temporal Knowledge Graph

A temporal knowledge graph (TKG) K = (E ,R,D+
time) is

a knowledge graph where E is a set of entities, R is a set
of relations, and D+

time is a set of time-aware triplets. Each
relational fact (h, r, t) is labeled with a time span [τs, τe]
in D+

time with τs ≤ τe during which the triplet (h, r, t) is
temporally valid, where τs denotes the starting time and τe
denotes the ending time, respectively. The time-aware triplet
is jointly represented by (h, r, t, [τs, τe]). As aforementioned,
heterogeneous time expressions can be uniformly represented
in this format. We denote by D+ the set of relational facts
that ignore time information in TKGs. That is,

D+ def
= {(h, r, t) | (h, r, t, [τs, τe]) ∈ D+

time}

B. Sampling Time-Specific Hyperplanes

Hybrid-TE first samples a set T of time stamps, and when
training the translation model, it models each time stamp
as a hyperplane and projects a triplet to the corresponding
hyperplane with translation operation on it. Following HyTE,
Hybrid-TE samples the set of time stamps from the start time
of each triplet in TKGs. That is,

T def
= {τs | (h, r, t, [τs, τe]) ∈ D+

time}

Different from HyTE, given a timestamp τ ∈ T and a triplet
(h, r, t, [τs, τe]), Hybrid-TE will project the triplet to all time-
specific hyperplanes associated with τ if τ ∈ [τs, τe] holds. In
contrast, HyTE only projects a triplet (h, r, t, [τs, τe]) to the
hyperplane associated with τs in their experiments. The simple



Fig. 1. Simple Illustration of Hybrid-TE

trick we troduced here turns out to be very useful for the
predictive prediction for TKGs containing temporal relational
facts valid within a time span. We denote by D+

τ the set of
golden triplets that are valid at the time stamp τ given as
follows, and by D−x,τ the set of negative triplets with respect
to some golden triplet x in D+

τ .

D+
τ
def
= {(h, r, t, τ) | ∃(h, r, t, [τs, τe]) ∈ D+

time : τ ∈ [τs, τe]}
Since KGs only specify golden triplets without negative

triplets, one has to choose a proper sampling method for taking
the set of negative triplets. We give our sampling methods for
D−x,τ in the next subsection.

C. Sampling Negative Triplets
Following tranditional translation models and HyTE, we

also explore two general kinds of methods for sampling
negative triplets. One is time-agnostic negative sampling by
taking all negative triplets that do not appear in D+, given as
follows, for any triplet x : (h, r, t),

D−x,τ
def
=
{
(h′, r, t, τ) | h′ ∈ E , (h′, r, t) /∈ D+

}
∪
{
(h, r, t′, τ) | t′ ∈ E , (h′, r, t) /∈ D+

}
∪ {(h, r′, t, τ) | r′ ∈ R, (h, r′, t) /∈ D+} (1)

Another is time-dependent negative sampling by taking all
negative samples that appear in D+ but not appear in D+

τ ,
given as follows, for any triplet x : (h, r, t),

D−x,τ
def
= {(h′, r, t, τ)|h′ ∈ E ,

(h′, r, t) ∈ D+, (h′, r, t, τ) /∈ D+
τ }

∪ {(h, r, t′, τ)|t′ ∈ E ,
(h, r, t′) ∈ D+, (h, r, t′, τ) /∈ D+

τ }
∪ {(h, r′, t, τ) | r′ ∈ R,

(h, r′, t) ∈ D+, (h, r′, t, τ) /∈ D+
τ } (2)

In the above definitions, the difference with previous ap-
proaches is that we further introduce a new set of negative
triplets by replacing the relation in the golden triples randomly
with other different ones. This simple trick turns out to be very
useful for predictive precision on relation prediction.

D. Hybrid-TE

We propose a translation model Hybrid-TE that combines
TransD and HyTE. Following TransD, each entity and relation
is represented by two vectors. Given a triplet (h, r, t), the two
vectors used are h,hp, t, tp ∈ Rn and r, rp ∈ Rm, where
the subscript p denotes the projection vectors. For each triplet
(h, r, t), two mapping matrices Mrh,Mrt ∈ Rm×n are used
to project entities from entity space to relation space:

Mrh = rph
>
p + Im×n

Mrt = rpt
>
p + Im×n

Let h⊥ = Mrhh and t⊥ = Mrtt. Then following HyTE,
we define for each sampled timestamp τ ∈ T ,

hτ = h⊥ −
(
w>τ h⊥

)
wτ

tτ = t⊥ −
(
w>τ t⊥

)
wτ

rτ = r−
(
w>τ r

)
wτ

which further projects a triplet to a time-specific hyperplane
wτ in the embedded relation space. We use the following
scoring function:

fτ (h, r, t) = ‖hτ + rτ − tτ‖l1/l2
The training Objective is given as follows:

L =
∑
τ∈T

∑
(x,τ)∈D+

τ

∑
(y,τ)∈D−

x,τ

max (0, fτ (x)− fτ (y) + γ)

where γ is the margin separating golden triplets and negative
triplets. Here the target is to minimize the margin-based
ranking loss L following conventions in translation-based
methods, subject to the following constraints: ‖wτ‖2 = 1 for
each sampled timestamp τ ∈ T , ‖h⊥‖2 ≤ 1, ‖t⊥‖2 ≤ 1,
‖h‖2 ≤ 1, ‖t‖2 ≤ 1 and ‖r‖2 ≤ 1 for each embedded entity
and relation.

IV. EXPERIMENTS AND ANALYSIS

A. Datasets

For KGs such as Wikidata [14] and YAGO [15], triplets are
annotated with temporal meta-facts like (#factID, occurSince,
τs) and (#factID, occurUntil, τe), where τs and τe denotes



the starting and ending time of some fact, respectively. There
also exit event-based TKGs such as Itegrated Crisis Early
Warning System (ICEWS18) [16] and Global Database of
Events, Language, and Tone (GDELT) [17].

TABLE I
DETAILS OF THE TWO DATASETS USED.

Datasets Entity Relation Train/Valid/Test
Wikidata12K 12,554 24 32.5k/4k/4k
YAGO11K 10,623 10 16.4k/2k/2k

In this work, we are concerned with temporal relational
facts uniformly labeled with time intervals. We use the same
preprocessed dataset setup of Wikidata and YAGO proposed
by Dasgupta et al. for evaluating HyTE on TKG embedding
and completion [11]. The two datasets have been preprocessed
to handle the issue of sparsity by recursively removing edges
containing entity that only occurs once in the graph. Besides,
top 10 most frequent temporally rich relations are extracted
from the graph, and a subgraph is distilled such that each
triplet in it is labeled with a time interval like during which
the fact is temporally valid. The statistics of the two datasets
is given in Table I. The dataset YAGO11k contains 20.4k
triplets, 10,623 entities, and 10 kinds of relations. The dataset
Wikidata12k contains 40.5k triplets, 12,554 entities, and 24
kinds of relations. The last column in Table I shows how each
dataset is splitted as the training, validating, and testing sets.

B. Link Prediction

The task aims to predict the most probable missing head
or tail entity in a test triplet [2], taking into account the
time effects. For this task, we use time-agnostic sampling of
negative triplets. The given golden triplet (h, r, t) is corrupted
by randomly replacing h and t with a different entity such that
the resulting corrupted triplet does not reside in the graph.

Evaluation protocol. We follow evaluation metrics pro-
posed in [2]. We first compute scores of those corrupted
triplets, and then rank them in an increasing order of their
scores, and find the rank of the golden triplet in the order.
The task is to calculate the mean rank (MR) over all the test
golden triplets. We report results on two metrics including
MR and the proportion of correct entities ranked in top 10
(Hits@10) in Table II, for comparing with translation based
models. In Table IV, we report results compared with RE-
NET. Following [18], we measure the performance with mean
reciprocal rank (MRR) of all test queries and the proportion
of correct entities ranked in top 1, 3 and 10 (Hits@1, Hits@3,
Hits@10), respectively.

C. Relation Prediction

In this task, our purpose is to predict the relationship r
between the head and tail entity, for a given golden triplet
(h, ?, t). Similar to link prediction, we replace the relation r
in the golden triplet (h, r, t) randomly with different relations
such that the resulting corrupted triplets do not belong to the
knowledge base.

Evaluation protocol. Similar to link prediction, we report
the metrics MR/MRR and the portion of correct entities ranked
in top 1, 3, or 10 (Hits@1, Hits@3, Hits@10) to evaluate
our results. Since the type of relations invovled in YAGO11k
and Wikidata12k is few, we use the evaluation metric Hits@1
for comparison on head prediction in Table III. Following
the conventions in [2], relation prediction is not included in
computing MRR in Table IV when comparing with RE-NET.

D. Temporal Scope Prediction

For TKGs, it is not easy to ensure all of triplets are
annotated with temporal meta-facts. It is an important problem
to predict time annotations for those time-unknown triplets.
The task here is to predict the possible time instance or time
interval for the test golden triplet (h, r, t, ?). The training phase
is similar to that of link and relation prediction except that
time-dependent negative sampling is used. Following HyTE,
we only handle time granularity of years for the temporal
scope prediction task.

Evaluation protocol. We use the similar evaluation metric
proposed by HyTE for temporal scope prediction. We project
the test golden triplet (h, r, t, [τs, τe]) to all sampled time-
specific hyperplanes in the training phase and then compute
scores of the triplet on each hyperplane. Recall that we project
a triplet to all time-specific hyperplanes on which the triplet
is temporally valid during the training phase. We then rank
them in an increasing order of their scores, take all ranks
on those hyperplanes whose timestamps are within the given
time interval [τs, τe], and compute the mean rank of them.
In contrast, HyTE only considers the lowest rank on the
hyperplanes with their timestamps within the given interval.

E. Results and Analysis

Model parameters. For all the experiments, we take the
embedding dimension size from {128, 256}, the value of
margin γ among {1, 3, 5, 10}, and the learning rate of SGD
in the range of {0.001, 0.0005, 0.0001}. We choose the batch
size for each dataset as 20k. The best experimental results are
obtained by using the following parameters: the embedding
dimension d = 128, the margin γ = 10, and the learning rate
is 0.0001. Here, we use the l1 norm in the scoring function.

We compared our method on predictive accuracy with
translation-based models in Table II, III and V, and the neural
network based model RE-NET in Table IV, respectively. We
experiment with the following evaluation settings:
• basic model: our model that combines TransD and HyTE;
• negative relation sampling: sampling negative triplets by

replacing the relation in golden triplet randomly with
different relations;

• multi-hyperplane projection: project each triplet to all
time-specific hyperplanes on which it is temporally valid.

Link and relation prediction. Table II and III show the
prediction accuracy of Hybrid-TE over other time-insensitive
and time-aware translation models. Our model outperforms the
state-of-the-art time-aware translation model HyTE on both
link and relation prediction, and also performs much better



TABLE II
MEAN RANK (LOWER THE BETTER) AND HITS@10 (HIGHER THE BETTER) FOR DIFFERENT METHODS ON LINK PREDICTION. THE BEST RESULTS ARE IN

BOLD. OUR PROPOSED METHOD HYBRID-TE OUTPERFORMS OTHER BASELINES AND METHODS.

Dataset YAGO11k Wikidata12k

Metric MeanRank Hits@10(%) Mean Rank Hits@10(%)
tail head tail head tail head tail head

TransD [5] 138 1208 35.4 13.2 346 562 25.7 14.1
TransH [3] 354 1808 5.8 1.5 423 648 23.7 11.8
HyTE [11] 107 1069 38.4 16.0 179 237 41.6 25.0

Hybrid-TE (basic model) 237 1267 28.5 13.2 404 641 20.2 10.2
Hybrid-TE (basic model with negative relation sampling) 181 1204 33.5 16.7 290 406 42.1 24.3

Hybrid-TE (basic model with multi-hyperplane projection) 116 193 53.4 43.3 202 306 57.1 49.7
Hybrid-TE 92 184 59.8 47.4 89 131 69.2 57.4

TABLE III
MEAN RANK (LOWER THE BETTER) AND HITS@1 (HIGHER THE BETTER) FOR DIFFERENT METHODS ON RELATION PREDICTION. THE BEST RESULTS

ARE IN BOLD. OUR PROPOSED METHOD HYBRID-TE OUTPERFORMS OTHER BASELINES AND METHODS.

Dataset YAGO11k Wikidata12k
Metric Mean Rank Hits@1(%) Mean Rank Hits@1(%)

TransD [5] 1.19 86.2 1.29 88.2
TransH [3] 1.53 76.1 1.4 88.1
HyTE [11] 1.23 81.2 1.13 92.6

Hybrid-TE (basic model) 1.24 85.3 1.31 89.3
Hybrid-TE (basic model with negative relation sampling) 1.14 89.7 1.08 94.1

Hybrid-TE (basic model with multi-hyperplane projection) 1.19 85.2 1.24 93.1
Hybrid-TE 1.13 90.7 1.07 95.9

TABLE IV
MEAN RECIPROCAL RANK (HIGHER THE BETTER) AND HITS (HIGHER THE BETTER) FOR DIFFERENT METHODS FOR LINK PREDICTION. THE BEST

RESULTS ARE IN BOLD. OUR PROPOSED METHOD HYBRID-TE OUTPERFORMS OTHER BASELINES.

Dataset YAGO11k Wikidata12k
Metric MRR Hits@1(%) Hits@3(%) Hits@10(%) MRR Hits@1(%) Hits@3(%) Hits@10(%)

RE-NET 10.44 5.90 10.98 18.66 36.40 30.31 37.92 47.98
Hybrid-TE 39.21 41.72 46.07 52.49 54.54 53.57 56.76 63.12

TABLE V
MEAN RANK (LOWER THE BETTER) FOR DIFFERENT METHODS FOR

TEMPORAL SCOPE PREDICTION. THE BEST RESULTS ARE IN BOLD. OUR
PROPOSED METHOD HYBRID-TE OUTPERFORMS HYTE.

Methods YAGO11k Wikidata12k
HyTE 9.88 17.6

Hybrid-TE (basic model) 12.5 21.4
Hybrid-TE 5.7 6.5

for head and relation prediction on both datasets than HyTE.
From the results of experimenting with different evaluation
settings, we found that, a simple combination of TransD and
HyTE is far from satisfactory on predictive accuracy to handle
both temporal and various multi-relational data. In fact, results
said that it is often even worse than TransD or HyTE alone
by a simple combination of two models.

By experimenting basic model with negative relation sam-
pling, the accuracy of link prediction is slightly improved yet
is still sometime worse than other baselines; the accuracy of
relation prediction is much improved and becomes better than
HyTE. By experimenting basic model with multi-hyperplane
projection, the accuracy of link prediction is significantly
improved though the accuracy of relation prediction is slightly
improved. As shown in the last low of these two tables,
experiments on basic models with applying all the above tricks

give us the best results.
The results compared with RE-NET is reported in Table

IV. Here we compared the accuracy of two models on link
prediction using MRR and top hits of correct entities. Since
we are concerned with temporal datasets annotated with time
intervals, we experimented RE-NET with our two datasets.
Results showed a much better predictive accuracy of Hybrid-
TE against RE-NET on temporal link prediction.

Temporal scope predication. Table V reported the perfor-
mance comparison on temporal scope prediction with HyTE.
We observed that experiments with only basic model would
not give us a better predictive accuracy on this task. By
applying basic model with various aforementioned tricks, we
obtain a much better accuracy than HyTE.

Example. We give some examples in Table VI to illustrate
when our model is more precise than HyTE on link prediction.
We show that Hybrid-TE can better handle 1-to-N and N-to-1
muti-relational data than HyTE.

V. CONCLUSION AND FUTURE WORK

In this work, we present Hybrid-TE, a translation-based
method for modeling both temporal and multi-relational KGs,
which combines two translation models transD and HyTE.
To boost predictive accuracy, we further propose to project
each triplet to all time-specific hyperplanes on which it is



TABLE VI
EXAMPLES OF 1-TO-N AND N-TO-1 TYPE OF RELATIONS REMAINING AFTER PROJECTING TO TIME-SPECIFIC HYPERPLANES. EACH TIME STAMP

ATTACHED TO A TRIPLET WOULD INDICATE A DIFFERENT MISSING HEAD OR TAIL OF IT.

Types of Relation Testing Triplets Time Stamps

1-N John McCarthy (computer scientist), hasWonPrize, ? [1971,2017], [1990,2017]
Igor Angulo, playsFor, ? [2003,2017], [2010,2011], [2003,2017]

N-1 ?, wasBornIn, Stockholm [1940,1940], [1935,1935], [1960,1960]
?, isAffiliatedTo, Independent politician [2000-2002], [2009-2017], [1991-1995]

TABLE VII
QUALITATIVE RESULTS ON LINK PREDICTION FOR EXAMPLES IN TABLE VI. THE CANDIDATE MISSING ENTITIES ARE SORTED IN A DESCENDING ORDER

OF THEIR SCORES. CORRECT ONE IS IN BOLD.

HyTE Hybrid-TE
Kyoto Prize, Turing Award Turing Award, Kyoto Prize

IJCAI Award for Research, National Medal of Science National Medal of Science, IJCAI Award for Research
Athletic Bilbao, Spain national 20 football team Spain national 20 football team, Athletic Bilbao

Apollon Smyrni F.C., CD Numancia CD Numancia, Apollon Smyrni F.C.
Gimnàstic Tarragona, Spain national 19 football team Spain national 19 football team, Gimnàstic Tarragona

John W. Brunius, Princess Elisabeth Princess Elisabeth, John W. Brunius
Barbro Oborg, Bibi Andersson Bibi Andersson, Barbro Oborg

Per Teodor Cleve, Anders Ekborg Anders Ekborg, Per Teodor Cleve
Carole Keeton Strayhorn, Virgil Goode Virgil Goode, Carole Keeton Strayhorn

Carole Keeton Strayhorn, Oscar Goodman Oscar Goodman, Carole Keeton Strayhorn
Aleksandar Tomov (politician), Sergey Shoygu Sergey Shoygu, Aleksandar Tomov (politician)

temporally valid with negative relation samplings. We show
through extensive experiments that Hybrid-TE outperforms the
state-of-the-art relational embedding models.
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