
Combining Higher-Order Model Checking with
Refinement Type Inference

Ryosuke Sato

Kyushu University

Fukuoka, Japan

ryosuke@ait.kyushu-u.ac.jp

Naoki Iwayama

The University of Tokyo

Tokyo, Japan

iwayama@kb.is.s.u-tokyo.ac.jp

Naoki Kobayashi

The University of Tokyo

Tokyo, Japan

koba@is.s.u-tokyo.ac.jp

Abstract
There have been two major approaches to fully automated

verification of higher-order functional programs: higher-

order model checking and refinement type inference. The

former approach is precise, but suffers from a bottleneck in

the predicate discovery phase. The latter approach is gener-

ally faster than the former, thanks to the recent advances in

constrained Horn clause (CHC) solving, but is imprecise, in

that it rejects some valid programs. To take the best of the

two approaches, we refine the higher-order model checking

approach, by employing CHC solving in the predicate dis-

covery phase. We have implemented the new approach and

confirmed that the new system can verify more programs

than those based on the previous two approaches.

CCS Concepts • Theory of computation → Program
verification; Program analysis; Invariants;

Keywords Automatic Verification, Higher-Order Programs,

Higher-order Model Checking, Constrained Horn Clauses,

Refinement Types

ACM Reference Format:
Ryosuke Sato, Naoki Iwayama, and Naoki Kobayashi. 2019. Com-

bining Higher-Order Model Checking with Refinement Type In-

ference. In Proceedings of the 2019 ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation (PEPM ’19), January
14–15, 2019, Cascais, Portugal. ACM, New York, NY, USA, 7 pages.

https://doi.org/10.1145/3294032.3294081

1 Introduction
There have recently been active studies on automated tech-

niques for higher-order program verification [17, 24–26, 29].

Among others, the two major approaches have been higher-

order model checking [14, 17, 22, 24] and refinement type

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PEPM ’19, January 14–15, 2019, Cascais, Portugal
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6226-9/19/01. . . $15.00

https://doi.org/10.1145/3294032.3294081

Program

Step 1:

Predicate

Abstraction

new predicates

Step 4:

Predicate

Discovery

Step 3:

Feasibility

Checking

Step 2:

Model

Checking

counterexample

Safe Unsafe

Figure 1. Higher-order model checking with predicate ab-

straction and CEGAR

inference [10, 26, 27, 29]. Both the approaches have advan-

tages and disadvantages. In the present paper, therefore, we

aim to take the best of both the approaches, by extending

the former approach with CHC (constrained Horn clause)

solving, the key ingredient used in the latter approach.

Before explaining our new approach, let us summarize the

two approaches and their advantages and disadvantages.

Higher-Order Model Checking (HOMC) Approach Fig-

ure 1 shows a typical architecture of the higher-order model

checking (HOMC, for short) approach [14]. Given a higher-

order functional program as an input, predicate abstraction
is first applied to obtain a higher-order Boolean program as

an overapproximation of the original program (Step 1). For

example, consider the following program.

let rec id x =
if x <= 0 then x else 1 + id (x-1)

let main n = assert (id n = n)

Suppose that we wish to verify that the assertion never fails

for any integer input n of the function main. By abstracting

the return value of id by the predicate λr . r = x (where

x is the argument of id), we obtain the following Boolean

program:

let rec id' () =
if * then true else id'()

let main' () = assert (id'())

47

https://doi.org/10.1145/3294032.3294081
https://doi.org/10.1145/3294032.3294081

PEPM ’19, January 14–15, 2019, Cascais, Portugal Ryosuke Sato, Naoki Iwayama, and Naoki Kobayashi

Here, * represents a non-deterministic Boolean value, and

id’ is an abstract version of id, which takes the unit value

and returns a Boolean value that represents whether the

return value r of the original function id satisfies r = x .
(How to obtain id’ above does not concern us here; an inter-

ested reader may wish to consult [14].) Higher-order model

checking [13, 16, 24] can then be used to check whether the

abstract program is safe (Step 2). In this case, the abstract

program is indeed safe (i.e. the assertion never fails); thus the

verification succeeds. If we use the predicate λr .r > 0 instead

of λr .r = x , we obtain the following abstract program:

let rec id'' () =
if * then false
else if id''() then true else *

let main'' () = assert(let r = id''() in *)

Here, id’’ returns a Boolean value of whether id returns

a positive integer. Since that information does not help us

determine whether id n=n, the argument of the assert com-

mand may evaluate to false. A higher-order model checker

thus yields the following error path as a counterexample.

main’’() −→D assert(let r = id’’() in *)
−→D assert(let r = if true then ... in *)
−→D assert(let r = false in *)
−→D assert(false) −→D fail

In Step 3 of Figure 1, we check whether the corresponding

path of the original program (i.e., a path that takes the then-

branch in id, and the argument of assert evaluates to false)
is feasible. Since it is infeasible (because id n must evaluate

to n if the then-branch is chosen in id), the counterexample

is spurious for the original program. We then proceed to

Step 4, and find a new predicate from a proof that the path is

infeasible (this predicate discovery phase will be discussed

in more detail later). If the new predicate is λr .r = x , the
verification succeeds in the next iteration.

Kobayashi et al. [14] have implemented an automated

verification tool MoCHi for a subset of OCaml. Advantages

of the verification method are that it is precise (in particular,

it never reports false positives), and that it can generate a

counterexample if a program is unsafe. The tool, however,

suffers from a serious bottleneck in the predicate discovery

phase: for some valid programs, too specific predicates are

repeatedly found and, as a result, the loop of Steps 1–4 (called

the CEGAR loop) never terminates.

Refinement Type Inference (RTI) Approach In the re-

finement type inference (RTI, for short) approach [10, 26,

27, 29], the safety problem (of checking whether a given

program reaches an error state) is reduced (in a sound but

incomplete manner) to the typability problem in a refine-

ment type system [8, 18, 28]. Then the typability problem is

further reduced to the satisfiability problem for constrained

Horn clauses (CHC), and CHC solvers [4] are used to check

the satisfiability.

For the example of id program above, we first prepare the

following template for the type of id:

x : {ν : int | P(ν)} → {r : int | Q(x , r)} .

Here, P and Q are predicate variables that represent the pre-

and post-conditions of the function: if an integer argument

x of id satisfies P(x), then a return value r satisfies Q(x , r).
Based on a standard refinement type system (such as the

one used in Liquid types [18]), the typability of the whole

program is expressed by the following constraints on P and

Q :

∀n.P(n) ∀n, r .(Q(n, r) ⇒ n = r)
∀x , r .(P(x) ∧ x ≤ 0 ⇒ Q(x ,x))
∀x , r .(P(x) ∧ x > 0 ⇒ P(x − 1))

∀x , r .(P(x) ∧ x > 0 ∧Q(x − 1, r) ⇒ Q(x , 1 + r))

Here, the constraints on the first and second lines respec-

tively come from the main function, and the then-clause of

the id function. Those on the third and fourth lines come

from the else-clause. (We do not discuss the detail on how

these are generated; an interested reader maywish to consult,

e.g., [26].) The above constraints are satisfied by P(x) ≡ true
andQ(x , r) ≡ x = r . Thus, we can conclude that the program

is typable, and hence also safe.

This approach is often faster than the HOMC approach,

partially thanks to the recent advances in CHC solvers [4, 6,

27]. A disadvantage is that it is sometimes imprecise, reject-

ing some valid programs due to the incompleteness of the

underlying refinement type system.

Our New Approach To take the best of both approaches,

we refine the HOMC approach by employing the RTI ap-

proach for predicate discovery (Step 4 in Figure 1). More

precisely, from a spurious counterexample obtained in Step 3,

we construct a program slice of the original program, which

consists of only the program points visited by the spurious

counterexample. We then apply refinement type inference

for the slice instead of the original program. If the inference

succeeds, we collect predicates that occur in the inferred

refinement types and add them as predicates used in the

predicate abstraction phase (Step 1) of the next iteration.

For the example of id program above and the spurious

counterexample obtained from main’’, the program slice is:

let rec id x =
if x <= 0 then x else _

let main n = assert (id n = n)

Here, the part _ is ignored by RTI; in an implementation, it

can be implemented as an infinite loop that never fails. From

the slice, we obtain the following CHCs:

∀n.P(n) ∀n, r .(Q(n, r) ⇒ n = r)
∀x , r .(P(x) ∧ x ≤ 0 ⇒ Q(x ,x))

This set of CHCs is a subset of those given in the section

on the RTI approach, obtained by removing the constraints

from the else-clause of the original program. We can obtain

48

Combining Higher-Order Model Checking with Refinement Type ... PEPM ’19, January 14–15, 2019, Cascais, Portugal

P(x) ≡ true andQ(x , r) ≡ x = r as a solution. Thus, λr .x = r
is added as a predicate used for abstracting the return value

of id. The verification succeeds in the next iteration of the

CEGAR loop.

The RTI for a program slice may fail due to the incom-

pleteness of the underlying refinement type system. In that

case, we fall back to the previous approach [14] for pred-

icate discovery. Actually, the previous approach [14] uses

a kind of RTI, but for a different notion of program slice

called a straightline higher-order program (SHP). The main

difference is that an SHP unfolds recursion, and replicates

a function definition for each function call occurring in a

(spurious) counterexample, so that the SHP does not contain

any recursion. An advantage of using an SHP is that the

resulting CHCs are acyclic and hence always guaranteed to

have a solution. The main disadvantage is, as already men-

tioned, that inferred predicates are often too specific (e.g.,

r = 0 ∧ x = 0, instead of r = x) to be used for predicate

abstraction.

We have implemented the new approach and confirmed

through experiments that the new method can prove more

programs to be safe than the previous two approaches.

The rest of this paper is structured as follows. Section 2

explains our new method in a little more detail. Section 3 re-

ports an implementation and experimental results. Section 4

discusses related work, and Section 5 concludes the paper.

2 Our Method
This section explains our method and discusses its properties.

We avoid a boring reformalization of the HOMC approach,

by focusing on the difference from [14] below.

2.1 The Target Language and Verification Goal
The target language of verification is essentially the same

as that of [14]: a simply-typed, call-by-value, higher-order

functional language with recursion, Booleans, and integers.

The syntax of the core language is given by:

D (programs) ::= { f1 x̃1 = e1, . . . , fn x̃n = en}

e (expressions) ::= x | c | ∗B | e1 e2

| if e1 then e2 else e3 | fail
κ (simple types) ::= B | κ1 → κ2

B (base types) ::= int | bool | unit

Here, ∗B evaluates to a value of base typeB in a non-deterministic

manner. The term fail aborts the evaluation of the whole

program. The assert expression assert(e) used in Section 1

can be expressed as if e then () else fail. We assume that

every function in D has a non-zero arity, and that D contains

a distinguished function symbol main ∈ { f1, . . . , fn} whose
simple type is unit→ unit.
We write −→D for the small-step reduction relation on

terms (which can be defined in a standard manner [14]),

and =⇒D for its reflexive and transitive closure. The goal

of the verification is, given a program D, to check whether

main() ≠⇒D fail.

2.2 The New Method
We summarize the difference from the original method [14]

below, and show that the new method satisfies desired prop-

erties like the progress property (stated as Theorem 1 below).

As mentioned in Section 1, the main change is in Step 4. The

other steps remain almost the same, except on the following

points:

• In the predicate abstraction phase, we embed program

point labels of the original program into an abstract

program, so that a counterexample generated by a

higher-order model checker contains enough infor-

mation for constructing the corresponding program

slice.

• In Step 2, there can be infinitely many counterexam-

ples for an abstract program, and which counterex-

ample is chosen affects the quality of the predicates

discovered in Step 4. We have thus modified Step 2 so

that we have more control over the choice of coun-

terexamples; this effect will be reported in Section 3.

As already sketched in Section 1, Step 4 proceeds as fol-

lows.

4-1 Given the original program D and a counterexample

π (which is a sequence consisting of program point

labels), construct the program slice Dπ , obtained from

D by replacing all the subterms whose labels do not

occur in π with an infinite loop “loop()”, defined by

loop x = loop x (_ in Section 1).

4-2 Construct a set C of CHCs, such that C is satisfiable

if and only if Dπ is typable in the refinement type

system, following [6].

4-3 If C has a solution θ (which is an assignment of a

predicate to each predicate variable), then add predi-

cates occurring in θ to the abstraction type environ-

ment [14], which specifies what predicates should be

used for abstracting each subterm of t . For the example

in Section 1, the abstraction type environment used for

obtaining main’’ is id : (x : int[]) → int[λν .ν > 0],

and the one after the predicate discovery is id : (x :

int[]) → int[λν .ν > 0, λν .ν = x], which means that

the argument of id should be abstracted to a unit value,
whereas the return value ν should be abstracted to a

pair of Boolean values that represent whether ν > 0

and ν = x respectively (see [14] for details on abstrac-

tion types).

4-4 If C does not have a solution, we fall back to the previ-

ous method: construct an SHP and find new predicates

from it [14].

49

PEPM ’19, January 14–15, 2019, Cascais, Portugal Ryosuke Sato, Naoki Iwayama, and Naoki Kobayashi

As in the previous method [14], the new method satis-

fies the following “progress property”, that the same coun-

terexample is not found twice. (Some familiarity with [14] is

required to understand the proof sketch.)

Theorem 1. Let D be a program, and let Γ be an abstraction
type constructed based on a (spurious) counterexample π . Let
D ′ be the most precise abstraction D obtained (based on the
predicate abstraction rules in [14]) by using Γ. Then, D ′ does
not have π as a counterexample.

Proof sketch. It suffices to consider the case where Γ is con-

structed in Step 4-3 above (since the case for Step 4.4 has

been proved in [14]). By the assumption that Γ is constructed
in Step 4-3, the slice Dπ is typable under a refinement type

environment ∆ such that ∆ ∈ DepTy(Γ) (where DepTy(Γ) de-
notes the set of refinement type environments constructed

using the predicates in Γ; see [14] for the precise definition).
By Theorem 4.4 of [14], main() ≠⇒D′

π fail holds for the most

precise abstraction D ′
π of Dπ obtained by using Γ, Let D ′

be

the most precise abstraction of D obtained by using Γ. By the
compositionality of the predicate abstraction transformation

of [14], we may assume that D ′
π is a slice of D ′

. Thus, if D ′

has an error path as a counterexample, then it must contain

a program point that does not belong to Dπ (thus, it cannot

be π). □

We can also prove that our approach is strictly more pow-

erful than the RTI approach, under a reasonable assumption.

Theorem 2. Suppose that the CHC solver used in Step 4-2
satisfies the “monotonicity property”, that if the solver can find
a solution for a set C of CHCs, then it can also find a solution
for C′ for any subset C′ ⊆ C. Then, any program D that is
proved safe in the RTI approach can also be proved safe in our
new approach.

Proof sketch. Suppose that a programD can be proved safe in

the RTI approach. Let C be the set of CHCs generated from

D (such that D is typable if and only if C is satisfiable). Then,

since any set C′
of CHCs generated in Step 4-2 is a subset of

C, Step 4-3 never fails by the monotonicity assumption. By

the proof of the progress property above, the CEGAR loop

must eventually terminate (since there are only finitely many

slices and the slice used in a previous predicate discovery

phase does not occur again). □

To see that the new approach is strictly more powerful

than RTI (even without using Step 4-4), consider the follow-

ing program:

let twice f x = f (f x) in
let id x = x in
let neg x = -x in
let main n = if * then assert(twice id n = n)

else assert(twice neg n = n)

The program is not typable in the usual refinement type

system (without intersection types) [6, 26], as we need to

assign different types for the two calls of twice. Since the
slices obtained by removing any one of the assert expressions

are typable, however, Step 4-3 above can successfully find

appropriate predicates, and the verification succeeds.

3 Experiments
Wehave implemented ourmethod as an extension of MoCHi

1
,

a software model checker for higher-order programs. We use

HoIce
2
[6] as the underlying CHC solver; as reported in [6],

Spacer
3
[15] is generally faster, HoIce tends to infer simpler

solutions, which is important for our use of CHC solving in

predicate discovery. We have conducted experiments on a

machine with Intel Core i7-3930K 3.20 GHz and 16 GB of

memory with a timeout of 120 seconds.

We evaluated our implementation against:

• MoCHi: The original MoCHi

• RCaml: Refinement type checking and inference sys-

tem based on CHC solving [27]

• RT-HoIce: Refinement type checking with HoIce base

on the method described in Champion et al.’s work [6]

• RT-Spacer: Same as RT-HoIce but using Spacer as a

CHC solver

The latter three are fully automated refinement type check-

ers for OCaml; we do not compare our tool with Liquid

types [18], as it requires users to declare qualifiers. We use

262 benchmark programs written in OCaml, which con-

sist of those taken from the benchmark sets of [6, 21, 22]

and 24 programs added by ourselves
4
. Since the refinement

type checkers cannot prove the unsafety of a program, (un-

like the original MoCHi and our implementation, which

can prove the unsafety of a given program by reporting a

concrete counterexample), we use only safe programs for

evaluation. All the benchmark programs are available at

http://posl.ait.kyushu-u.ac.jp/~sato/.
We first compare our system with the verifiers except

RCaml [27] and then compare ours with RCaml separately,

because RCaml fails with errors before verification (probably

due to unsupported features of OCaml) for many of our

benchmark programs.

ComparisonwithMoCHi, RT-HoIce andRT-Spacer Fig-

ure 2 shows the result of the comparison with MoCHi, RT-

HoIce, and RT-Spacer, using cactus plots. The vertical axis

shows an elapsed time (measured in seconds), and the hor-

izontal axis shows the number of instances solved in the

given time. As shown in the figure, our implementation out-

performs the original MoCHi and the others in terms of

the number of solved instances. Within the given timeout

of 120 seconds, our tool, MoCHi, RT-HoIce, and RT-Spacer

1http://www-kb.is.s.u-tokyo.ac.jp/~ryosuke/mochi/
2https://github.com/hopv/hoice
3https://github.com/Z3Prover/z3
4
They have been added in another research context to expand the bench-

mark set. They are not necessarily favorable for our new approach.

50

http://posl.ait.kyushu-u.ac.jp/~sato/
http://www-kb.is.s.u-tokyo.ac.jp/~ryosuke/mochi/
https://github.com/hopv/hoice
https://github.com/Z3Prover/z3

Combining Higher-Order Model Checking with Refinement Type ... PEPM ’19, January 14–15, 2019, Cascais, Portugal

 0.1

 1

 10

 100

 0 50 100 150 200 250

V
e
ri
fi
c
a
ti
o
n
 t
im

e
 [
s
e
c
]

Number of solved instances

Ours

MoCHi

RT-Spacer

RT-HoIce

Figure 2. Comparison of our tool with MoCHi, RT-HoIce,

and RT-Spacer

 0.1

 1

 10

 100

 0.1 1 10 100

R
C

a
m

l
6
5
/7

7
 p

a
s
s
e
d
 (

1
2
 t
im

e
o
u
ts

)

Ours
76/77 passed (1 timeout)

Figure 3. Comparison with RCaml

respectively could verify 255, 229, 200, and 214 programs,

out of the 262 programs. More than half of the failures of

RT-HoIce and RT-Spacer are due to the incompleteness of

the underlying refinement type system.

For easy instances, the refinement type checkers are much

faster than MoCHi and ours. For example, if we shorten

the timeout from 120 seconds to one second, then our tool

could verify only 126 programs, while RT-HoIce verified 185

programs.

Comparison with RCaml We next compare our tool with

RCaml. The result is shown in Figure 3. We used only 76

programs, a subset of the benchmark programs above that

RCaml can take as input; RCaml fails with errors for the

other programs. As in the comparison with RT-HoIce and

RT-Spacer, our tool could verify more programs than RCaml,

although RCaml was faster than ours for many of the pro-

grams.

 0.1

 1

 10

 100

 0.1 1 10 100

M
u
lt
ip

le
 c

o
u
n
te

re
x
a
m

p
le

2
5
5
/2

6
2
 p

a
s
s
e
d
 (

7
 t
im

e
o
u
ts

)

Single counterexample
255/262 passed (7 timeouts)

Figure 4. Comparison with the variation that uses multiple

counterexamples

Single vs multiple counterexamples We have also tested

two kinds of variations of our method. The first variation

generates CHCs from multiple counterexamples instead of a

single counterexample. More precisely, given a set of coun-

terexamples, we generate a program slice by removing only

the subterms that are not used in any of the counterexamples.

This is based on the previous work on MoCHi [22], which

reported that the predicate discovery was improved by using

multiple counterexamples.

Figure 4 shows a comparison between the default version

(that uses a single counterexample in the predicate discov-

ery phase of each CEGAR loop) and the variation that uses

multiple counterexamples. Contrary to our expectation, we

did not observe a significant difference between them.

Short vs long counterexamples The second kind of vari-

ation is about the choice of a counterexample. There is an

obvious trade-off on the length of counterexamples. Whilst

a longer counterexample should be more useful for find-

ing more general predicates (since it covers more program

points), it may cost more time for CHC solving. To evalu-

ate how the length of a counterexample affects the overall

performance, we have modified Step 2 in Figure 1, so that

10 counterexamples are generated (if there are any), and

created two variations that pick the shortest/longest coun-

terexample among the 10 counterexamples. We have tested

the two variations, using 152 programs, obtained from the

benchmark suite above by removing (i) the programs for

which the counterexample search does not terminate in 180

seconds, and (ii) the programs that are verified in the first

CEGAR loop (i.e., we use only programs that need predicate

discovery step at least once). The timeout has been set to 120

seconds, excluding the time for searching counterexamples.

Figure 5a shows the result of the comparison between the

variations that use the shortest and longest counterexamples.

Whilst the numbers of the solved instances of them are the

51

PEPM ’19, January 14–15, 2019, Cascais, Portugal Ryosuke Sato, Naoki Iwayama, and Naoki Kobayashi

 1

 10

 100

 1 10 100

L
o
n
g
 (

1
3
5
/1

5
2
 p

a
s
s
e
d
)

A
v
e
ra

g
e
 l
e
n
g
th

 o
f
c
o
u
n
te

re
x
a
m

p
le

:
2
1
.5

8
7

Short (134/152 passed)
Average length of counterexample: 12.1404

(a) Comparison of the variations of our method

 1

 10

 100

 1 10 100

L
o
n
g
 (

7
4
/1

5
2
 p

a
s
s
e
d
)

A
v
e
ra

g
e
 l
e
n
g
th

 o
f
c
o
u
n
te

re
x
a
m

p
le

:
2
1
.2

3
3
9

Short (114/152 passed)
Average length of counterexample: 12.3915

(b) Comparison of the variations of the original method

Figure 5.Comparisons between the variations that use short

and long counterexamples

same, the latter is faster than the former for 77.6 percent of
the programs.

Interestingly, the effect of the lengths of counterexamples

is opposite for the originalMoCHi. Figure 5b shows the result

of the comparison between the variations of MoCHi that

use the shortest and longest counterexamples. The variation

using the shortest counterexample is generally faster than

the one using the longest counterexample.

4 Related Work
There has been a lot of work on verification that uses CHCs [1,

4–6, 8, 9, 12, 18–20, 26]. Thesemethods first translate verifica-

tion problems into CHC satisfiability problems (some of them

via refinement type inference problems [6, 12, 18, 26, 27]),

and solve them by their original methods or by off-the-shelf

solvers. In contrast, our method uses CHC solving (via re-

finement type inference for a program slice) only for the

purpose of predicate discovery, which has been the main

bottleneck of the higher-order model checking approach.

For verification of higher-order functional programs [6, 18],

our method is strictly more powerful than CHC-based RTI

approaches, as discussed in Section 2.

Terauchi [25] also uses refinement (intersection) type in-

ference in an interesting manner. His method applies refine-

ment intersection type inference to a recursion-free program,

obtained from the original program by unfolding recursive

function definitions a finite number of times. His method

then checks whether the original program is typable using

the inferred types. Since only recursion-free CHCs are used

in his method, his method suffers from a similar problem to

MoCHi; inferred types tend to be too specific to be used for

typing the whole program. As in other RTI-approaches (and

unlike in the HOMC approach), his method cannot disprove

the safety of programs.

In the context of verification of imperative programs, there

are some studies to improve a predicate discovery method,

by manipulating counterexamples and controlling interpola-

tion [2, 3, 7, 11]. For example, Beyer et al. [3] have proposed a

method that generates multiple counterexamples from a sin-

gle counterexample by using path slicing [11]. These meth-

ods are not directly applicable to the context of higher-order

program verification; it is left for future work to combine

them with our method.

Terao [23] has also proposed another refinement of the

higher-order model checking approach. His proposal of lazy

abstraction aims to improve bottleneck in the predicate ab-

straction phase (Step 1 in Figure 1). Thus, his method is or-

thogonal to ours; it would be useful to combine his method

with ours.

5 Conclusion
We have a refinement of the higher-order model checking

approach to program verification, which incorporates CHC-

based refinement type inference into the predicate discovery

phrase. We have implemented the proposed method and con-

firmed its effectiveness through experiments. As reported

in the last experiment, the choice of counterexamples sig-

nificantly affects the overall performance of our method;

how to find good counterexamples is left for future work.

A tighter integration between higher-order model checking

and refinement type inference (or CHC solving) is also left

for future work.

Acknowledgment
We would like to thank anonymous referees for useful com-

ments. This work was supported by JSPS KAKENHI Grant

Number JP15H05706 and JP18K18030.

References
[1] Tewodros A. Beyene, Corneliu Popeea, and Andrey Rybalchenko. 2013.

Solving Existentially Quantified Horn Clauses. In Computer Aided

52

Combining Higher-Order Model Checking with Refinement Type ... PEPM ’19, January 14–15, 2019, Cascais, Portugal

Verification - 25th International Conference, CAV 2013, Saint Petersburg,
Russia, July 13-19, 2013. Proceedings. 869–882.

[2] Dirk Beyer, Stefan Löwe, and Philipp Wendler. 2015. Refinement

Selection. In Model Checking Software - 22nd International Symposium,
SPIN 2015, Stellenbosch, South Africa, August 24-26, 2015, Proceedings.
20–38.

[3] Dirk Beyer, Stefan Löwe, and Philipp Wendler. 2015. Sliced Path Pre-

fixes: An Effective Method to Enable Refinement Selection. In Formal
Techniques for Distributed Objects, Components, and Systems - 35th IFIP
WG 6.1 International Conference, FORTE 2015, Held as Part of the 10th In-
ternational Federated Conference on Distributed Computing Techniques,
DisCoTec 2015, Grenoble, France, June 2-4, 2015, Proceedings. 228–243.

[4] Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey

Rybalchenko. 2015. Horn Clause Solvers for Program Verification. In

Fields of Logic and Computation II - Essays Dedicated to Yuri Gurevich
on the Occasion of His 75th Birthday. 24–51.

[5] Nikolaj Bjørner, Kenneth L. McMillan, and Andrey Rybalchenko. 2013.

On Solving Universally Quantified Horn Clauses. In Static Analysis -
20th International Symposium, SAS 2013, Seattle, WA, USA, June 20-22,
2013. Proceedings. 105–125.

[6] Adrien Champion, Tomoya Chiba, Naoki Kobayashi, and Ryosuke

Sato. 2018. ICE-Based Refinement Type Discovery for Higher-Order

Functional Programs. In Tools and Algorithms for the Construction and
Analysis of Systems - 24th International Conference, TACAS 2018, Held
as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings,
Part I. 365–384.

[7] Vijay D’Silva, Daniel Kroening, Mitra Purandare, and Georg Weis-

senbacher. 2010. Interpolant Strength. In Verification, Model Checking,
and Abstract Interpretation, 11th International Conference, VMCAI 2010,
Madrid, Spain, January 17-19, 2010. Proceedings. 129–145.

[8] Cormac Flanagan. 2003. Automatic Software Model Checking Using

CLP. In Programming Languages and Systems, 12th European Sympo-
sium on Programming, ESOP 2003, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2003, Warsaw,
Poland, April 7-11, 2003, Proceedings. 189–203.

[9] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey

Rybalchenko. 2012. Synthesizing software verifiers from proof rules.

In ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012. 405–416.

[10] Kodai Hashimoto and Hiroshi Unno. 2015. Refinement Type Inference

via Horn Constraint Optimization. In Static Analysis - 22nd Interna-
tional Symposium, SAS 2015, Saint-Malo, France, September 9-11, 2015,
Proceedings. 199–216.

[11] Ranjit Jhala and Rupak Majumdar. 2005. Path slicing. In Proceedings of
the ACM SIGPLAN 2005 Conference on Programming Language Design
and Implementation, Chicago, IL, USA, June 12-15, 2005. 38–47.

[12] Ranjit Jhala, Rupak Majumdar, and Andrey Rybalchenko. 2011. HMC:

Verifying Functional Programs Using Abstract Interpreters. In Com-
puter Aided Verification - 23rd International Conference, CAV 2011, Snow-
bird, UT, USA, July 14-20, 2011. Proceedings. 470–485.

[13] Naoki Kobayashi. 2013. Model Checking Higher-Order Programs. J.
ACM 60, 3 (2013), 20:1–20:62.

[14] Naoki Kobayashi, Ryosuke Sato, and Hiroshi Unno. 2011. Predicate

abstraction and CEGAR for higher-order model checking. In Proceed-
ings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8,
2011. 222–233.

[15] Anvesh Komuravelli, Arie Gurfinkel, Sagar Chaki, and Edmund M.

Clarke. 2013. Automatic Abstraction in SMT-Based Unbounded Soft-

ware Model Checking. In Computer Aided Verification - 25th Interna-
tional Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.

Proceedings. 846–862.
[16] C.-H. Luke Ong. 2006. OnModel-Checking Trees Generated by Higher-

Order Recursion Schemes. In 21th IEEE Symposium on Logic in Com-
puter Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceed-
ings. 81–90.

[17] C.-H. Luke Ong and Steven J. Ramsay. 2011. Verifying higher-order

functional programs with pattern-matching algebraic data types. In

Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28,
2011. 587–598.

[18] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. 2008. Liq-

uid types. In Proceedings of the ACM SIGPLAN 2008 Conference on
Programming Language Design and Implementation, Tucson, AZ, USA,
June 7-13, 2008. 159–169.

[19] Philipp Rümmer, Hossein Hojjat, and Viktor Kuncak. 2013. Classifying

and Solving Horn Clauses for Verification. In Verified Software: Theories,
Tools, Experiments - 5th International Conference, VSTTE 2013, Menlo
Park, CA, USA, May 17-19, 2013, Revised Selected Papers. 1–21.

[20] Philipp Rümmer, Hossein Hojjat, and Viktor Kuncak. 2013. Disjunctive

Interpolants for Horn-Clause Verification. In Computer Aided Verifica-
tion - 25th International Conference, CAV 2013, Saint Petersburg, Russia,
July 13-19, 2013. Proceedings. 347–363.

[21] Ryosuke Sato and Naoki Kobayashi. 2017. Modular Verification of

Higher-Order Functional Programs. In Programming Languages and
Systems - 26th European Symposium on Programming, ESOP 2017, Held
as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings.
831–854.

[22] Ryosuke Sato, Hiroshi Unno, and Naoki Kobayashi. 2013. Towards a

scalable software model checker for higher-order programs. In Pro-
ceedings of the ACM SIGPLAN 2013 Workshop on Partial Evaluation and
Program Manipulation, PEPM 2013, Rome, Italy, January 21-22, 2013.
53–62.

[23] Taku Terao. 2018. Lazy Abstraction for Higher-Order Program Verifi-

cation. In Proceedings of the 20th International Symposium on Principles
and Practice of Declarative Programming, PPDP 2018, Frankfurt am
Main, Germany, September 03-05, 2018. 23:1–23:13.

[24] Taku Terao, Takeshi Tsukada, and Naoki Kobayashi. 2016. Higher-

Order Model Checking in Direct Style. In Programming Languages
and Systems - 14th Asian Symposium, APLAS 2016, Hanoi, Vietnam,
November 21-23, 2016, Proceedings. 295–313.

[25] Tachio Terauchi. 2010. Dependent types from counterexamples. In

Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2010, Madrid, Spain, January 17-23,
2010. 119–130.

[26] Hiroshi Unno and Naoki Kobayashi. 2009. Dependent type inference

with interpolants. In Proceedings of the 11th International ACM SIG-
PLAN Conference on Principles and Practice of Declarative Programming,
September 7-9, 2009, Coimbra, Portugal. 277–288.

[27] Hiroshi Unno, Sho Torii, and Hiroki Sakamoto. 2017. Automating

Induction for Solving Horn Clauses. In Computer Aided Verification
- 29th International Conference, CAV 2017, Heidelberg, Germany, July
24-28, 2017, Proceedings, Part II. 571–591.

[28] Hongwei Xi and Frank Pfenning. 1999. Dependent Types in Practical

Programming. In POPL ’99, Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San An-
tonio, TX, USA, January 20-22, 1999. 214–227.

[29] He Zhu and Suresh Jagannathan. 2013. Compositional and Lightweight

Dependent Type Inference for ML. In Verification, Model Checking, and
Abstract Interpretation, 14th International Conference, VMCAI 2013,
Rome, Italy, January 20-22, 2013. Proceedings. 295–314.

53

	Abstract
	1 Introduction
	2 Our Method
	2.1 The Target Language and Verification Goal
	2.2 The New Method

	3 Experiments
	4 Related Work
	5 Conclusion
	References

