
A Sliding-Window Algorithm for On-The-Fly

Interprocedural Program Analysis

Xin Li(�)1 and Mizuhito Ogawa2

1 East China Normal University, Shanghai, China
xinli@sei.ecnu.edu.cn

2 Japan Advanced Institute of Science and Technology, Nomi, Japan
mizuhito@jaist.ac.jp

Abstract. Program analysis plays an important role in finding soft-
ware flaws. Due to dynamic language features like late binding, there
are many program analysis problems for which one could not assume a
prior program control flow, e.g., Java points-to analysis, the disassembly
of binary codes with indirect jumps, etc. In this work, we give a general
formalization of such kind of on-the-fly interprocedural program analysis
problems, and present a sliding-window algorithm for it in the framework
of weighted pushdown systems. Our sliding window algorithm only con-
sists of a series of local static analyses conducted on an arbitrary number
of program methods, which does not sacrifice the precision of the whole
program analysis at the manageable cost of caching intermediate anal-
ysis results during each iteration. We have implemented and evaluated
the sliding-window algorithm by instantiating the framework with Java
points-to analysis as an application. Our empirical study showed that
the analysis based on the sliding-window algorithm always outperforms
the whole program analysis on runtime efficiency and scalability.

1 Introduction

Program analysis plays an important role in finding software flaws. An inter-
procedural (or context-sensitive) program analysis distinguishes and produces
analysis results for different calling contexts, whereas an intraporcedural (or
context-insensitive) program analysis would confuse them and incur a loss of
analysis precision. Precise interprocedural program analyses are crucial to the
successful verification of software from the real-world. Due to dynamic language
features like late binding, there are many program analysis problems for which
one could not assume a prior program control flow, e.g., Java points-to analysis,
the disassembly of binary codes with indirect jumps, etc. These analyses are
known to be mutually dependent on call graph construction and the underlying
system is generated on-the-fly as the analysis proceeds. It is challenging to design
precise interprocedural program analyses involving heaps and dynamic language
features while being scalable to large-scale software.

In this work, motivated by Java points-to analysis, we are concerned with
designing practically more efficient algorithms for solving such kind of on-the-
fly interprocedural program analysis (OTFIPA) problems. To this end, we first



give a general formalization of the analysis problem, by mildly extending the
classic analysis problem for computing the meet-over-all-valid-path values, and
then present a sliding-window algorithm for it that analyzes the program in
pieces in isolation. Our approach adapts the powerful framework of weighted
pushdown systems (WPDSs) [9], which is known as a generalized framework
for interprocedural program analysis (or context-sensitive program analysis) in
which method calls and returns are correctly matched with one another. Push-
down systems (PDSs) are natural formalism for modelling the interprocedural
control flow of imperative programs, and WPDSs extend PDSs by associating
each transition with a weight that is often encoded from a program transformer
in classic dataflow analyses. Efficient algorithms have been developed for push-
down model checking by automata-theoretic approach [5], and they are carried
over to WPDSs.

The major difficulties of designing an efficient algorithm for OTFIPA are
that, the dependency among program parts can be cyclic, and the underlying
system for analysis is enlarged on-the-fly by frequently posing dataflow queries
on relevant program points. Classic solutions to tackling the first issue include, ei-
ther building a dependency graph of program parts before the analysis, and ana-
lyzing program parts in their topological order after collapsing loops, or breaking
such cyclic dependency by providing each program part with summary informa-
tion of external program parts which it depends upon. The later solution results
in modular analysis techniques which is desirable to scalable program analyses.
However, it is a long-standing challenge to generate a precise procedure sum-
mary for non-trivial dataflow analysis problems. In particular, for the kind of
on-the-fly program analysis problems, e.g., higher-order functions in functional
programs, dynamic dispatch in Java, it is difficult to adapt classic methods for
modular analysis to such occasions, as pointed out in Section 8.5 of [4].

Instead of challenging a modular analysis or collapsing loops with sacrific-
ing the precision, we take a mild approach to improving the runtime efficiency
for solving the OTFIPA problem without compromising the analysis precision.
Our key idea is to generate, cache and reuse two types of intermediate anal-
ysis results that implicitly carry procedure summaries when invoking WPDS
model checking as the underlying analysis engine. One is for resolving the inter-
dependency among methods, and the other is for locally computing the whole-
program analysis results without revisiting the whole program, to answer the
on-the-fly dataflow queries that can be overwhelming. Notably, our algorithm
is conducted in a sliding-window fashion: the analysis slides over the discovered
program coverage so far, and iteratively analyzes a sized subset of methods until
the accumulated analysis results from a series of local analyses stablize.

In summary, this paper makes the following contributions:

– We give a general formalization for the kind of OTFIPA problems that are
mutually dependent of discovering the program coverage (Section 3.1). Such
a formal clarification provides us with a basis and framework for reason-
ing about the correctness of our sliding-window algorithm for tackling the
problem. We also show with an example of copy constant propagation that
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dataflow analyses with simple conditionals can be instantiated as an instance
of the problem (Section 3.2).

– We present a sliding-window algorithm for the OTFIPA problem, by adapt-
ing the inner algorithmic structures of WPDS model checking based on the
P-automata techniques (Section 4). Our analysis allows to analyze the pro-
gram in pieces of an arbitrary size with preserving the precision of the whole-
program analysis by caching the minimum intermediate analysis results dur-
ing the analysis.

– We demonstrate experimentally the effectiveness of our approach with in-
stantiating Java points-to analysis in the algorithmic framework (Section 5).
Our preliminary empirical study shows that, the sliding-window algorithm
brought a 2X speedup over the whole-program analysis for most benchmarks
and successfully verify two benchmarks that exceed the time budget when
running the whole-program analysis.

Last but not least, we also formally prove the correctness of our approach, for
which an interested reader may wish to consult an extended version of the paper.

Related Work This work is motivated by Japot [7] that is a context-sensitive
points-to analyzer for Java designed in the framework of WPDSs. There has been
a host of work on points-to analysis. To our knowledge, almost other existing
practical points-to analyzer took a cloning-based approach (that resembles inline
expansion) to achieving context-sensitivity, which has an inherit limit on ana-
lyzing recursive procedural calls. We are concerned with scalable stacking-based
points-to analysis algorithms for Java that precisely handles recursive procedure
calls by WPDSs. In [7], the authors attempted to carefully interleave the whole
program analysis with local ones on small parts of the program in a restricted
manner. They used the model checker as a black box, and did not resolve the
interdependency among program parts. The whole program analysis is compul-
sory for ensuring soundness as the final step of the analysis. By adapting the
inner algorithmic structures of WPDSs, this work upgrades Japot to a more
efficient analyzer which only consists of local static analyses yet preserves the
original precision of a whole program analysis.

It is desirable to design a modular analysis by generating procedure sum-
maries for each method and analyzing the program in pieces with instantiating
the procedure summaries of callee methods. Many techniques were proposed to
achieve a certain degree of modularity. However, it remains a challenge to design
a precise modular analysis for context-sensitive heap analysis like Java points-to
analysis [13]. Our approach is not modular analysis strictly speaking, because
we never generate procedure summaries and the program parts are analyzed it-
eratively. Yet, the intermediate results that we generate, cache, and reuse in the
analysis carry some information that are related to procedure summaries.

Our work can be turned as incremental analyses, since we cache in the anal-
ysis necessary information for conducting a local analysis on any part of the pro-
gram. To our knowledge, [3] is the first work on incremental algorithms for safety
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analysis of recursive state machines. Lal and Reps presented in [6] a new reacha-
bility algorithm of WPDS, and discussed how to derive an incremental algorithm
from their new setting. The authors also proposed a technique to improve the
running time for (weighted) pushdown model checking. Their technique could
be plugged in our tool as a more efficient engine for weighted pushdown systems.

2 Preliminaries

2.1 Weighted Pushdown Model Checking

Definition 1. A pushdown system (PDS) P is (P, Γ,∆), where P is a finite
set of control locations, Γ is a fini,te stack alphabet, and ∆ ⊆ P × Γ × P × Γ ∗

is a finite set of transition rules. A transition rule (p, γ, q, ω) ∈ ∆ is written as
〈p, γ〉 →֒ 〈q, ω〉. A configuration of P is a pair 〈p, ω〉 where p ∈ P and ω ∈ Γ ∗.
A set of configurations C is regular if {ω | 〈p, ω〉 ∈ C} is regular. A transition
relation ⇒ is defined on configurations of P, such that 〈p, γω′〉 ⇒ 〈q, ωω′〉 for
any ω′ ∈ Γ ∗ if 〈p, γ〉 →֒ 〈q, ω〉. Given a set C of configurations, we define
pre∗(C) = {c′ | ∃c ∈ C : c′ ⇒∗ c} and post∗(C) = {c′ | ∃c ∈ C : c ⇒∗ c′} which
are the sets of pre-images and post-images of C, respectively.

A pushdown system is a pushdown automaton without the input alphabet.
It is known that any pushdown system can be simulated by a pushdown system
for which |ω| ≤ 2 for each transition rule 〈p, γ〉 →֒ 〈q, ω〉 [11]. In the paper, we
assume such a normalized form of pushdown systems.

Definition 2. A bounded idempotent semiring S is (D,⊕, ⊗, 0̄ , 1̄), where
0̄, 1̄ ∈ D, and

1. (D,⊕) is a commutative monoid with 0̄ as its unit element, and ⊕ is idem-
potent, i.e., a⊕ a = a for all a ∈ D;

2. (D,⊗) is a monoid with 1̄ as the unit element;
3. ⊗ distributes over ⊕, i.e., for all a, b, c ∈ D, we have

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (b⊕ c)⊗ a = (b ⊗ a)⊕ (c⊗ a) ;
4. for all a ∈ D, a⊗ 0̄ = 0̄⊗ a = 0̄;
5. A partial ordering ⊑ is defined on D such that a ⊑ b iff a ⊕ b = a for all

a, b ∈ D, and there are no infinite descending chains in D.

It is not hard to see that 0̄ is the greatest element in D.

Definition 3. A weighted pushdown system (WPDS) W is a triplet (P ,S, f),
where P = (P, Γ,∆) is a pushdown system, S = (D,⊕,⊗, 0̄, 1̄) is a bounded
idempotent semiring, and f : ∆ → D is a function that assigns a weight in D to
each transition rule in ∆.

Let σ = (r0, . . . , rk) be a transition sequence where ri ∈ ∆ for each 0 ≤ i ≤ k.
A value associated with σ is defined by val(σ) = f(r0) ⊗ · · · ⊗ f(rk). Given
c, c′ ∈ Q × Γ ∗, we denote by path(c, c′) the set of transition sequences that
transform configurations from c into c′ for each.
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Definition 4. Given a WPDS W = (P ,S, f) where P = (P, Γ,∆), and regular
sets of configurations S, T ⊆ P × Γ ∗. The model checking problem for WPDS is
to compute the following value:

WPMC[W ](S, T ) =
⊕

{val(σ) | σ ∈ path(c, c′), c ∈ S, c′ ∈ T }

When applying WPDSs to program analysis, the pushdown system models
the interprocedural program control flow with matched calls and returns. The
weights in D typically encode program transformers, ⊗ models (the reverse of)
function composition, and ⊕ combines data flows at join points of the program.

2.2 Saturation-based Algorithm for WPDS Model Checking

PDSs are appealing partly due to having efficient model checking algorithms
based on the P-automata techniques. A P-automaton is a NFA (non-deterministic
finite automaton) that recognizes a regular set of pushdown configurations.

Definition 5. Given a PDS P = (P, Γ,∆). A P-automaton A = (Q,Σ,→
, P, F ) is a NFA, where Q ⊇ P is a finite set of states, Σ = Γ ∪ {ε} is a finite
alphabet, →⊆ Q×Σ×Q is a set of transitions, and P andF ⊆ Q are the sets of
initial and final states, respectively. We define →∗⊆ Q× Γ ∗ ×Q as the smallest
relation satisfying that, (i) p ǫ−→∗ p for any p ∈ Q; (ii) p

γ
−→∗ p′ if (p, γ, p′) ∈→;

(iii) p
ωγ
−→∗ p′ if p ω−→∗ p′′ and p′′

γ
−→∗ p′ for some p′′ ∈ Q. A configuration

〈p, ω〉 is accepted by A if p
ω−→∗ q for some q ∈ F . A set of configurations

C is regular if it is accepted by some P-automaton. We denote by AC the P-
automaton that accepts a regular set C of configurations, and sometime refer to
the P-automaton by the set of transitions in it.

One crucial property of pushdown systems is that, the set of pre-images
and post-images of a regular set of configurations is also regular. Given a P-
automaton AC that recognizes a regular set C of configurations. The pre-images
pre∗(C) and post-images post∗(C) can be computed by augmenting AC with
new edges and states with applying backward and forward saturation rules until
convergence, respectively. In the paper, we limit our focus to forward saturation
and illustrate in Figure 1 the saturation rules for computing post∗(C). In the
figure, solid edges and states reside in the current automaton, and dashed edges
and states are newly added by saturation rules.

Let l be a mapping from the edges in a P-automaton A to weights. The
model checking problem WPMC[W ](S, T ) in Definition 4 can be solved by first
forward saturating AS while updating l upon stablization. Initially, l(t) = 1̄ for
each transition t in AS , and l(t) = 0̄, otherwise. The rules for updating weights
with respect to the saturation rules in Figure 1 are given as follows:
(a) l(p′, ε, q) = l(p, γ, q)⊗ f(rpop) (b) l(p′, γ′, q) = l(p, γ, q)⊗ f(rnormal)
(c) l(p′, γ′, qp′,γ′) = 1̄ and l(qp′,γ′ , γ′′, q) = l(p, γ, q)⊗ f(rpush)
(d) l(p, γ, q′) = l(q, γ, q′)⊗ l(p, ε, q)

Next, for any configuration c = 〈p, γ1 . . . γn〉 in C and the saturated automa-
ton Apost∗(C), we define A(c) =

⊕

{l(qn−1, γn, qn)⊗· · ·⊗l(q1, γ2, q2)⊗l(p, γ1, q1) |
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Fig. 1. Saturation rules for computing post∗(C), where rpop is 〈p, γ〉 →֒ 〈p′, ε〉, rnormal

is 〈p, γ〉 →֒ 〈p′, γ′〉, and rpush is 〈p, γ〉 →֒ 〈p′, γ′γ′′〉. Figure 1(d) shows a contraction
rule for taking care of ε-transitions during the saturation.

qn ∈ F}, and for any set C of configurations, define A(C) =
⊕

{A(c) | c ∈ C}.
Then we have WPMC[W ](S, T ) = Apost∗(S)(T ), and the algorithm for efficiently
computing A(C) will be elaborated in Algorithm 2.

3 On-The-Fly Interprocedural Program Analysis

3.1 A Formal Description of OTFIPA

Assume abstract interpretation has been properly applied to the analysis prob-
lem if necessary. Let ((D, �D),⊓D,⊤D) be a meet semi-lattice tailored for the
analysis, where ⊓D is the binary operator for computing the greatest lower
bound, and ⊤D is the greatest element in D. Let V = {V1, . . . , Vk} be the set of
variables in the analysis. An environment E ∈ Dk of the program is a k-tuple of
values in D, and we denote by E(i) (or E(Vi)) the value for the variable Vi, and
extend ⊓D and �D to environments element-wise. The set of environments is de-
noted by Env, and the initial environment (⊤D, . . . ,⊤D) ∈ Dk is denoted by E0
which is the greatest element in Env. An environment transformer τ : Env → Env
is a map on environments that is distributive (thus monotonic) wrt ⊓D, i.e.,
τ(E1 ⊓D E2) = τ(E1) ⊓D τ(E2). The set of environment transformers is denoted
by T . Let (T , ⊓,⊤) be a meet semi-lattice where ⊓ is the greatest lower bound
operator on T defined by τ1 ⊓ τ2 = λe.(τ1(e) ⊓D τ2(e)), and ⊤ = λe. E0 is the
greatest element in T .

Program analysis often first builds an interprocedural control flow graph
(ICFG) of the program, and then solves the analysis problem as path problems
over it. Here, we explore a so-called supergraph of the program for representing an
ICFG. A supergraph is a collection of control flow graphs (CFG), where a CFG
is constructed for a method as usual, except that each method call is represented
by two nodes in the graph: a node for call site and a node for return point, and
CFGs are connected in the graph by call edges from call sites to callee’ entry
points and return edges from callees’ exits to the corresponding return points.

Let M be the set of methods in the program. A supergraph G is a triplet
(N,→G, l) where N = {n1, . . . , nm} is a set of nodes, →G⊆ N × N is a set of
edges, and l : (→G) → T is a map that associates each edge with an environment
transformer. In particular, we denote by R ⊆→G the set of call edges, called
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call relation. Given a set of methods M ⊆ M and a call relation R ⊆ R, one
can construct a supergraph, denoted by G↓M,R

.
A valid path in G is a path where call edges and return edges are well-

matched with each other, and such valid paths constitutes some context-free
language. For any node n ∈ N, the (possibly infinite) set of valid paths leading
from emain to n is denoted by VPath(emain, n). Let σ = [t0, . . . , tn] be a sequence
of edges that forms a path in G. We define τσ = l(tn) ◦ l(tn−1) ◦ · · · ◦ l(t0). Here,
◦ denotes the ordinary function composition. The meet-over-all-valid-path
(MOVP) problem for G is to compute that, for each n ∈ N,

MOVP[G](n)
def
= ⊓D{τσ(E0) | σ ∈ VPath(emain, n)}
= (⊓{τσ | σ ∈ VPath(emain, n)}) (E0) (By definition of ⊓)

That is, it computes all the valid dataflow values flowing to each node.

We denote by
−−−−−−→
MOVP[G] ∈ Envm an m-tuple of environments such that its ith

projection, denoted by
−−−−−−→
MOVP[G][i] (or

−−−−−−→
MOVP[G][ni]), is the valueMOVP[G](ni),

for each i ∈ [1..m]. Note that, since ⊓D∅ = E0, we have
−−−−−−→
MOVP[∅] = Em

0 . We

introduce a binary relation ⊑ on Envm such that
−→
E 1 ⊑

−→
E 2 iff

−→
E 1[i] �D

−→
E 2[i]

for each i ∈ [1..m]. Then [E0, . . . , E0] ∈ Envm is the greatest element.
A function φ : Envm → 2M × 2R is a contract function for G if φ is

anti-monotonic. It characterizes dynamic program features, and its semantics
is problem-specific. For instance, for Java points-to analysis, φ encodes the se-
mantics of dynamic dispatch implemented in Java virtual machine, such that for

any
−→
E ∈ Envm, φ(

−→
E ) returns the union of methods that can be dispatched at

each node ni according to the value
−→
E [ni], paired with the call relation for those

methods. Note that, some program nodes do not matter to the change of the
program coverage and may not be considered in the contract function. Provided
with φ, we define an enlargement function η : 2M × 2R → 2M × 2R as follows:

η = λ(x, y).(x, y) ∪ φ
(−−−−−−−−−→
MOVP[G↓x,y

]
)

where ∪ is extended to a pair of sets element-wise. It characterizes the process
of discovering the program coverage. One can conclude with Lemma 1.

Lemma 1. The function η is monotonic, and the least fixed point of η exists,

and it coincides with
∞
⋃

j=0

ηj(∅, ∅). ⊓⊔

Definition 6. Let gfp be the greatest fixed point operator, and let lfp be the
least fixed point operator. An on-the-fly interprocedural program analysis

(OTFIPA) problem is to compute 3

(i) the least fixed point of η, i.e., lfp(η), which is the set of methods Mr involved
in the analysis problem, and a call relation R over them; and

(ii) the tuple
−−−−−−−−−−→
MOVP[G↓Mr,R

] of environments, which is the dataflow analysis
results of solving the MOVP problem for G↓Mr,R

.
3 There are datalfow analysis problems alternatively formalized over exploded super-

graph [10], upon which one can similarly define the OTFIPA problem.
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n0: int x, y = 0;

void bar(int a) {
n4: if (x < 3)

n5, n6: y = foo(a);

else n7, n8: noop (); }

void foo(int b) {
n9: return b; }

void noop() {
n9: y = x;

n10: x = 3; }

void main() {
n1: x = 2;

n2, n3: bar(x); }

Fig. 2. A code snippet for illustrating copy constant propagation analysis.

3.2 A Running Example

This section describes an example of a copy constant propagation (CCP) analysis,
partly following [8] and ajusts the example as an instance of OTFIPA. CCP is
one of the classic dataflow analysis used for compiler optimization. The analysis
is to check whether the value of a variable would remain as a constant along
some program execution, so that the constant assigned to the variable can be
substituted when the variable is used.

emain

n0 : int x, y = 0 ebar

n1 : x = 2 n4 : if(. . .) efoo

n2 : call bar n7 : call noop n5 : call foo n9 : return b

n3 : bar return n8 : noop return n6 : foo return xfoo

xmain xbar

τ0 : λe.e[x, y 7→ 0]

τ1 : λe.e[x 7→ 2]

τ 2
:
λ
e
.e
[a

7→
e
(x
)]

τ3
: λ
e.
e[
b
7→

e(
a)
]

τ4 : λe.e[ret 7→ e(b)]

τ5 : λe.e[τ5 : y 7→ e(ret)]

Fig. 3. A supergraph of Figure 2, where the method noop is omitted.

An example code snippet is shown in Figure 2, where x, y are global variables,
a, b are local variables, and each statement in the code is indexed by ni. Its
supergraph is shown in Figure 3, where solid lines are intraprocedural edges,
and dotted lines are call and return edges. Since the method noop is not called,
we omit it from the graph. Extra nodes ef and xf denote the unique entry and
exit point of a method f. Each edge in the graph is labelled with an environment
transformer τ . If τ is an identity function λe.e, it is omitted in the graph. The
abstract domain for the analysis is D = Z ∪ {⊥,⊤D}. Here, Z denotes integers,
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⊤D denotes a value that is irrelevant and is the greatest element, and ⊥ denotes
a value that is not a constant. For all d in Z, ⊥ �D d and d �D ⊤D, and for any
d1, d2 in Z with d1 6= d2, d1 and d2 are incomparable. In the transformers, ret is
a fresh symbol that is introduced to denote the return value of foo.

It is known to be non-trivial (often undecidable) to analyze conditionals
in dataflow analysis. Therefore, conditionals are usually abstracted to be non-
deterministic choices as an over-approximation of the program branching. Thus
whether the method foo and noop are invoked depends on the dataflow reaching
at the node n4, and we know that foo is reachable in this case sinceMOVP[G](n) =

[x 7→ 2, y 7→ 2]. Then it can be modeled as an OTFIPA problem. For any
−→
E ∈

−→
D ,

φ(
−→
E ) =























({main, bar, foo}, R0) if
−→
E [n4](x) 6= ⊥ and

−→
E [n4](x) < 3

({main, bar, noop}, R1) if
−→
E [n4](x) 6= ⊥ and

−→
E [n4](x) ≥ 3

({main, bar, foo, noop}, R2) if
−→
E [n4](x) = ⊥

(∅, ∅) if
−→
E [n4](x) = ⊤D

where R0 = {(main, bar), (bar, foo)}, R1 = {(main, bar), (bar, noop)}, R2 =
R0 ∪ R1. It is not hard to see that φ is anti-monotonic. In particular, the third
case above corresponds to abstracting the conditional as a non-deterministic

choice when
−→
E [n4](x) = ⊥.

4 Algorithms for the OTFIPAProblem

4.1 A Whole-Program Analysis Algorithm

We can solve the OTFIPA problem by using WPDS as the underlying program
analysis engine. Given a supergraph G = (N,→G, l). We can define a WPDS
WG = ((P, Γ,∆),S, f), where there is a unique control location ⋆, i.e, P = {⋆};
the stack alphabet is the set of nodes in G, i.e., Γ = N; and ∆ is constructed
by the follows rules:

– 〈⋆, n〉 →֒ 〈⋆, n′〉 ∈ ∆, if there exists an intraprocedural edge (n, n′) ∈→G.
– 〈⋆, n〉 →֒ 〈⋆, ef n′〉 ∈ ∆, if there exists a call edge (n, ef) ∈→G, where n′ is

the return point matching the call site n, and ef is the entry of the callee f.
– 〈⋆, xf〉 →֒ 〈⋆, ǫ〉 ∈ ∆, if there exists a return edge (xf, n) ∈→G for some n,

where xf is the exit of the callee f.

The environment transformers associated with edges are directly modelled as
weights. To form the semiring S = (D,⊕,⊗, 0̄, 1̄), we define the commutative
monoid (D,⊕) to be (T , ⊓,⊤), 0̄ is taken as ⊤, ⊗ is defined as the reverse of
function composition, and 1̄ is taken as an identity transformer λe.e. We denote
by GenWPDS(G) the above procedure that generates a WPDS for G. Given the
encoding above, we can conclude with the following fact.

Fact 7 For each node n ∈ N, we have that

MOVP[G](n) = WPMC[WG](S, T )(E0)

, where S = {〈⋆, emain〉} and T = {〈⋆, nω〉 | ω ∈ Γ ∗}, respectively.
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〈⋆, emain〉 →֒ 〈⋆, n0〉
〈⋆, n0〉

τ0
→֒ 〈⋆, n1〉

〈⋆, n1〉
τ1
→֒ 〈⋆, n2〉

〈⋆, n2〉
τ2
→֒ 〈⋆, ebar n3〉

〈⋆, n3〉 →֒ 〈⋆, xmain〉

〈⋆, ebar〉 →֒ 〈⋆, n4〉
〈⋆, n4〉 →֒ 〈⋆, n5〉
〈⋆, n5〉

τ3
→֒ 〈⋆, efoo n6〉

〈⋆, n6〉 →֒ 〈⋆, xbar〉
〈⋆, xbar〉 →֒ 〈⋆, ǫ〉

〈⋆, efoo〉 →֒ 〈⋆, n9〉
〈⋆, n9〉

τ4
→֒ 〈⋆, xfoo〉

〈⋆, xfoo〉
τ5
→֒ 〈⋆, ǫ〉

Fig. 4.WPDS transition rules encoded for the example in Figure 2 where the transition
rules encoded for the method noop are omitted.

By Lemma 1 and Fact 7, one may solve the OTFIPA problem as the limit
of {ηj(∅, ∅) | j ≥ 0} by iteratively calling WPDS model checker for solving the
MOVP problem on G↓

ηj (∅,∅)
(that is the supergraph for all the methods currently

discovered to be involved in the analysis problem up to the jth iteration).

Example 1. The encoded WPDS transition rules of the code snippet in Figure
2 is given in Figure 4 that are grouped method-wise. We denote the system by
Wccp. Let S = {〈⋆, emain〉} and let T = {〈⋆, xmainω〉 | ω ∈ Γ ∗} be the source and
target configurations. We have WPMC[Wccp](S, T ) = λe.e[x 7→ ⊥, y 7→ 2] which
computes the dataflow values from the entry to the exit of main, by abstracting
the program branchings as non-deterministic choices. By applying the result to
the initial environment E0, we obtain [x 7→ ⊥, y 7→ 2] which says that x is not a
constant and y is a constant at the exit of main. As far as the OTFIPA problem
is concerned when the conditional at n4 is x < 3, we obtain a different analysis
result [x 7→ 2, y 7→ 2] that, both x and y are constants at the exit of main. It
is an artificially coined example, yet shows how a OTFIPA problem differs with
an ordinary program analysis problem.

4.2 A Sliding-Window Analysis Algorithm

This section presents a sliding-window algorithm for OTFIPA by adapting the
inner algorithmic structure of WPDS model checking. As given in Algorithm
1, Line 1 declares those global data structures that are updated through each

iteration, where
−→
d ∈ T m is the m-tuple of environment transformers for all the

program points;Mr is the set of reachable methods andR is the call relation to be
discovered by the analysis, respectively, and they are the analysis results of solv-
ing the OTFIPA problem upon the algorithm terminates; δR records transitions
relevant to return values of the callees and δS records transitions of summary
values propagated from the calling methods, and they are intermediate analysis
results cached and reused through the iterations.

Definition 8. Mark variables in Algorithm 1 with superscript iteration numbers
to denote their values at the entry of the while loop in that iteration. A function
Schdule : 2M×N → 2F is a scheduler for Algorithm 1 if, for each M ⊆ M and
i ∈ N, Schdule(M, i) ⊆ Mr ∩ {f ∈ M |

⋃

1≤j≤i f.checked
(j) = 0}. A scheduler

is fair if, for each i > 0, there exists f ∈ M
(i)
r with f.checked(i) = 0, then there

exists j > i with f ∈ M
(j)
w .

10



Algorithm 1: SwaOTFIPA(M, φ): A Sliding Window Algorithm for OTFPA

1 Mr := ∅; R := ∅;
−→
d := [0̄, . . . , 0̄]; δR = ∅; δS := ∅; l := λt.0̄; iteration := 0;

2 foreach f ∈ M do f.checked := 0;
3 while (not ∀f ∈ Mr. f.checked = 1) do

4

−→
E :=

−→
d (E0);

5 (Mr, R) := φ(
−→
E );

6 Mw := Schdule(Mr, iteration++) ;
7 (δw, l) := SatPost(GenWPDS(G↓Mw,R), δR, l);

8 (
−→
d w, δS , l) := GenValue(δw ∪ δS , l);

9 δR := δR ∪ {(q, ǫ, q′) | (q, ǫ, q′) ∈ δw};
10 foreach f in Mw do f.checked := 1;

11 UpdatedNode := {ni ∈ N | ∃i ∈ [1..m].
−→
d [i] 6=

−→
d w[i]};

12 foreach f ∈ Mr \Mw do

13 if DepMeth(f) ∩ UpdatedNode 6= ∅ then f.checked := 0;

14

−→
E w :=

−→
d w(E0); Mr := Mr ∪ φ(

−→
E w);

−→
d :=

−→
d ⊕

−→
d w;

15 return (Mr, R,
−→
d );

Each method f ∈ M is designated with a boolean variable checked, and
f.checked = 0 means that f has to be analyzed in the analysis, and it is not
necessarily to be included in the next iteration, otherwise. Initially, each method
f ∈ M is declared to be unchecked (Line 2). If there remains any method f ∈ Mr

to be analyzed (Line 3), then the while loop will repeat. Line 4 applies
−→
d to the

initial environment E0 and returns the current program environments
−→
E . Then

by applying the contract function to
−→
E at Line 5, the methods and the call

relation currently discovered can be obtained. At Line 6, the scheduler (formally
given in Definition 8) takes a set of methods Mw from Mr, called a sliding
window, to be analyzed in the iteration, such that f.checked = 0 for each f ∈
Mw. At Line 7, the algorithm generates a WPDS W for the supergraph G↓Mw ,R,
and forward saturates δR, i.e., to compute post∗[W ](δR) given the mapping l.
Here, we denote by SatPost the backward saturation procedure conducted on
a weighted P-automaton described in Section 2.2. After Line 7, we obtain a P-
automaton δw and the updated mapping l from automata transitions to their

weights. Based on the results, we are ready to read out the result
−→
d w from

the weighted automaton δw ∪ δS for solving the MOVP problem for the sliding
window, by invoking the subprocedure GenValue at Line 8. It also returns the
updated summary transitions δS along with the updated label l.

At Line 9, δR is augmented with those newly-introduced in δw that are all
resulted from pop transitions. Each method f ∈ Mw is marked as checked at
Line 10. At Line 11, the set UpdatedNode is collected for which the program
environments (or environment transformers) are updated by the current analysis.
Line 12 to 13 pinpoint the set of methods that would be affected by the new
analysis results. Here, DepMeth(f) collects the set of nodes in the supergraph

11



Algorithm 2: GenValue(δ, l): Generating the Analysis Result for OTFIPA

1 let B = (Q,Γ, δ, P, {qf}) be the
P-automaton constructed from δ;

2 let V : Q → D be a mapping;
3 foreach q ∈ Q \ {qf} do V (q) := 0̄;
4 V (qf ) := 1̄; ws := {qf};
5 while ws 6= ∅ do

6 select and remove q from ws;
7 foreach t = (q′, γ, q) ∈ δ do

8 if q′ 6∈ P then

9 new := V (q′)⊕ (V (q)⊗ l(t));
10 if new 6= V (q′) then
11 V (q′) := new;
12 ws := ws ∪ {q′};

13 foreach q ∈ Q \ (P ∪ {qf}) do
14 δ := δ ∪ {(q, ∗, qf )};
15 l(q, ∗, qf ) := V (q);

16 δS := δ ∩ (Q× {∗} × {qf});

17

−→
d := [0̄, . . . , 0̄];

18 foreach (p, γ, q) ∈ δ with p ∈ P do

19

−→
d [(p, γ)] :=
−→
d [(p, γ)]⊕ (V (q)⊗ l(q, γ, q′))

20 return (
−→
d , δS, l)

that are source ends of the incoming edges into the nodes in the CFG of f . Line
14 returns the newly-computed environment for the program nodes in the sliding

window, returns the updated set of reachable methods, and unify
−→
d with the

newly-updated value
−→
d w by extending ⊕ to m-tuple element-wise.

q p
γ

Fig. 5. A new forward saturation rule
for r : 〈p, ε〉 →֒ 〈q, γ〉 with l(q, γ, p) =
f(r). Dashed lines and nodes will be
added into the automaton in question.

Note that, the program is analyzed
method-wise and each sliding window
consists of a set of methods. To decouple
the interprocedural program analysis into
intrapocedural counterparts, we slightly
modify the procedure GenWPDS such that,
for any transition r : 〈p, γ〉 →֒ 〈p′, γ′γ′′〉
that encodes some call edge, we split it
into two transitions as follows:

rcaller : 〈p, γ〉 →֒ 〈qp′,γ′, γ′′〉 and rcallee : 〈qp′,γ′ , ε〉 →֒ 〈p′, γ′〉

and for any transition in the form of 〈p, ε〉 →֒ 〈q, γ〉, we have 〈p, ω〉 ⇒ 〈q, γω〉 for
any ω ∈ Γ ∗. The transition rcaller belongs to the caller, and rcallee belongs to
the callee, with f(rcaller) = f(r) and f(rcallee) = 1̄. The forward saturation rule
for rcaller is the same as the one for rnormal given in Figure 1 (b), and the new
rule for rcallee is shown in Figure 5. Besides, let AS be the P-automaton that
recognizes the set S of source configurations. We add a set of new transitions
into the entry method (i.e., main) for encoding the transitions in AS in the
sliding-window analysis. For each transition (q, γ, q′) in AS , we prepare the new
transition r : 〈q′, ε〉 →֒ 〈q, γ〉 and add it to the WPDS transitions encoded from
the entry method with f(r) = 1̄.

The subprocedure GenValue is given in Figure 2. It is centered around com-
puting a mapping V from the automata states to weights. Intuitively, V (q) is
to store the weight A(L(A, q)) (Recall that A(C) is defined in Section 2.2 for

12



⋆ qf

q⋆,ebar

(emain, 1̄)

(n3, w1)

(n0, 1̄); (n1, τ0); (n2, τ0 ⊗ τ1)

(∗, w1)

(a) 1th iteration

⋆ q⋆,ebar

q⋆,efoo

qf
(ebar, 1̄)

(n4, 1̄); (n5, 1̄)

(n6, τ3)

(∗, w1)

(∗, w2)

(b) 2th iteration

⋆ q⋆,efoo qf
(efoo, 1̄)

(n9, 1̄); (xfoo, τ4); (ε, τ4 ⊗ τ5)

(∗, w2)

(c) 3th iteration

⋆ q⋆,ebar

q⋆,efoo

qf
(ebar, 1̄)

(n4, 1̄); (n5, 1̄); (n6, w3);
(xbar, w3); (ε, w4)

(n6, τ3)

(∗, w1)

(∗, w2)(ε, τ4 ⊗ τ5)

(d) 4th iteration

⋆ qf

q⋆,ebar

(emain, 1̄)

(n3, w1)

(n0, 1̄); (n1, τ0); (n2, τ0 ⊗ τ1);
(n3, w5); (xmain, w5)

(∗, w1)
(ε, w4)

(e) 5th iteration

Fig. 6. A sliding-window analysis for the example in Figure 2, where w1 = τ0⊗ τ1⊗ τ2;
w2 = w1 ⊗ τ3; w3 = τ3 ⊗ τ4 ⊗ τ5; w4 = w3; w5 = w1 ⊗ w4

a regular set C of configurations). Initially, V (qf ) = 1̄ for the final state, and
V (q) = 0̄ for any other state q, and the workset ws is set as {qf} (Line 3-4). The
while loop (Line 5-12) will repeat if the ws is not empty . For each state in the
workset, the algorithm backward propagates the weights (Line 9) and updates
the weights on each state (Line 11) until no more updates are possible. Line 13-14
compute and update the summary transitions. A summary transition (q, ∗, qf )
can be regarded as an edge for the transitive closure of any path leading from q

to qf in the automaton, and l(q, ∗, qf) combines weights along those paths. Line
18-19 finally read out the analysis result for each node in the supergraph. Note
that, here we do not assume P is a singleton set, and the algorithm also works
for a more general setting when one may take a different encoding of WPDSs.

Theorem 1. Suppose Algorithm 1 is called with a fair scheduler, and the OT-
FIPA problem can be encoded into a WPDS model checking problem. Then Algo-
rithm 1 terminates and returns the results of solving the OTFIPA problem. ⊓⊔

Example 2. In Figure 6, we illustrate how to conduct a sliding-window analysis
for the OTFIPA problem in Figure 2. The analysis consists in five iterations, and
the figures show the weighted P-automaton constructed in each iteration after
Line 9 in Algorithm 1, respectively. An edge t in the automaton is labelled with
a pair (γ, w) of the alphabet symbol γ and its weight, i.e., l(t). Suppose that a
single method is analyzed for each iteration, i.e., the size of a sliding window is
set to be |Mw| = 1.

The algorithm starts with analyzing the method main (Figure 6 (a)), and

generates a summary edge shown in the dashed line. Since
−→
d [n2] is updated,

13



the method bar would be affected. Then it analyzes bar in Figure 6 (b). Here,
one has to know the program environment at n4 to judge which conditional
brach should be taken. Thanks to caching the summary edge (q⋆,ebar , (∗, w1), qf )

that is generated in (a), one can read out the current analysis result
−→
d [n4] =

[x 7→ 2, y 7→ 0] in (b), and knows that the method foo will be invoked. Since
−→
d [n5] is updated, the method foo would be affected and is analyzed in Figure

6 (c). Since
−→
d [xfoo] is updated, the calling method bar would be affected and is

analyzed again in Figure 6 (d), where the pop transition (⋆, (ε, τ4 ⊗ τ5), q⋆,efoo)
that is newly-generated in (c) is stored into the automaton before the saturation

procedure starts. After the analysis at this iteration,
−→
d [xbar] is updated, then

its caller main would be affected and is analyzed again in Figure 6 (e), where
the pop transition (⋆, (ε, w4), q⋆,ebar) that is newly-generated in (d) is stored into
the automaton before the saturation procedure starts. Finally, we can read out

the analysis result
−→
d [xmain] = [x 7→ 2, y 7→ 2] at the program exit xmain, which

tells that both x and y are constants through the program execution.

5 Experiments

We developed a points-to analyser for Java called mJapot by instantiating the
SwaOTFIPA algorithm, following the context-sensitive, field-sensitive, and flow-
insensitive Java points-to analysis by WPDS in [7]. In our analysis, we used and
extended the WPDS model checker jMoped 4 as the backend analysis engine, for
computing forward saturations and reading out analysis results in each sliding
window analysis. We use Soot 2.5.0 [12] for preprocessing from Java to Jimple
codes which our points-to analyzer was built upon. We evaluate mJapot on the
Ashes benchmark suite 5 and the DaCapo benchmark suite [2] given in the
#App. column in Table 5. These applications are de facto benchmarks when
evaluating Java points-to analysis. We analyze DaCapo benchmark with JDK
1.5, and Ashes benchmarks for which JDK 1.3 suffices. All experiments were
performed on a Mac OS X v.10.9.2 with 1.7 GHz Intel Core i7 processor, and
8GB RAM. A 4GB RAM is allocated for Java virtual machine.

To measure the performance of points-to analysis, we take call graph gener-
ation in terms of reachable methods as client analysis. Table 1 shows the pre-
liminary experimental results. The number of reachable methods is given in the
“# Methods” column with taking Java libraries into account. The sub-column
“ CHA” is the result by conducting CHA of Spark in soot-2.5.0. The sub-column
“mJapot” gives results computed by our incremental points-to analysis, and the
“# Statements” column gives the number of Jimple statements that mJapot

analyzed. The “# WPA” and “# SWA” columns give the time in seconds of the
whole-program analysis and sliding-window analysis, respectively. In the table,
k is the size of the sliding window, i.e., the number of the methods analyzed in
each iteration.

4 https://www7.in.tum.de/tools/jmoped/
5 http://www.sable.mcgill.ca/ashes
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# App. # WPA(s) # SWA(s) # Acc. # Methods # Stmts
k = ∞ k = 5000 k = 3000 CHA mJapot (mJapot)

soot-c 250 153 140 139 1.8 5460 5079 83,936
sablecc-j 616 194 209 204 3.2 13,055 9068 144,584

antlr 656 365 390 348 1.9 10,728 9133 156,913
pmd 669 313 478 332 2.1 12,485 10,406 180,170

hsqldb 350 186 175 180 2.0 9983 8394 142,629
xalan 385 176 185 193 2.2 9977 8392 141,415

luindex 438 190 189 202 2.3 10,596 8961 152,592
lusearch 436 219 216 227 2.0 11,190 9580 163,958
eclipse 767 382 455 383 2 12,703 10,404 179,539
bloat 4748 4894 4778 > 1.5 12,928 11,090 194,063

jython 4633 4857 2924 > 2.5 14,603 12,033 202,326
chart 30,831

Table 1. Comparison between the whole-program analysis and the SwaOTFIPA-based
sliding-window analysis, where means time out (> 2 hours).

We set a bound k on the number of methods of each sliding window, shown
in the sub-column “k = ∞”, “k = 5000” and “k = 3000”, respectively, where
k = ∞ means that we take all methods from the current workset for the analysis.
We show the smallest number in bold type. As shown in the “# Acc.” column,
over all the experiments we performed, SWA provided us an average 2X speedup
over WPA. Note that, it performs almost the same when the size of sliding win-
dow changes for most benchmarks expect for “jython”, which indicates that the
algorithm can be useful for analyses having a limited memory budget. Besides,
the number of reachable methods detected by CHA are reduced by 16% using
mJapot. Note that mJapot is more efficient than Japot [7] because the backend
model checker was changed from the one in C to the one in Java. Since the
frontend analyzer is implemented in Java, it reduced the huge disk IO time for
exchanging information between the model checker and the analyzer.

6 Conclusion

We studied the OTFIPA problems, for which one could not assume a prior
interprocedural control flow of the program, and therefore, the discovery of the
program coverage is often mutually dependent on the analysis problem, such as
Java points-to analysis. We give a general formalization of the OTFIPA problem,
and present a sliding-window algorithm for it. Our algorithm is conducted in a
sliding window fashion that iteratively analyzes the program in an arbitrary set
of methods, which can be useful for analysis having a tight memory budget. We
implemented the algorithm and evaluated it with a context-sensitive points-to
analysis for Java. The preliminary empirical study confirmed the effectiveness of
our approach.
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Appendix

A Proof of Lemma 1

First, we show that η is monotonic. For any x ⊆ x′, y ⊆ y′, we know that the su-
pergraph G↓x,y

is subsumed by G↓x′,y′
. Then by the definition ofMOVP[G↓x,y

], it

is not hard to see that
−−−−−−−−−−→
MOVP[G↓x′,y′

] ⊑
−−−−−−−−−→
MOVP[G↓x,y

], since G↓x′,y′
contains all

paths occurring in G↓x,y
. According to the fact that φ is anti-monotonic, we have

that φ(
−−−−−−−−−→
MOVP[G↓x,y

]) ⊆ φ(
−−−−−−−−−−→
MOVP[G↓x′,y′

]), whereby we conclude that η(x, y) ⊆

η(x′, y′). Furthermore, it is not hard to see that ((2M, 2R),⊆,∪,∩, (M,R), (∅, ∅))
is a complete lattice, and by Knaster-Tarski’s fixed-point theorem, the least fixed

point of η exists, and coincides with
∞
⋃

j=0

ηj(∅, ∅).

B Proof of Fact 7

By the definition of MOVP[G](n) and WPMC[WG](S, T ), it is reduced to proving
that

{τσ1 | σ1 ∈ VPath(emain, n)} = {val(σ2) | σ2 ∈ path(c, c′), c ∈ S, c′ ∈ T }

where S = {〈⋆, emain〉} and T = {〈⋆, nω〉 | ω ∈ Γ ∗}, respectively.
First, we show that

{τσ1 | σ1 ∈ VPath(emain, n)} ⊇ {val(σ2) | σ2 ∈ path(c, c′), c ∈ S, c′ ∈ T }

By GenWPDS, there exists a one-to-one correspondence between the pushdown
transitions and the supergraph edges. For any σ2 = (r0, . . . , rk) ∈ path(c, c′) for
some c ∈ S and c′ ∈ T , let σ1 = (e0, . . . , ek) be the corresponding sequence of
edges with f(ri) = l(ei) for each i ∈ [0..k] and thus val(σ2) = τσ1 . We show that
σ1 is a valid path of G, i.e., σ1 ∈ VPath(emain, n).

By induction on the length l of σ1.

– Case l = 1: it can only be either intraprocedural edge or a call edge by
assumption, and is a valid path, trivially.

– Case l = k + 1 > 0: let ek = (n′′, n), and consider σ′
1 = (r0, . . . , rk−1) ∈

VPath(emain, n
′′) that is the valid path by induction hypothesis. If ek is an

intraprocedural edge or a call edge, then σ1 is a valid path, trivially. If ek is
a return edge, then by the encoding of WPDSs, n must be the corresponding
return point of the latest method call and pushed onto the stack by the latest
push transition. So we know that σ1 is also a valid path.
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Next, we show that

{τσ1 | σ1 ∈ VPath(emain, n)} ⊆ {val(σ2) | σ2 ∈ path(c, c′), c ∈ S, c′ ∈ T }

For any σ1 = (e0, . . . , ek) ∈ VPath(emain, n), let σ2 = (r0, . . . , rk) be the cor-
responding transitions with f(ri) = l(ei) for each i ∈ [0..k]. We show that
σ2 ∈ path(c, c′) for some c ∈ S and c′ ∈ T . By induction on the length l of σ2.

– Case l = 1: e0 can only be either an intraprocedural edge or a call edge. Then
r0 = 〈⋆, emain〉 →֒ 〈⋆, n〉 ∈ path(c, c′) with c = 〈⋆, emain〉 and c′ = 〈⋆, n〉, or

r0 = 〈⋆, emain〉 →֒ 〈⋆, nn′〉 ∈ path(c, c′) with c = 〈⋆, emain〉 and c′ = 〈⋆, nn′〉,

trivially.
– Case l = k + 1 > 1: consider σ1 = (e0, . . . , ek) ∈ VPath(emain, n) with

ek = (n′′, n), and let σ′
2 = (r0, . . . , rk−1) ∈ path(c, c′) be the transition

sequence corresponding to (e0, . . . , ek−1) ∈ path(c, c′′) for some c ∈ S and
c′′ = 〈⋆, n′′ω〉 for some ω ∈ Γ ∗ by induction hypothesis. If rk = 〈⋆, n′′〉 →֒

〈⋆, nn′〉, then σ2 ∈ path(c, c′) with c′ = 〈⋆, nn′ω〉. If rk = 〈⋆, n′′〉 →֒ 〈⋆, n〉,

then σ2 ∈ path(c, c′) with c′ = 〈⋆, nω〉. If rk = 〈⋆, n′′〉 →֒ 〈⋆, ε〉, then

σ2 ∈ path(c, c′) with c′ = 〈⋆, ω〉. Since σ1 is a valid path, by the encod-
ing of WPDSs, the call edge that matches ek induces the push transition
that has been lately applied before rk. Then we have that ω = nω′ above for
some ω′ ∈ Γ ∗.

C Proof of Theorem 1

C.1 Chaotic Contracted Iteration

We first lift the classic framework of chaotic iteration to Chaotic Contracted
Iteration (CCI), whereby OTFIPA can be solved.

We prepare the following notations. Given a poset (D,⊑), a function f on
D is inflationary if f(x) ⊒ x and dually downward inflationary if f(x) ⊑ x, for
each x ∈ D, respectively. Let 〈D,⊓〉 be a meet semi-lattice that has the greatest
element ⊤ and satisfies the descending chain condition. We define x ⊑ y if
x ⊓ y = x for x, y ∈ D. LetF = {f1, ..., fn} be a finite set of monotonic and
downward inflationary functions on D. For any F ⊆ F , we denote by νF the

greatest fixed point of f = λx.
d

fi∈F

fi(x).

Definition 9. Let d ∈ D.

– A run is an infinite sequence of functions in F .
– An iteration of F associated with a run fi1 , fi2 , ... and starting with d is an

infinite sequence of values d0, d1, ..., such that d0 = d and dj = fij (dj−1).
– A run fi1 , fi2 , ... is fair if, for each m ≥ 0, F ⊆

⋃

j>m

{fij}.

– An iteration of F is chaotic if it is associated with a fair run.
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Theorem 2 (Chaotic Iteration 6 [1]). The limit of any chaotic iteration of

F starting with ⊤ exists and coincides with
∞d

j=0

f j(⊤), where f = λx.
nd

i=0

fi(x).

Instead of starting from ⊤, we can iteratively apply the function f starting

at d ∈ D, denoted by fix((, f), d) in sequel, and its limit
∞d

j=0

f j(d) uniquely exists.

Definition 10. Let d ∈ D.

– A contracted iteration(CI) of F associated with a run fi1 , fi2 , ... and start-
ing with d is an infinite sequence of values d0, d1, ..., such that d0 = d and
dj = fij (dj−1) where ij ∈ φ(dj−1).

– A run fi1 , fi2 , ... is fair for a contracted iteration d0, d1, ... if, for each m > 0,
φ(dj) ⊆

⋃

j>m

{ij}.

– A contracted iteration of F is chaotic if it is associated with a fair run.

Definition 11. Let S = {f1, ..., fk} ⊆ F . We define,











Fun(S) = λx.
d

f∈S

f(x), and

Ser(S) = {fi1 ◦ fi2 ◦ ... ◦ fik | (i1, i2, ..., ik) is
a permutation of {1, ..., k}}

Lemma 2. Let S ⊆ F . For any x ∈ D and h ∈ Ser(S), Fun(S)(x) ⊒ h(x).

Theorem 3 (Chaotic Contracted Iteration). Given a contract function φ :
D → 2F and d ∈ D. The limit of any chaotic contracted iteration of F starting
with d exists and coincides with fix((, τ)d, d), where the function τd on D is
defined by τd = λz.fix((, g)z, d) and gz = Fun(φ(z)).

Proof. (1) Consider any given chaotic contracted iteration d0, d1, d2, ... of F

starting with d. Since each function in F is downward inflationary, we have
di ⊒ di+1 for i ≥ 0. Moreover, since there are no infinite descending chains in
D, we have that the limit of any chaotic contracted iteration of F exists.

(2) Consider any d1, d2 ∈ D with d1 ⊑ d2. Since φ is anti-monotonic and
φ(d1) ⊇ φ(d2), we have gd1(x) ⊑ gd2(x) for all x ∈ D and fix((, g)d1

, d) ⊑
fix((, g)d2

, d). We have τd(d1) ⊑ τd(d2); thus τd is monotonic. Since gd is down-
ward inflationary, τd(d) ⊑ d by definition of τd. Therefore, we have that d ⊒
τd(d) ⊒ τ2d (d) ⊒ ... and the limit fix((, τ)d, d) exists, since there are no infinite
descending chains in D.

(3) Consider any given chaotic contracted iteration a0, a1, a2, ... of F associ-
ated with the run fi1 , fi2 , ... and starting with d, and the descending sequence
b0, b1, b2, ... where b0 = d and bj = τd(bj−1) for j ≥ 1. To prove they converge at
the same limit follows the following claims:

6 Theorem 2 holds for a cpo, in which the direction of the ordering is reversed [1].
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– ∀j. aj ⊒ bj .
By induction on j. (i) Obvious when j = 0, a0 = b0 = d. (ii) Assume that
aj ⊒ bj for some j > 0, then we have

aj+1 = fij (aj) (where fij ∈ φ(aj))

⊒ fij (bj) ⊒ fij (bj+1)

⊒ gbj (bj+1) (aj ⊒ bj ⇒ fij ∈ φ(bj))

= bj+1

– ∀j ∃j′. bj ⊒ aj′ .
By induction on j. (i) Obvious when j = 0, a0 = b0 = d. (ii) Assume that,
for j > 0, there exists j′ > 0 such that bj ⊒ aj′ . Let k is the smallest number
that satisfies gkbj (d) = gk+c

bj
(d) for each c ≥ 0. By definition, we have

bj+1 = τd(bj) = fix((, g)bj , d) = gbj
k(d).

Since d = b0 ⊒ bj , we have

gbj
k(d) ⊒ gbj

k(bj) ⊒ gbj
k(aj′ ) = Fun(φ(bj))

k(aj′)

⊒ h1 ◦ ... ◦ hk(aj′ ) (by Lemma 2)

where hi ∈ Ser(φ(bj)) for each 1 ≤ i ≤ k.
Consider the suffix fij′+1

, fij′+2
, ... of the run associated with the chaotic

contracted iteration a0, a1, .... For each h ∈ Ser(φ(bj)), fairness implies the
existence of th ∈ N such that h1 ◦ ... ◦ hk is embedded into fith ◦ · · · ◦ fij′+2

◦
fij′+1

. Let tH be the smallest th. We have h1◦ ...◦hk(aj′) ⊒ fitH ◦· · ·◦fij′+2
◦

fij′+1
(aj′) due to downward inflationary, and thus bj+1 ⊒ atH . �
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