
A Logical Foundation for Environment

Classifiers

Takeshi Tsukada1 and Atsushi Igarashi2

1 Tohoku University
2 Kyoto University

Abstract. Taha and Nielsen have developed a multi-stage calculus λα

with a sound type system using the notion of environment classifiers.
They are special identifiers, with which code fragments and variable dec-
larations are annotated, and their scoping mechanism is used to ensure
statically that certain code fragments are closed and safely runnable.
In this paper, we investigate the Curry-Howard isomorphism for environ-
ment classifiers by developing a typed λ-calculus λ.. It corresponds to
multi-modal logic that allows quantification by transition variables—a
counterpart of classifiers—which range over (possibly empty) sequences
of labeled transitions between possible worlds. This interpretation will
reduce the “run” construct—which has a special typing rule in λα—and
embedding of closed code into other code fragments of different stages—
which would be only realized by the cross-stage persistence operator
in λα—to merely a special case of classifier application. We prove that
λ. enjoys basic properties including subject reduction, confluence, and
strong normalization and that the execution of a well-typed λ. program
is properly staged. Finally, we show that the proof system augmented
with a classical axiom is sound and complete with respect to a Kripke
semantics of the logic.

1 Introduction

A number of programming languages and systems that support manipulation of
programs as data [1–5] have been developed in the last two decades. A popular
language abstraction in these languages consists of the Lisp-like quasiquotation

mechanism to create and compose code fragments and a function to run them
like eval in Lisp. For those languages and systems, a number of type systems
for so-called “multi-stage” calculi have been studied [5–11] to guarantee safety
of generated programs even before the generating program runs.

Among them, some seminal work on the principled design of type systems
for multi-stage calculi is due to Davies [7] and Davies and Pfenning [8]. They
discovered the Curry-Howard isomorphism between modal/temporal logics and
multi-stage calculi by identifying (1) modal operators in modal logic with type
constructors for code fragments treated as data and, in the case of temporal logic,
(2) the notion of time with computation stages. For example, the calculus λ© [7],
which can be thought as a reformulation of Glück and Jørgensen’s calculus for

multi-level generating extensions [6] by using explicit quasiquote and unquote
in the language, corresponds to a fragment of linear-time temporal logic (LTL)
with the temporal operator “next” (written ©) [12]. Here, linearly ordered time
corresponds to the level of nesting of quasiquotations, and a modal formula ©A
to the type of code of type A. It, however, does not treat eval; in fact, the code
type in λ© represents open code, that is, code that may have free variables,
so simply adding eval to the calculus does not work—code execution may fail
by unbound variables. The calculus λ¤ [8], on the other hand, corresponds to
(intuitionistic) modal logic S4 (only with the necessity operator ¤), in which
a formula ¤A is considered the type of closed code of type A. It supports safe
eval since every code is closed, but inability to deal with open code hampers
generation of efficient code. The following work by Taha and others [5, 13, 14, 9,
15] sought various forms of combinations of the two systems above to develop
expressive type systems for multi-stage calculi.

Finally, Taha and Nielsen [9] developed a multi-stage calculus λα, which was
later modified to make type inference possible [15] and implemented as a basis
of MetaOCaml. The calculus λα has a strong type system while supporting open
code, eval (called run), and the mechanism called cross-stage persistence (CSP),
which allows a value to be embedded in a code fragment evaluated later. For
the type system, they introduced the notion of environment classifiers, which are
special identifiers with which code fragments and variable declarations are anno-
tated. A key idea is to reduce the closedness checking of a code fragment (which
is useful to guarantee the safety of eval) to the freshness checking of a classi-
fier. Unfortunately, however, correspondence to a logic is not clear for λα any
longer, resulting in somewhat ad-hoc typing rules and complicated operational
semantics, which would be difficult to adapt to different settings.

In this paper, we investigate the Curry-Howard isomorphism for environment
classifiers by developing a typed λ-calculus λ.. The new calculus corresponds to
a multi-modal logic that allows quantification by transition variables—the coun-
terpart of environment classifiers. Multiple modalities correspond to indexing of
code types by classifiers and quantifiers to types for classifier abstractions, used
to ensure freshness of classifiers. One of our key ideas is to set, in the Kripke
semantics, classifiers to range over possibly empty sequences of labels, attached
to the transition function on possible worlds. A pleasant effect of this inter-
pretation is that it will reduce the run construct—which has a peculiar typing
rule in λα—and embedding of closed code into other code fragments of different
stages—which would be only realized by the CSP operator in λα—to merely a
special case of classifier application. Our technical contributions are as follows:

– Identification of a modal logic that corresponds to environment classifiers;

– Development of a new typed λ-calculus λ., naturally emerged from the cor-
respondence, with its syntax, operational semantics, and type system;

– Proofs of basic properties as a multi-stage calculus; and

– Proofs of soundness and completeness of the proof system (augmented with
a classical axiom) with respect to a Kripke semantics of the logic.

One missing feature in λ. is CSP for all types of values but we do not think it
is a big problem. First, CSP for primitive or function values is easy to add as
a primitive (if one gives up printing code representation of functional values as
in MetaOCaml). Second, as mentioned above, embedding closed code into code
fragments of later stages is supported by a different means. It does not seem
very easy to add CSP for open code to λ., but we think it is rarely needed.

Organization of the Paper. In Section 2, we review λα and informally describe
how the features of its type system correspond to those of a logic. In Section
3, we define the multi-stage calculus λ. and prove basic properties including
subject reduction, strong normalization, confluence, and the property that big-
step semantics implements staged execution. In Section 4, we formally define (a
classical version of) the logic that corresponds to λ. and prove soundness and
completeness of the proof system with respect to a Kripke semantics. Lastly, we
discuss related work and conclude. We omit proofs of the properties from the
paper; a full version of the paper with proofs is available at http://www.sato.
kuis.kyoto-u.ac.jp/~igarashi/papers/classifiers.html.

2 Interpreting Environment Classifiers in a Modal Logic

In this section, we informally describe how environment classifiers can be in-
terpreted in a modal logic. We start with reviewing Davies’ λ© [7] to get an
intuition of how notions in a modal logic correspond to those in a multi-stage
calculus. Then, along with reviewing main ideas of environment classifiers, we
describe our logic informally and how our calculus λ. is different from λα by
Taha and Nielsen [9].

2.1 λ
©: Multi-Stage Calculus Based on LTL

Davies has developed the typed multi-stage calculus λ©, which corresponds to a
fragment of LTL by the Curry-Howard isomorphism. It can be considered the λ-
calculus with a Lisp-like quasiquotation mechanism. We first review linear-time
temporal logic and the correspondence between the logic and the calculus.

Linear-time temporal logic is a sort of temporal logic, in which the truth
of propositions may depend on discrete and linearly ordered time, i.e., a given
time has a unique time that follows it. Some of the standard temporal operators
are © (to mean “next”), ¤ (to mean “always”), and U (to mean “until”). Its
Kripke semantics can be given by taking the set of natural numbers as possible
worlds; then, for example, the semantics of © is given by: n ° ©τ if and only
if n+ 1 ° τ , where n ° τ is the satisfaction relation, which means “τ is true at
world n.”

In addition to the usual Curry-Howard correspondence between propositions
and types and between proofs and terms, Davies has pointed out additional cor-
respondences between time and computation stages (i.e., levels of nested quota-
tions) and between the temporal operator © and the type constructor meaning

“the type of code of”. So, for example, ©τ1 → ©τ2, which means “if τ1 holds
at next time, then τ2 holds at next time,” is considered the type of functions
that take a piece of code of type τ1 and return code of type τ2. According to
this intuition, he has developed λ©, corresponding to the fragment of LTL only
with ©.

λ© has two new term constructors next M and prev M , which correspond
to the introduction and elimination rules of ©, respectively. The type judgment
of λ© is of the form Γ `n M : τ , where Γ is a context, M is a term, τ is a type (a
proposition of LTL, only with ©) and n is a natural number indicating a stage.
A context, which corresponds to assumptions, is a mapping from variables to
pairs of a type and a natural number, since the truth of a proposition depends
on time. The key typing rules are those for next and prev:

Γ `n+1 M : τ

Γ `n next M : ©τ

Γ `n M : ©τ

Γ `n+1 prev M : τ
.

The former means that, if M is of type τ at level n+1, then, at level n, next M
is code of type τ ; the latter is its converse. Computationally, next and prev
can be considered quasiquote and unquote, respectively. So, in addition to the
standard β-reduction, λ© has the reduction rule prev (next M) −→M , which
cancels next by prev.

The code types in λ© are often called open code types, since the quoted code
may contain free variables, so naively adding the construct to “run” quoted code
does not work, since it may cause unbound variable errors.

2.2 Multi-Modal Logic for Environment Classifiers

Taha and Nielsen [9] have introduced environment classifiers to develop λα,
which has quasiquotation, run, and CSP with a strong type system. We explain
how λα can be derived from λ©.3 Environment classifiers are a special kind of
identifiers with which code types and quoting are annotated: for each classifier
α, there are a type constructor 〈τ〉α for code and a term constructor 〈M〉α to
quote M . Then, a stage is naturally expressed by a sequence of classifiers, and
a type judgment is of the form Γ `A M : τ , where natural numbers in a λ©

type judgment are replaced with sequences A of classifiers. So, the typing rules
of quoting and unquoting (written ˜M) in λα are given as follows:

Γ `Aα M : τ

Γ `A 〈M〉α : 〈τ〉α
Γ `A M : 〈τ〉α

Γ `Aα ˜M : τ
.

Obviously, this is a generalization of λ©: if only one classifier is allowed, then
the calculus is essentially λ©.

The corresponding logic would also be a generalization of LTL, in which there
are several “dimensions” of linearly ordered time. A Kripke frame for the logic is

3 Unlike the original presentation, classifiers do not appear explicitly in contexts here.
The typing rules shown are accordingly adapted.

given by a transition system [12] in which each transition relation is a map. More

formally, a frame is a triple (S,L, {
α

−→| α ∈ L}) where S is the (non-empty) set

of states, L is the set of labels, and
α

−→ ∈ S → S for each α ∈ L. Then, the
semantics of 〈τ〉α is given by: s ° 〈τ〉α if and only if s′ ° τ for s

α
−→ s′, where s

and s′ are states.
The calculus λα has also a scoping mechanism for classifiers and it plays a

central role to guarantee safety of run. The term (α)M , which binds α in M ,
declares that α is used locally in M and such a local classifier can be instantiated
with another classifier by term M [β]. We show typing rules for them with one
for run below:

Γ `A M : τ α /∈ FV(Γ,A)

Γ `A (α)M : (α)τ

Γ `A M : (α)τ

Γ `A M [β] : τ [α := β]

Γ `A M : (α)〈τ〉α

Γ `A run M : (α)τ
.

The rule for (α)M requires that α does not occur in the context—the termM has
no free variable labeled α—and gives a type of the form (α)τ , which Taha and
Nielsen called α-closed type, which characterizes a relaxed notion of closedness.
The rule for run M says that an α-closed code fragment annotated with α can
be run. Note that 〈·〉α (but not (α)·) is removed in the type of run M . Taha and
Nielsen have shown that α-closedness is sufficient to guarantee safety of run.

When this system is to be interpreted as logic, it is fairly clear that (α)τ is a
kind of universal quantifier, as Taha and Nielsen has also pointed out [9]. Then,
the question is “What does a classifier range over?”, which has not really been
answered so far. Another interesting question is “How can the typing rule for
run be read logically?”

One plausible answer to the first question is that “classifiers range over the
set of transition labels”. This interpretation matches the rule for M [β] and it
seems that the typing rules without run (with a classical axiom) are sound and
complete with the Kripke semantics that defines s ° (α)τ by s ° τ [α := β] for
all β ∈ L. However, it is then difficult to explain the rule for run.

The key idea to solve this problem is to have classifiers range over the set of
finite (and possibly empty) sequences of transition labels and to allow a classifier
abstraction (α)M to be applied to also sequences of classifiers. Then, run will
be unified to a special case of application of a classifier abstraction to the empty

sequence. More concretely, we change the term M [β] to M [B], where B is a
possibly empty sequence of classifiers (the left rule below). When B is empty
and τ is 〈τ0〉

α (assuming τ0 do not include α), the rule (as shown as the right
rule below) can be thought as the typing rule of (another version of) run, since
α-closed code of τ0 becomes simply τ0 (without (α)· as in the original λα).

Γ `A M : (α)τ

Γ `A M [B] : τ [α := B]

Γ `A M : (α)〈τ0〉
α

Γ `A M [ε] : τ0

Another benefit of this change is that cross-stage persistence for closed code
(or embedding of persistent code [10]) can be easily expressed. For example, if
x is of the type (α)〈int〉α, then it can be used as code computing an integer at
different stages as in, say, 〈· · · (˜x[α]) + 3 · · · 〈· · · 4 + (˜˜x[αβ]) · · · 〉β · · · 〉α. So,
once a programmer obtains closed code, she can use it at any later stage.

Correspondingly, the semantics is now given by v, ρ; s ° τ where v is a valu-
ation for propositional variables and ρ is a mapping from classifiers to sequences
of transition labels. Then, v, ρ; s ° 〈τ〉α is defined by v, ρ; s′ ° τ where s′ is
reachable from s through the sequence ρ(α) of transitions and v, ρ; s ° (α)τ by:
v, ρ[A/α]; s ° τ for any sequence A of labels (ρ[A/α] updates the value of α
to be A). In Section 4, we give the formal definition of the Kripke semantics
and show that the proof system, based in the ideas above, with double negation
elimination is sound and complete to the semantics.

3 The Calculus λ
.

In this section, we define the calculus λ., based on the ideas described in the pre-
vious section: we first define its syntax, type system, and small-step full reduction
semantics and states some basic properties; then we define big-step call-by-value
semantics and shows that staged execution is possible with this semantics. Fi-
nally, we give an example of programming in λ.. We intentionally make notations
for type and term constructors different from λα because their precise meanings
are different; it is also to avoid confusion when we compare the two calculi.

3.1 Syntax

Let Σ be a countably infinite set of transition variables, ranged over by α and
β. A transition, denoted by A and B, is a finite sequence of transition variables;
we write ε for the empty sequence and AB for the concatenation of the two
transitions. We write Σ∗ for the set of transitions. A transition is often called
a stage. We write FTV(A) for the set of transition variables in A, defined by
FTV(α1α2 . . . αn) = {αi | 1 ≤ i ≤ n}.

Let PV be the set of base types (corresponding to propositional variables),
ranged over by b. The set Φ of types, ranged over by τ and σ, is defined by the
following grammar:

Types τ ::= b | τ → τ | .α τ | ∀α.τ .

A type is a base type, a function type, a code type, which corresponds to 〈·〉α of
λα, or an α-closed type, which corresponds to (α)τ . The transition variable α of
∀α.τ is bound in τ . In what follows, we assume tacit renaming of bound variables
in types. The type constructor .α connects tighter than → and → tighter than
∀: for example, .ατ → σ means (.ατ) → σ and ∀α.τ → σ means ∀α.(τ → σ).
We write FTV(τ) for the set of free transition variables, which is defined in a
straightforward manner.

Let Υ be a countably infinite set of variables, ranged over by x and y. The
set of terms, ranged over by M and N , is defined by the following grammar:

Terms M ::= x | M M | λx : τ.M | IαM | JαM | Λα.M | M A .

In addition to the standard λ-terms, there are four more terms, which correspond
to 〈M〉α, ˜M , (α)M , and M [β] of λα (respectively, in the order presented). Note

Γ, x : τ@A `A x : τ
(Var)

Γ, x : τ@A `A M : σ

Γ `A λx : τ.M : τ → σ
(Abs)

Γ `A M : τ → σ Γ `A N : τ

Γ `A M N : σ
(App)

Γ `Aα M : τ

Γ `A
Iα M : .ατ

(I)
Γ `A M : .ατ

Γ `Aα
Jα M : τ

(J)

Γ `A M : τ α /∈ FTV(Γ) ∪ FTV(A)

Γ `A Λα.M : ∀α.τ
(Gen)

Γ `A M : ∀α.τ

Γ `A M B : τ [α := B]
(Ins)

Fig. 1. Typing rules.

that, unlike˜M in λα, the term JαM for unquote is also annotated. The variable
x in λx : τ.M and the transition variable α in Λα.M are bound in M . Bound
variables are tacitly renamed to avoid variable capture in substitution.

3.2 Type System

As mentioned above, a type judgment and variable declarations in a context are
annotated with stages. A context Γ is a finite set {x1 : τ1@A1, . . . , xn : τn@An},
where xi are distinct variables. We often omit braces {}. We write FTV(Γ) for
the set of free transition variables in Γ , defined by: FTV({xi : τi@Ai | 1 ≤ i ≤
n}) =

⋃n
i=1(FTV(τi) ∪ FTV(Ai)).

A type judgment is of the form Γ `A M : τ , read “term M is given type
τ under context Γ at stage A.” Figure 1 presents the typing rules to derive
type judgments. The notation τ [α := B], used in the rule (Ins), is capture-
avoiding substitution of transition B for α in τ . When α in .α is replaced
by a transition, we identify .ετ with τ and .ABτ with .A.Bτ . For example,
(.α∀α. .α b)[α := ε] = ∀α. .α b and (∀α. .β b)[β := αα] = ∀α′. .α .αb.

The first three rules are almost standard except for the stage annotations,
which must be equal as in most multi-stage calculi. The rule (Var) means that
variables can appear only at the stage which variables are declared. The next
two rules (I) and (J) are for quoting and unquoting and already explained in
the previous section. The last two rules (Gen) and (Ins) are for generalization
and instantiation of a transition variable, respectively. They resemble the intro-
duction and elimination rules of ∀x.A(x) in first-order predicate logic: the side
condition of the (Gen) rule ensures that the choice of α is independent of the
context. Computationally, this side condition expresses α-closedness of M , that
means M has no free variable which has annotation α in its type or its stage.
This is a weaker form of closedness, which means M has no free variable at all.

3.3 Reduction

We will introduce full reduction M −→ N , read “M reduces to N in one step,”
and prove basic properties including subject reduction, confluence and strong
normalization.

Before giving the definition of reduction, we define substitution. Since the
calculus has binders for term variables and transition variables, we need two
kinds of substitutions for both kinds of variables. Substitution M [x := N] for a
term variable is the standard capture-avoiding one, and its definition is omitted
here. Substitution M [α := A] of A for α is defined similarly to τ [α := A]. For
example, (λx : τ.M)[α := A] = λx : (τ [α := A]).(M [α := A]), (M B)[α := A] =
(M [α := A])(B[α := A]) and (Iβ M)[α := A] = Iβ[α:=A](M [α := A]), where we
define Iα1...αn

M = Iα1
· · ·Iαn

M and Jα1...αn
M = Jαn

· · ·Jα1
M . In particu-

lar, (IαM)[α := ε] = (JαM)[α := ε] = M [α := ε]. Note that, when a transition
variable in J is replaced, the order of transition variables is reversed, because
this is the inverse operation of I. This is similar to the inversion operation in
group theory: (a1a2 . . . an)−1 = a−1

n a−1
n−1 . . . a

−1
1 .

The reduction relation M −→ N is the least relation closed under the fol-
lowing three computation rules

(λx.M)N −→M [x := N] Jα(IαM) −→M (Λα.M)A −→M [α := A]

and congruence rules, which are omitted here. In addition to the standard β-
reduction, there are two rules: the second one, which is already explained pre-
viously, cancels quote by unquote and the last one, instantiation of a transition
variable, is similar to polymorphic function application in System F. Note that
the reduction is full—reduction occurs under any context—and does not take

staging into account. We can define the reduction relation as a triple M
T

−→ N ,
with T standing for the stage of reduciton, as done in λ© [7] and λ©¤ [10].

The reduction enjoys three basic properties, subject reduction, strong nor-
malization and confluence.

Theorem 1 (Subject Reduction). If Γ `A M : τ and M −→ M ′, then

Γ `A M ′ : τ .

Theorem 2 (Strong Normalization). Let M be a typable term. There is no

infinite reduction sequence M −→ N1 −→ N2 −→ · · · .

Theorem 3 (Confluence). If M −→∗ N1 and M −→∗ N2, then there exists

N such that N1 −→∗ N and N2 −→∗ N .

3.4 Big-Step Semantics

Now, we give a big-step semantics and prove that the execution of a well-typed
program can be properly divided into stages. The judgment has the form `A

M ⇓ R, read “evaluating term M of stage A yields result R,” where R is either
err, which stands for a run-time error, or a value v, defined below. Values are
given via a family of sets V A indexed by transitions, that is, stages. The family
V A is defined by the following grammar:

V ε ::= λx : τ.M | Iα V
α | Λα.V ε

V A (A 6= ε) ::= x | λx : τ.V A | V AV A | Iα V
Aα | Λα.V A | V AB

| Jα V
A′

(if A′α = A and A′ 6= ε)

`ε λx : τ.M ⇓ λx : τ.M

`ε M ⇓ λx : τ.M ′ `ε N ⇓ v `ε M ′[x := v] ⇓ v′

`ε M N ⇓ v′

`ε M ⇓ Iα M ′

`α
Jα M ⇓ M ′

`ε M ⇓ Λα.v `ε v[α := B] ⇓ v′

`ε M B ⇓ v′

`B M ⇓ M ′

`B Λα.M ⇓ Λα.M ′

`Bα M ⇓ M ′

`B
Iα M ⇓ Iα M ′ `A x ⇓ x

`A M ⇓ M ′

`A λx : τ.M ⇓ λx : τ.M ′

`A M ⇓ M ′ `A N ⇓ N ′

`A M N ⇓ M ′ N ′

`A M ⇓ M ′

`Aα
Jα M ⇓ Jα M ′

`A M ⇓ M ′

`A M B ⇓ M ′ B

Fig. 2. Big-Step Semantics. Here, A stands for a non-empty sequence and B for a
possibly empty sequence of transition variables.

The set V of values is defined as
⋃

A∈Σ∗ V A.
Figure 2 shows the evaluation rules. The evaluation is left-to-right, call-by-

value. The first six rules (where B = ε) are for ordinary evaluation. The first two
rules are standard. The third rule means that quote is canceled by unquote; since
the resulting term M ′ belongs to the stage α (inside quotation), α is attached to
the conclusion. The fourth rule about instantiation of a transition abstraction
is straightforward. As seen in the fifth rule for Λα.M , Λ does not delay the
evaluation of the body. The rules for stages later than ε are all similar: since the
term to be evaluated is inside quotation, the term constructor is left as it is and
only subterms of stage ε are evaluated. For brevity, we do not present the error-
generating rules and the error-propagating rules, which are straightforward.

We show properties of the big-step semantics. The following theorem says
that, unless the result is err, the result must be a value even though the rules
do not say it is the case, and that the successful evaluation is included in multi-
step reduction (−→∗ stands for the reflexive transitive closure of −→).

Theorem 4. Suppose `A M ⇓ R. Then, either R = err or M −→∗ R ∈ V A.

The last property is type soundness and its corollary that if a well-typed
program of a code type yields a result, then the result is a quoted term, whose
body is also typable at stage ε. In the statements, we say Γ is ε-free if it satisfies
A 6= ε for any x : τ@A ∈ Γ and define a context Γ−A by: Γ−A = {x : τ@B | x :
τ@AB ∈ Γ}.

Theorem 5 (Type Soundness). If Γ is ε-free and Γ `ε M : τ and `ε M ⇓ R,

then R = v and v ∈ V ε for some v and Γ `ε v : τ . Moreover, if τ = .ατ0, then

v = IαN and Γ−α `ε N : τ0.

3.5 Programming in λ
.

We give an example of programming in λ.. The example is the power function,
which is a classical example in multi-stage calculi and partial evaluation. We
augment λ. with integers, booleans, arithmetic and comparison operators, if-
then-else, a fixed point operator fix, and let, all of which would be easy to add.

For readability, we often omit type annotations and put terms under quotation
in shaded boxes.

We start with the ordinary power function without staging.

let power0 : int → int → int
= fix f. λn. λx. if n = 0 then 1 else x ∗ (f (n− 1) x)

Our purpose is to get a code generator power∀ that takes the exponent n and
returns (closed, hence runnable) code of λx.x ∗ x ∗ . . . x ∗ 1, which computes
xn without recursion. Here, we follow the construction of code generator in the
previous work [14, 13].

First, we construct a code manipulator power1 : int → .αint → .αint, which
takes an integer n and a piece of integer code and then outputs a piece of code
which connects the input code by “∗” n times. It can be obtained by changing
type annotation and introducing quasiquotation.

let power1 : int → .αint → .αint
= fix f. λn. λx : .α int.

if n = 0 then (Iα 1) else Iα ((Jα x) ∗ (Jα f (n− 1) x))

Then, from power1, we can construct a code generator powerα of type int →
.α(int → int), which means it takes an integer and returns code of a function.

let powerα : int → .α(int → int)

= λn. Iα λx :int. Jα (power1 n (Iα x))

It indeed behaves as a code generator: for example, powerα 3 would evaluate to

Iα λx : int .x ∗ (x ∗ (x ∗ 1)).

This construction is independent of the choice of the stage α. So, by abstract-
ing α at appropriate places in power1 and powerα, we can obtain the desired
code generator, whose return type is a closed code type ∀α. .α (int → int).

let power2 : ∀α. int → .αint → .αint
= Λα.fix f. λn. λx : .α int.

if n = 0 then (Iα 1) else Iα ((Jα x) ∗ (Jα f (n− 1) x))

let power∀ : int → ∀α. .α (int → int)

= λn. Λα.Iα λx :int. Jα (power2 α n (Iα x))

The output from power∀ is usable in any stage. For example, if we want code
of a cube function at the stage A, we write power∀ 3 A. In particular, when A
is the empty sequence ε, power∀ 3 ε : int → int evaluates to a function closure
which computes x ∗ x ∗ x ∗ 1 from the input x.

4 Kripke Semantics for λ
. and Logical Completeness

In this section, we formally define a Kripke semantics of the logic corresponding
to λ. and prove completeness of the proof system. Actually, what we examine
here is a classical version of the logic, which has bottom and a proof rule for
double negation elimination, although λ. itself can be considered intuitionistic.
It is left for future work to study the semantics of the intutionistic version, of
which recent work on Kripke semantics for intuitionistic LTL [16] can be a basis.

First, we (re)define the set of propositions and the natural deduction proof
system. Then, we proceed to the formal definition of the Kripke semantics and
state soundness and completeness of the proof system.

4.1 Natural Deduction

The set Φ⊥, ranged over by φ and ψ, of propositions are given by the grammar
for Φ extended with a new constant ⊥.

The natural deduction system can be obtained by forgetting variables and
terms in the typing rules. We add the following new rule, which is the ordinary
double negation elimination rule, adapted for this setting:

Γ, (φ→ ⊥)@A `B ⊥

Γ `A φ
(⊥-E) .

4.2 Kripke Semantics and Completeness

As mentioned in Section 2, the Kripke semantics for this logic is based on a
functional transition system T = (S,L, {

a
−→ | a ∈ L}) where S is the (non-

empty) countable set of states, L is the countable set of labels, and
a

−→ ∈ S → S

for each label a ∈ L. We write s
a1···an−→ s′ if there exist s1, . . . , sn−1 such that

s
a1−→ s1

a2−→ · · ·
an−1

−→ sn−1
an−→ s′.

To interpret a proposition, we need two valuations, one for propositional
variables and the other for transition variables. The former is a total function
v ∈ S × PV → {0, 1}; the latter is a total function ρ ∈ Σ → L∗, where L∗ is
the set of all finite sequences of labels. Then, we define the satisfaction relation
T , v, ρ; s ° φ, where s ∈ S is a state, as follows:

T , v, ρ; s ° p iff v(s, p) = 1
T , v, ρ; s ° ⊥ never occurs
T , v, ρ; s ° φ→ ψ iff T , v, ρ; s 6° φ or T , v, ρ; s ° ψ

T , v, ρ; s ° .αφ iff T , v, ρ; s′ ° φ where s
ρ(α)
−→ s′

T , v, ρ; s ° ∀α.φ iff for all A ∈ L∗, T , v, ρ[A/α]; s ° φ

Here, ρ[A/α] is defined by: ρ[A/α](α) = A and ρ[A/α](β) = ρ(β) (for β 6= α).
The satisfaction relation is extended pointwise to contexts Γ (possibly infinite
sets of pairs of a proposition and a transition) by:

T , v, ρ; s ° Γ iff T , v, ρ; s ° .Aφ for all φ@A ∈ Γ .

The local consequence relation Γ ° φ is defined by:

Γ ° φ iff T , v, ρ; s ° Γ implies T , v, ρ; s ° φ for any T , v, ρ, s .

Then, the natural deduction proof system is sound and complete with respect
to the local consequence relation. The proof is similar to the one for first-order
predicate logic: we use the standard techniques of Skolemization and Herbrand
structure.

Theorem 6. Γ `ε φ if and only if Γ ° φ.

5 Related Work

Multi-Stage Calculi Based on Modal Logics and Their Extensions. Our work
can be considered a generalization of the previous work on the Curry-Howard
isomorphism between multi-stage calculi and modal logics [7, 8, 10]. Here, we
briefly discuss how the earlier systems λ© and λ¤ can be embedded to λ..

First, as already mentioned in Section 2, λ© is obtained by using only one
transition variable; so, © translates to .α with a fixed transition variable α;
next and prev to Iα and Jα, respectively.

Second, the calculus λ¤ [8], which corresponds to intuitionistic modal logic
S4 (with ¤). The type ¤τ represents closed code values, which thus can be run
or embedded in code of any later stages, as is possible in λ.. There are box and
unboxn for quoting and unquoting, respectively (see Pfenning and Davies [8]
for details).4 The λ¤-type ¤τ corresponds to ∀α. .α τ , where τ does not include
α; so, it reflects the fact that the code type in λ¤ is (completely) closed. Unlike
the embedding from λ¤ to λα, given in [9], there is no use of CSP.

The restriction of λ¤ that all code be closed precludes the definition of a
code generator like power∀, which generates both efficient and runnable code.
Nanevski and Pfenning [17] have extended λ¤ with the notion of names, sim-
ilar to the symbols in Lisp, and remedied the defect of λ¤ by allowing newly
generated names (not variables) to appear in closed code.

Taha and Sheard [5] added run and CSP to λ© and developed MetaML, but
its type system was not strong enough—run may fail at run-time. Then, Moggi,
Taha, Benaissa, and Sheard [13] developed the calculus AIM (“An Idealized
MetaML”), in which there are types for both open and closed code; it was
simplified to λBN, which replaced closed code types with closedness types for
closed (but not necessarily code) terms. Both calculi are based on categorical
models and have sound type systems. The notion of α-closedness in λα can be
considered a generalization of λBN’s closed types. In fact, the typing rule for run
in λBN is similar to the one in λα. Although some of these calculi have sound
type systems, it is hard to regard them as logic, mainly due to the presence of
CSP, which delays the stage of the type judgment to any later stage, and the
typing rule for run (as discussed in Section 2).

4 Precisely speaking, this calculus is what they call the “Kripke-style” calculus.

One nice property of λα is that a program can be executed without ex-
ploiting information on classifiers; in other words, classifiers can be erased after
typechecking. Although our calculus λ. does not have this “erasure property,”
due to the presence of abstraction/instantiation of transition variables, by re-
stricting ∀-types to be of the form ∀α. .α τ where α /∈ FTV(τ), information on
transition variables can be mostly erased. Under this restriction, the only infor-
mation to be left after erasure is the length n of A in MA, which only duplicates
I at the head of the value of M n times. This restriction, which resembles one
in λi [15], still allows embedding of λ© and λ¤ and power∀ (by inlining power2

into the body of it).
Comparing λα and λ., we point out two differences between them. First, λα

has CSP for all terms but λ. cannot express CSP for open code. While we can
deal with CSP for closed code as syntactic sugar, CSP for open code cannot be
expressed in λ., because there is no context C such that x : .αb@ε `

β C[x] : .αb.
A second difference is the behavior of run for the term M : ∀α. .α .αb. In λα,
run will remove only one quotation, leaving ∀, so run M : ∀α. .α b, while, in
λ., the application to ε removes all .α, that is, M ε : b.

More recently, Yuse and Igarashi have proposed the calculus λ©¤ [10] by
combining λ© and λ¤, while maintaining the Curry-Howard isomorphism. The
main idea was to consider LTL with modalities “always” (¤) and “next” (©),
which represent closed and open code types, respectively. It is similar to AIM
in this respect. Although λ©¤ is based on logic, it cannot be embedded into
λ. simply by combining the two embeddings above. In λ©¤, both directions
of ¤© τ ↔ ©¤τ are provable, whereas neither direction of (∀α. .α .βτ) ↔
.β∀α. .α τ is provable in λ.. However, in λ©¤ it seems impossible to program a
code specializer like power∀, which generates specialized code used at any stage;
the best possible one presented can generate specialized code used only at any
later stage, so running the specialized code is not possible.

It is considered not easy to develop a sound type system for staging constructs
with side effects. Calcagno, Moggi, and Sheard developed a sound type system
for a multi-stage calculus with references using closed types [18]. It is interesting
to study whether their closedness condition can be relaxed by using α-closedness.

Other Multi-Stage Calculi. Calcagno, Yi, and Kim’s λpoly
open [11] is a rather pow-

erful multi-stage calculus with open and closed code fragments, intentionally
variable-capturing substitution, lifting values into code, and even references and
ML-style type inference. The type structure of λpoly

open is rather different: a code
type records the names of free variables and their types, as well as the type of the
whole code. It is not clear how (a pure fragment of) the calculus can be related
to other foundational calculi; possible directions may be to use the calculus of
contexts [19] by Sato, Sakurai, and Kameyama, and the contextual modal type
theory by Nanevski, Pfenning, and Pientka [20].

Modal Logics. As we discussed above, the ¤-fragment of modal logic, the ©-
fragment of LTL can be embedded into our logic, and the ¤©-fragment of LTL
and our logic cannot be comparable.

Our logic has three characteristic features: (1) it is multi-modal, (2) it has
universal quantification over modalities and (3) modal operators are “relative”,
meaning their semantics depends on the possible world at which they are inter-
preted. Most of other logics do not have all of these features.

Dynamic logic [21] is a multi-modal logic for reasoning about programs. Its
modal operators are [α] for each program α, and [α]φ means “when α halts, φ
must stand after execution of α from the current state”. Dynamic logic is multi-
modal and its modal operators are “relative”, but does not have quantification
over programs. Therefore, there is no formula in Dynamic logic which would
correspond to ∀α. .α .αφ. There is, however, a formula which is expressive in
Dynamic logic but not in our logic: e.g., a Dynamic logic formula [α∗]φ, which
means intuitively φ ∧ [α]φ ∧ [α][α]φ ∧ . . . , cannot be expressed in our logic.

Hybrid logic [22] is a modal logic with a new kind of atomic formula called
nominals, each of which must be true exactly one state in any model (therefore,
a nonimal names a state). For each nominal i, @i is a modal operator and @iφ
means “φ stands at the state denoted by i”. Hybrid logic has a universal quanti-
fier over nominals. Hybrid logic differs from our logic, in that modal operators @i

indicate worlds directly, hence are not “relative”. In Hybrid logic @i@jφ↔ @jφ,
but .α.βφ and .βφ are not equivalent in our logic.

6 Conclusion and Future Work

We have studied a logical aspect of environment classifiers by developing a simply
typed multi-stage calculus λ. with environment classifiers. This calculus corre-
sponds to a multi-modal logic with quantifier over transitions by the Curry-
Howard isomorphism. The classical proof system is sound and complete with
respect to the Kripke semantics. Our calculus simplifies the previous calculus
λα of environment classifiers by reducing run and some use of CSP to an ex-
tension of another construct. We believe our work helps clarify the semantics of
environment classifiers.

From a theoretical perspective, it is interesting to study the semantics of
the intuitionistic version of the logic, as mentioned earlier, and also the calculus
corresponding to the classical version of the logic. It is known that the naive
combination of staging constructs and control operators is problematic since
bound variables in quotation may escape from its scope by a control operator.
We expect that a logical analysis, like the one presented here and Reed and
Pfenning [23], will help analyze the problem.

From a practical perspective, one feature missing from λ. is CSP for all types.
As argued in the introduction, we think typical use of CSP is rather limited and
so easy to support. Type inference for λ. is an open problem, but, actually,
Calcagno, Moggi, and Taha [15] have already developed type inference for a
subset of λα, so it may be easy to apply their technique to λ..

Acknowledgments. This work was begun while the first author was at Kyoto
University. We would like to thank Lintaro Ina, Naoki Kobayashi, Ryosuke Sato,
and Naokata Shikuma for useful comments.

References

1. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice-Hall (1993)

2. Consel, C., Lawall, J.L., Meur, A.F.L.: A tour of Tempo: A program specializer
for the C language. Science of Computer Programming 52(1-3) (2004) 341–370

3. Wickline, P., Lee, P., Pfenning, F.: Run-time code generation and Modal-ML. In:
Proc. of PLDI’98 (1998) 224–235

4. Poletto, M., Hsieh, W.C., Engler, D.R., Kaashoek, M.F.: ‘C and tcc: A language
and compiler for dynamic code generation. ACM TOPLAS 21(2) (1999) 324–369

5. Taha, W., Sheard, T.: MetaML and multi-stage programming with explicit anno-
tations. Theoretical Computer Science 248 (2000) 211–242

6. Glück, R., Jørgensen, J.: Efficient multi-level generating extensions for program
specialization. In: Proc. of PLILP’95. Volume 982 of LNCS. (1995) 259–278

7. Davies, R.: A temporal-logic approach to binding-time analysis. In: Proc. of
LICS’96. (1996) 184–195

8. Davies, R., Pfenning, F.: A modal analysis of staged computation. J. ACM 48(3)
(2001) 555–604

9. Taha, W., Nielsen, M.F.: Environment classifiers. In: Proc. of POPL’03. (2003)
26–37

10. Yuse, Y., Igarashi, A.: A modal type system for multi-level generating extensions
with persistent code. In: Proc. of PPDP’06. (2006) 201–212

11. Kim, I.S., Yi, K., Calcagno, C.: A polymorphic modal type system for lisp-like
multi-staged languages. In: Proc. of POPL’06 (2006) 257–268

12. Stirling, C.: Modal and temporal logics. In: Handbook of Logic in Computer
Science. Volume 2. Oxford University Press (1992) 477–563

13. Moggi, E., Taha, W., Benaissa, Z.E.A., Sheard, T.: An idealized MetaML: Simpler,
and more expressive. In: Proc. of ESOP’99. Volume 1576 of LNCS. (1999) 193–207

14. Benaissa, Z.E.A., Moggi, E., Taha, W., Sheard, T.: Logical modalities and multi-
stage programming. In: Proc. of IMLA’99. (1999)

15. Calcagno, C., Moggi, E., Taha, W.: ML-like inference for classifiers. In: Proc. of
ESOP’04, Volume 2986 of LNCS. (2004) 79–93

16. Kojima, K., Igarashi, A.: On constructive linear-time temporal logic. In: Proc. of
IMLA’08 (2008)

17. Nanevski, A., Pfenning, F.: Staged computation with names and necessity. J.
Functional Programming 15(5) (2005) 893–939

18. Calcagno, C., Moggi, E., Sheard, T.: Closed types for a safe imperative MetaML.
Journal of Functional Programming 13(3) (2003) 545–571

19. Sato, M., Sakurai, T., Kameyama, Y.: A simply typed context calculus with first-
class environments. J. Functional and Logic Programming 2002(4) (2002) 1–41

20. Nanevski, A., Pfenning, F., Pientka, B.: Contextual modal type theory. ACM
Transactions on Computational Logic 9(3) (2008)

21. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. In Gabbay, D., Guenther, F.,
eds.: Handbook of Philosophical Logic. Volume 4. 2nd edn. Springer-Verlag (2002)
99–218

22. Areces, C., ten Cate, B.: Hybrid logics. In Blackburn, P., Wolter, F., van Benthem,
J., eds.: Handbook of Modal Logics. Elsevier (2007) 821–868

23. Reed, J., Pfenning, F.: Intuitionistic letcc via labelled deduction. In: Proc. of
M4M’07. (2007)

