
HoIce: An ICE-based Non-Linear Horn Clause Solver

Adrien Champion1, Naoki Kobayashi1, Ryosuke Sato2

1 The University of Tokyo
2 Kyushu University

Abstract. The ICE framework is a machine-learning-based technique originally
introduced for inductive invariant inference over transition systems, and building
on the supervised learning paradigm. Recently, we adapted the approach to non-
linear Horn clause solving in the context of higher-order program verification. We
showed that we could solve more of our benchmarks (extracted from higher-order
program verification problems) than other state-of-the-art Horn clause solvers.
This paper discusses some of the many improvements we recently implented in
HoIce, our implementation of this generalized ICE framework.

1 Introduction

Constrained Horn clauses is a popular formalism for encoding program verification
problems [4–6], and efficient Horn clause solvers have been developed over the last
decade [3, 9, 10]. Recently, we adapted the Ice framework [7, 8] to non-linear Horn
clause solving [6]. Our experimental evaluation on benchmarks encoding the verifica-
tion of higher-order functional programs as (non-linear) Horn clauses showed that our
generalized Ice framework outperformed existing solvers in terms of precision. This
paper discusses HoIce3, a Horn clause solver written in Rust [1] implementing the gen-
eralized Ice framework from [6]. Let us briefly introduce Horn clause solving before
presenting HoIce in more details.

Given a set of unknown predicates Π, a (constrained) Horn clause is a constraint of
the form

∀v0, . . . , vn | Φ ∧
∧
i∈I

{πi(®ai)} |= H

where Φ is a formula and each πi(®ai) is an application of πi ∈ Π to some arguments ®ai .
The head of the clause H is either the formula false (written⊥) or a predicate application
π(®a). Last, v0, . . . , vn are the free variables appearing in Φ, the predicate applications
and H. We follow tradition and omit the quantification over v0, . . . , vn in the rest of
the paper. To save space, we will occasionally write 〈Φ, {πi(®ai)}i∈I, H〉 for the clause
above.

A set of Horn clauses is satisfiable if there exist definitions for the predicates in
Π that verify all the Horn clauses. Otherwise, it is unsatisfiable. A Horn clause solver
implements a decision procedure for Horn clauses satisfiability. A solver is also usually
expected to be able to yield some definitions of the predicates, when the Horn clauses
are satisfiable.

3 Available at https://github.com/hopv/hoice

https://github.com/hopv/hoice

2 Champion et al.

Example 1. Let Π = {π} and consider the following Horn clauses:

n > 100 |= π(n, n − 10) (1)
¬(n > 100) ∧ π(n + 11, tmp) ∧ π(tmp, res) |= π(n, res) (2)

m ≤ 101 ∧ ¬(res = 91) ∧ π(m, res) |= ⊥ (3)

These Horn clauses are satisfiable, for instance with

π(n, res) ≡ (res = 91) ∨ (n > 101 ∧ res = n − 10).

Section 2 describes a use-case for Horn clause solving and briefly discusses HoIce’s
interface. Section 3 provides a succinct description of the generalized Ice framework
HoIce relies on. In Section 4 we discuss the most important improvements we imple-
mented in HoIce since v1.0.0 [6] for the v1.5.0 release. Next, Section 5 evaluates HoIce
on our set of benchmarks stemming from higher-order program verification problems, as
well as all the benchmarks submitted to the first CHC-COMP Horn clause competition4
in the linear integer or linear real arithmetic fragments. Finally, Section 6 discusses
future work.

2 Applications and Interface

Asmentioned above, Horn clauses is a popular andwell-established formalism to encode
program verification, especially imperative program verification [4–6]. HoIce however
is developed with (higher-order) functional program verification in mind, in particular
through refinement/intersection type inference. We thus give an example of using Horn
clauses for refinement type inference.

Example 2. Consider the program using McCarthy’s 91 function below (borrowed
from [6]). We are interested in proving the assertion in main can never fail.

let rec mc_91 n = if n > 100 then n - 10
else let tmp = mc_91 (n + 11) in mc_91 tmp

let main m = let res = mc_91 m in if m ≤ 101 then assert (res = 91)

To prove this program is safe, it is enough to find a predicate π such that mc_91
has (refinement) type {n : int | true} → {res : int | π(n, res)} and π satisfies
∀m, res | m ≤ 101 ∧ ¬(res = 91) ∧ π(n, res) |= ⊥.

The latter is already a Horn clause, and is actually (3) from Example 1. Regarding
the constraints for (refinement) typing mc_91, we have to consider the two branches of
the conditional statement in its definition. The first branch yields clause (1). The second
one yields clause (2), where res corresponds to the result of mc_91 tmp.

Horn clause solvers are typically used by program verification tools. Such tools
handle the high-level task of encoding the safety of a given program as Horn clauses.
The clauses are passed to the solver and the result is communicated back through

4 https://chc-comp.github.io/

https://github.com/hopv/hoice/releases/tag/1.0
https://github.com/hopv/hoice/releases
https://chc-comp.github.io/

HoIce 3

library calls, process input/output interaction, or files. This is the case, for instance, of
r_type [6], which encodes refinement type inference as illustrated in Example 2. It then
passes the clauses to HoIce, and rewrites the Horn-clause-level result in terms of the
original program. Communication with HoIce is (for now) strictly text-based: either
interactively by printing (reading) on its standard input (output), or by passing a file. We
give a full example of the SMT-LIB-based [2] input language of HoIce in Appendix A,
and refer the reader to Appendix B for a partial description of HoIce’s arguments.

3 Generalized Ice

This section provides a quick overview of the generalized Ice framework HoIce is based
on. We introduce only the notions we need to discuss, in Section 4 the improvements
we have recently implemented. Ice, both the original and generalized versions, are
supervised learning frameworks, meaning that they consist of a teacher and a learner.
The latter is responsible for producing candidate definitions for the predicates to infer,
based on ever-growing learning data (defined below) provided by the teacher. The
teacher, given some candidates from the learner, checks whether they respect the Horn
clauses, typically using an SMT solver5. If they do not, the teacher asks for a new
candidate after generating more learning data. We are in particular interested in the
generation of learning data, discussed below after we introduce Horn clause traits of
interest.

A Horn clause 〈Φ, {πi(®ai)}i∈I, H〉 is positive if I = ∅ and H , ⊥, negative if I , ∅
and H = ⊥, and is called an implication clause otherwise. A negative clause is strict if
|I | = 1, and non-strict otherwise. For all π ∈ Π, let C(π) be the candidate provided by
the learner. A counterexample for a Horn clause 〈Φ, {πi(®ai)}i∈I, H〉 is a model for

¬(Φ ∧
∧
i∈I

C(πi)(®ai) ⇒ C(H)),

where C(H) is C(π)(®a) if H is π(®a) and ⊥ otherwise.
A sample for π ∈ Π is a tuple of concrete values ®v for its arguments, written π(®v).

Samples are generated from Horn clause counterexamples, by retrieving the value of
the arguments of the clause’s predicate applications. The generalized Ice framework
maintains learning data made of (collections of) samples extracted from Horn clause
counterexamples. There are three kinds of learning data depending on the shape of the
falsifiable clause.
From a counterexample for a positive clause, the teacher extracts a positive sample: a
single sample π(®v), encoding that π must evaluate to true on ®v. A counterexample for a
negative clause yields a negative constraint: a set of samples {πi(®vi)}i∈I encoding that
there must be at least one i ∈ I such that πi evaluates to false on ®vi . We say a negative
constraint is a negative sample if it is a singleton set. An implication constraint is a
pair ({πi(®vi)}i∈I, π(®v)) and comes from a counterexample to an implication clause. Its
semantics is that if all πi(®vi) evaluate to true, π(®v) must evaluate to true.

5 HoIce uses the Z3 [12] SMT solver.

4 Champion et al.

Example 3. Say the current candidate is π(v0, v1) ≡ ⊥, then (1) is falsifiable and yields,
for instance, the positive sample π(101, 91). Say now the candidate is π(v0, v1) ≡ v0 =

101. Then (3) is falsifiable and it might yield the negative sample π(101, 0). Last, (2) is
also falsifiable and can generate the constraint ({π(101, 101), π(101, 0)}, π(101, 0)).

We do not discuss in details how the learner generates candidates here and instead
highlight its most important features. First, when given some learning data, the learner
generates candidates that respect the semantics of all positive samples and implica-
tion/negative constraints. Second, the learner has some freedom in how it respect the
constraints. Positive/negative samples are classified samples in the sense that they force
some predicate to be true/false for some inputs. Constraints on the other hand contain
unclassified samples, meaning that the learner can, to some extent, decide whether the
candidates it generates evaluate to true or false on these samples.

4 Improvements

We invested a lot of efforts to improve HoIce since v1.0.0. Besides bug fixes and all-
around improvements, HoIce now supports the theories of reals and arrays, as opposed to
integers and booleans only previously. The rest of this section presents the improvements
which, according to our experiments, are the most beneficial in terms of speed and
precision. The first technique extends the notion of sample to capture more than one
samples at the same time, while Section 4.2 aims at producing more positive/negative
samples to better guide the choices in the learning process.

4.1 Partial Samples

Most modern SMT-solvers are able to provide extremely valuable information in the
form of partial models. By omitting some of the variables when asked for a model, they
communicate the fact that the values of these variables are irrelevant (given the values
of the other variables). In our context, this information is extremely valuable.

Whenever the teacher retrieves a counterexample for a clause where some variables
are omitted, it can generate partial learning data composed of samples where values can
be omitted. Each partial sample thus covers many complete samples, infinitely many if
the variable’s domain is infinite. This of course assumes that the learner is able to handle
such partial samples, but in the case of the decision-tree-based approach introduced
in [8] and generalized in [6], supporting partial samples is straightforward. Typically,
one discards all the qualifiers that mention at least one of the unspecified variables, and
proceeds with the remaining ones following the original qualifier selection approach.

4.2 Constraint Breaking

This section deals with the generation of learning data in the teacher part of the ICE
framework. Given some candidates, our goal is to generate data i) refuting the current
candidate, and ii) the learner will have few (classification) choices to make about.

In the rest of this section, assume that the teacher isworking on clause 〈Φ, {πi(®ai)}i∈I, H〉,
which is falsifiable w.r.t. the current candidate C. Assume also that this clause is either

https://github.com/hopv/hoice/releases/tag/1.0

HoIce 5

an implication clause or a non-strict negative clause. This means that the teacher will
generate either an implication constraint or a non-strict negative one, meaning that the
learner will have to classify the samples appearing in these constraints. We are interested
in breaking these constraints to obtain positive or strict negative samples at best, and
smaller constraints at worst. If we can do so, the learner will have fewer choices to make
to produce a new candidate. Let us illustrate this idea on an example.

Example 4. Assume that our generalized Ice framework is working on the clauses
from Example 1. Assume also that the learning data only consists of positive sample
π(101, 91), and the current candidate is π(v, v′) ≡ v ≥ 101 ∧ v′ = v − 10. Implication
clause (2) 〈¬(n > 100), {π(n + 11, tmp), π(tmp, res)}, π(n, res)〉 is falsifiable. Can we
force one of the predicate applications in the set to be our positive sample? It turns out
π(tmp, res) can, yielding constraint ({π(111, 101), π(101, 91)}, π(100, 91)), which is
really ({π(111, 101)}, π(100, 91)) since we know π(101, 91) must be true.
We could simplify this constraint further if we had π(111, 101) as a positive sample. It
is indeed safe to add it as a positive sample because it can be obtained from clause (1)
by checking whether n > 100 ∧ n = 111 ∧ (n − 10) = 101 is satisfiable, which
it is. So, instead of generating an implication constraint mentioning three samples the
learner would have to make choices on, we ended up generating two new positive
samples π(111, 101) and π(100, 91). (The second sample is the one rejecting the current
candidate.)

The rest of this section presents two techniques we implemented to accomplish this
goal. The first one takes place during counterexample extraction, while the second one
acts right after the extraction. In the following, for all π ∈ Π, let P(π) (resp. N(π)) be
the positive (resp. negative) samples for π. C(π) refers to the current candidate for π, and
by extension C(H) for the head H of a clause is C(π)(®a) if H is π(®a) and ⊥ otherwise.

Improved Counterexample Extraction This first approach consists in forcing some
arguments for a predicate application of π to be in P(π) or N(π). This means that we
are interested in models of the following satisfiable formula:

Φ ∧
∧
i∈I

{C(πi)(®ai)} ∧ ¬C(H)(®a). (4)

Positive Reduction. Assume that H is π(®a). Let I+ ⊆ I be the indexes of the predicate
applications that can individually be forced to a known positive sample; more formally,
i ∈ I+ if and only if the conjunction of (4) and Pi ≡

∨
®v∈P(πi)(®ai = ®v) is satisfiable.

Then, if I+ , ∅ and the conjunction of (4) and
∧

i∈I+ Pi is satisfiable, a model for this
conjunction refutes the current candidate and yields a smaller constraint than a model
for (4) alone would. (This technique was used in the first simplification of Example 4.)

Negative Reduction. Let N be
∨
®v∈N(π)(®a = ®v) if H is π(®a), and true if H is ⊥.

Assuming I+ , ∅, we distinguish two cases. If I+ = I, then for all j ∈ I+, if (4) and
N and

∧
i∈I+, i,j Pi is satisfiable, a model for this conjunction yields a strict negative

sample for πj . Otherwise, if (4) and N and
∧

i∈I+ Pi is satisfiable, a model for this
conjunction yields a negative sample mentioning the predicates in I \ I+.

6 Champion et al.

Post-Extraction Simplification This second technique applies to implication and
non-strict negative constraints right after they are generated from the counterexamples
for a candidate. Let us define the predicate isPos(π, ®v) for all π ∈ Π, where ®v are
concrete input values for π. This predicate is true if and only if there is a positive clause
〈Φ, ∅, π(®a)〉 such that Φ ∧ (®a = ®v) is satisfiable. Likewise, let isNeg(π, ®v) be true if
and only if there is a strict negative clause 〈Φ, {π(®a)}, ⊥〉 such that Φ ∧ (®a = ®v) is
satisfiable.

Now we can go through the samples appearing in the constraints and check whether
we can infer that they should be positive or negative using isPos and isNeg. This allows
to both discover positive/negative samples, and simplify constraints so that the learner
has fewer choices to make. (This technique was used in the second simplification step
in Example 4.) Notice in particular that discovering a negative (positive) sample in non-
strict negative data or in the antecedents of implication data (consequent of implication
data) breaks it completely.

5 Evaluation

We now evaluate the improvements discussed in Section 4. The benchmarks we used
consist of all 3586 benchmarks submitted to the CHC-COMP 20186 that use only
booleans and linear integer or real arithmetic. We did not consider benchmarks using
arrays as their treatment in the learner part of HoIce is currently quite naïve.

Figure 1 compares HoIce 1.0 with different variations of HoIce 1.5 where the
techniques from Section 4 are activated on top of one another. That is, “hoice inactive”
has none of them active, “hoice partial” activates partial samples (Section 4.1), and
“hoice breaking” activates partial samples and constraint breaking (Section 4.2). We
discuss the exact options used in Appendix B.

We first note that even without the improvements discussed in Section 4, HoIce
1.5 is significantly better than HoIce 1.0 thanks to the many optimizations, tweaks and
new minor features implemented since then. Next, the huge gain in precision and speed
thanks to partial samples cannot be overstated: partial samples allow the framework to
represent an infinity of samples with a single one by leveraging information that comes
for free from the SMT-solver. Constraint breaking on the other hand does not yield nearly
as big an improvement. It was implemented relatively recently and a deeper analysis on
how it affects the generalized Ice framework is required to draw further conclusions.

Next, let us evaluate HoIce 1.5 against the state of the art Horn clause solver
Spacer [11] built inside Z3 [12]. We used the latest revision of Z3 at the time of writing:
d6298b0. Figure 2a shows a comparison on our benchmarks 7 stemming from higher-
order functional programs. The timeout is 30 seconds, and the solvers are asked to
produce definitions which are then verified. The rational behind checking the definitions
is that in the context of refinement/intersection type inference, the challenge is to produce
types for the function that ensure the program is correct. The definitions are thus
important for us, since the program verification tool using HoIce in this context will ask

6 https://chc-comp.github.io/
7 Available at https://github.com/hopv/benchmarks/tree/master/clauses

https://github.com/Z3Prover/z3/commit/d6298b089d84b0a197a059749552a48bc178312b
https://chc-comp.github.io/
https://github.com/hopv/benchmarks/tree/master/clauses

HoIce 7

100

101

102

103

 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im
e

in

s
e
c
o
n
d
s

(l
o
g
s
c
a
le
)

Benchmarks passed (of 3586)

hoice 1.0 (1545)
hoice 1.5 inactive (1705)
hoice 1.5 partial (1964)

hoice 1.5 breaking (1987)

Fig. 1: Cumulative plot over the CHC-COMP 2018 linear arithmetic benchmarks.

for them. Spacer clearly outperforms HoIce on the benchmarks it can solve, but fails on
26 of them. While 17 are actual timeouts, Spacer produces definitions that do not verify
the clauses on the remaining 9 benchmarks. The problem has been reported but is not
resolved at the time of writing. Regardless of spurious definitions, HoIce still proves
more (all) of our benchmarks.

Last, Figure 2b compares HoIce and Spacer on the CHC-COMP benchmarks men-
tioned above.A lot of themare large enough that checking the definitions of the predicates
is a difficult problem in itself: we thus did not check the definitions for these bench-
marks for practical reasons. There are 632 satisfiable (438 unsatisfiable) benchmarks
that Spacer can solve on which HoIce reaches the timeout, and 49 satisfiable (4 unsatis-
fiable) that HoIce can solve but Spacer times out on. Spacer is in general much faster and
solves a number of benchmarks much higher than HoIce. We see several reasons for this.
First, some of the benchmarks are very large and trigger bottlenecks in HoIce, which is
a very young tool compared to Z3/Spacer. These are problems of the implementation
(not of the approach) that we are currently addressing. Second, HoIce is optimized for
solving clauses stemming from functional program verification. The vast majority of the
CHC-COMP benchmarks come from imperative program verification, putting HoIce
out of its comfort zone. Last, a lot of these benchmarks are unsatisfiable, which the Ice
framework in general is not very good at. HoIce was developed completely for satisfiable
Horn clauses, as we believe proving unsatisfiability (proving programs unsafe) would
be better done by a separate engine. Typically a bounded model-checking tool.

8 Champion et al.

10-2

10-1

100

10-2 10-1 100

s
p
a
c
e
r,

6
5
0
/6
7
6

p
a
s
s
e
d

(s
e
c
o
n
d
s
)

hoice 1.5, 676/676 passed (seconds)

Timeout Error Sat (676)

(a) On our benchmarks.

10-2

10-1

100

101

10-2 10-1 100 101

s
p
a
c
e
r,

3
1
1
7
/3
5
8
5

p
a
s
s
e
d

(s
e
c
o
n
d
s
)

hoice 1.5, 1987/3585 passed (seconds)

Unsat (1209) Sat (1969)

(b) On the CHC-COMP 2018 benchmarks.

Fig. 2: Comparison between HoIce and Z3 Spacer.

6 Conclusion

In this paper we discussed the main improvements implemented in HoIce since ver-
sion 1.0. We showed that the current version outperforms Spacer on our benchmarks
stemming from higher-order program verification.

Besides the never-ending work on optimizations and bug fixes, our next goal is
to support the theory of Algebraic Data Types (ADT). In our context of higher-order
functional program verification, it is difficult to find interesting, realistic use-cases that
do not use ADTs.

Acknowledgments

We thank the anonymous referees for useful comments. This work was supported by
JSPS KAKENHI Grant Number JP15H05706.

References

1. The Rust language. https://www.rust-lang.org/en-US/
2. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org (2016)

3. Bjørner, N., Gurfinkel, A.,McMillan, K.L., Rybalchenko, A.: Horn clause solvers for program
verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner, B., Schulte, W.
(eds.) Fields of Logic and Computation II - Essays Dedicated to Yuri Gurevich on the
Occasion of His 75th Birthday. Lecture Notes in Computer Science, vol. 9300, pp. 24–51.
Springer (2015)

4. Bjørner, N., McMillan, K.L., Rybalchenko, A.: Program verification as satisfiability modulo
theories. In: SMT@IJCAR. EPiC Series in Computing, vol. 20, pp. 3–11. EasyChair (2012)

5. Bjørner, N., McMillan, K.L., Rybalchenko, A.: Higher-order program verification as satisfi-
ability modulo theories with algebraic data-types. CoRR abs/1306.5264 (2013)

https://www.rust-lang.org/en-US/

HoIce 9

6. Champion, A., Chiba, T., Kobayashi, N., Sato, R.: Ice-based refinement type discovery for
higher-order functional programs. In: TACAS (1). Lecture Notes in Computer Science, vol.
10805, pp. 365–384. Springer (2018)

7. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: A robust framework for learning
invariants. In: Proceedings of CAV 2014. LNCS, vol. 8559, pp. 69–87. Springer (2014)

8. Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision trees and
implication counterexamples. In: Proceedings of POPL 2016. pp. 499–512. ACM (2016)

9. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A., Sebastiani,
R. (eds.) Theory and Applications of Satisfiability Testing - SAT 2012 - 15th International
Conference, Trento, Italy, June 17-20, 2012. Proceedings. LectureNotes inComputer Science,
vol. 7317, pp. 157–171. Springer (2012)

10. Hojjat, H., Konecný, F., Garnier, F., Iosif, R., Kuncak, V., Rümmer, P.: A verification toolkit
for numerical transition systems - tool paper. In: Giannakopoulou, D., Méry, D. (eds.) FM
2012: Formal Methods - 18th International Symposium, Paris, France, August 27-31, 2012.
Proceedings. Lecture Notes in Computer Science, vol. 7436, pp. 247–251. Springer (2012)

11. Komuravelli, A., Gurfinkel, A., Chaki, S., Clarke, E.M.: Automatic abstraction in smt-based
unbounded software model checking. CoRR abs/1306.1945 (2013)

12. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Proceedings of TACAS 2008.
LNCS, vol. 4963, pp. 337–340. Springer (2008)

10 Champion et al.

(set-logic HORN)

(declare-fun mc_91 (Int Int) Bool)

(assert
(forall ((n Int))
(=> (> n 100)

(mc_91 n (- n 10))
)))
(assert
(forall ((n Int) (tmp Int) (res Int))
(=> (and (not (> n 100)) (mc_91 (+ n 11) tmp) (mc_91 tmp res))

(mc_91 n res)
)))
(assert
(forall ((m Int) (res Int))
(=> (and (<= m 101) (mc_91 m res))

(= res 91)
)))

(check-sat)
(get-model)

Fig. 3: A legal input script corresponding to Example 1.

A Input/Output Format Example

This section illustrates HoIce’s input/output format. For a complete discussion on the
format, please refer to the HoIce wiki https://github.com/hopv/hoice/wiki.
HoIce takes special SMT-LIB [2] scripts as inputs such as the one on Figure 3. A
script starts with an optional set-logic HORN command, followed by some predicate
declarations using the declare-fun command. Only predicate declaration are allowed:
all declarations must have codomain Bool.

The actual clauses are given as assertions which generally start with some univer-
sally quantified variables, wrapping the implication between the body and the head of
the clause. Negated existential quantification is also supported, for instance the third
assertion on Figure 3 can be written as
(assert
(not
(exist ((m Int) (res Int))
(and (<= m 101) (mc_91 m res) (not (= res 91)))

)))

The check-sat command asks whether the Horn clauses are satisfiable, which
they are, and HoIce answers sat. Otherwise, it would have answered unsat. Since the
clauses are satisifiable, it is legal to ask for a model using the get-model command.
HoIce provides one in the standard SMT-LIB fashion:
(model
(define-fun mc_91
((v_0 Int) (v_1 Int)) Bool
(or
(and (= (+ v_0 (- 10) (* (- 1) v_1)) 0) (or (= (+ v_1 (- 91)) 0) (>= v_0 102)))
(and (>= (* (- 1) v_0) (- 100)) (or (= (+ v_1 (- 91)) 0) (>= v_0 102))

(not (= (+ v_0 (- 10) (* (- 1) v_1)) 0))
))))

https://github.com/hopv/hoice/wiki

HoIce 11

Note that hoice can read scripts from files, but also on its standard input in an
interactive manner.

B Arguments

HoIce has no mandatory arguments. Besides options and flags, users can provide a file
path argument in which case HoIce reads the file as an SMT-LIB script encoding a Horn
clause problem (see Appendix A). When called with no file path argument, HoIce reads
the script from its standard input. In both cases, HoIce outputs the result on its standard
output.

Running HoIce with -h or --help will display the (visible) options. We do not
discuss them here. Instead, let us clarify which options we used for the results presented
in Section 5. The relevant option for partial samples from Section 4.1 is --partial,
while --bias_cexs and --assistant activate constraint breaking as discussed in
Section 4.2. More precisely, --bias_cexs activates contraint breaking during coun-
terexample extraction, while --assistant triggers post-extraction simplification. The
commands ran for the variants of Figure 1 are thus

hoice 1.5 inactive hoice --partial off --bias_cexs off --assistant off

hoice 1.5 partial hoice --partial on --bias_cexs off --assistant off

hoice 1.5 breaking hoice --partial on --bias_cexs on --assistant on

As far as the experiments are concerned, we ran Z3 revision d6298b0 with only one
option, the one activating Spacer: fixedpoint.engine=spacer.

https://github.com/Z3Prover/z3/commit/d6298b089d84b0a197a059749552a48bc178312b

	HoIce: An ICE-based Non-Linear Horn Clause Solver

