
Untyped Recursion Schemes and Infinite
Intersection Types

Takeshi Tsukada and Naoki Kobayashi

Tohoku University

Abstract. A new framework for higher-order program verification has
been recently proposed, in which higher-order functional programs are
modelled as higher-order recursion schemes and then model-checked.
As recursion schemes are essentially terms of the simply-typed lambda-
calculus with recursion and tree constructors, however, it was not clear
how the new framework applies to programs written in languages with
more advanced type systems. To circumvent the limitation, this paper
introduces an untyped version of recursion schemes and develops an in-
finite intersection type system that is equivalent to the model checking
of untyped recursion schemes, so that the model checking can be re-
duced to type checking as in recent work by Kobayashi and Ong for
typed recursion schemes. The type system is undecidable but we can
obtain decidable subsets of the type system by restricting the shapes of
intersection types, yielding a sound (but incomplete in general) model
checking algorithm.

1 Introduction

Model checking of recursion schemes [1, 2] has recently been applied to higher-
order program verification [3, 4]. A recursion scheme is a grammar for generating
a possibly infinite tree; from a programming language point of view, it is a term
of the simply-typed λ-calculus with recursion and tree constructors. The idea
of the higher-order program verification is to transform a higher-order program
into a recursion scheme that generates a tree representing event sequences of the
program, so that temporal properties of the program can be verified by model-
checking the recursion scheme. The main advantage of the verification method
is that it is sound and complete for a certain class of higher-order programs –
the simply-typed λ-calculus with recursion and finite base types.

There is however a gap between the class of higher-order programs that can
be handled directly by the above method (the simply-typed λ-calculus with finite
base types) and the class of programs written in real programming languages.
One of the main restrictions on the former class is that programs must be simply-
typed. It was unclear how the method above can be applied to programs that
use more advanced types, such as polymorphism and recursive types.

To address the problem above, we remove the restriction that recursion
schemes must be simply-typed, by extending Kobayashi and Ong’s type-based
approach to model-checking recursion schemes [3, 5]. Instead of considering each

extension of the simple type system (such as ML type system and System F
with/without recursive types), we study the most expressive type system – an
infinite intersection sort system for recursion schemes, and develop a type-based
method for model-checking intersection-typed recursion schemes. (The infinite
intersection sort system is the most expressive in the sense that all untyped
recursion schemes that generate valid trees are typable in the type system.)
Since various type systems, possibly with polymorphic and recursive types, can
be regarded as restricted forms of the intersection type system, our studies of
the intersection-typed recursion schemes can serve as a common foundation for
recursion schemes extended with various type systems.

In the paper, in Section 3, we first give an intersection sort system that
exactly characterizes the (untyped) recursion schemes that generate well-ranked
trees, in the sense that a recursion scheme is well-sorted if and only if it generates
a well-ranked tree. We then (in Section 4) introduce an intersection type system,
parameterized by a Büchi automaton A with a trivial acceptance condition, such
that a recursion scheme is well-typed if and only if it generates a well-ranked
tree accepted by A. One of the main results, presented in Section 5, is that if a
recursion scheme is well-sorted under a sort environment Γ , the recursion scheme
is well-typed if and only if it is so under a refinement of Γ . Thus, although
the infinite intersection type system is undecidable in general, it is decidable
whether, given a recursion scheme well-sorted under a finite sort environment,
the recursion scheme is well-typed. As a consequence, the model checking of
recursion schemes with ML-style polymorphism is decidable. Model checking of
recursion schemes with more advanced type systems is undecidable, but we can
still obtain a sound and decidable (but incomplete) type system by restricting
the syntax of intersection types so that there can be finitely many refinements
for each sort environment.

For the space restriction, we omit some proofs. They are found in a longer
version available from http://www.kb.ecei.tohoku.ac.jp/~tsukada/papers/
fossacs10-full.pdf.

2 Preliminaries

Trees Let T ⊆ (ω − {0})∗ be a subset of finite sequences of natural numbers
without 0. T is a tree if it satisfies the following conditions: (i) ε ∈ T , (ii) if
pi ∈ T for p ∈ (ω − {0})∗, i ∈ ω − {0}, then p ∈ T , and (iii) if pi ∈ T for
p ∈ (ω − {0})∗, i ∈ (ω − {0}), then pj ∈ T for every 1 ≤ j ≤ i. Note that 0 is
not used as an index of trees; This convention makes some definitions and proofs
simple. If p, pi ∈ T , we say p is the parent of pi and pi is a child of p. The rank of
the node p, written #T (p), is the cardinality of the set of its children. Note that
for every p ∈ T , #T (p) ≤ ω. We omit the subscript T when it is clear from the
context. We assume that the elements of the set (ω − {0})∗ are ordered by the
prefix ordering, i.e., p0 ≤ p1 if and only if there is some p′1 such that p1 = p0p

′
1.

Let A be an alphabet (i.e. a set of symbols). An A-labeled tree is a function
r : T → A from a tree T to the alphabet A. Let Σ be a ranked alphabet, i.e.

a map from an alphabet A to ω ∪ {ω}. Σ is finitely ranked if Σ(a) < ω for
every a ∈ dom(Σ). By abuse of notation, we often write a ∈ Σ for a ∈ dom(Σ).
A dom(Σ)-labeled tree r is also called a Σ-labeled tree. It is well-ranked if for
every p ∈ dom(r), Σ(r(p)) = #p.

Trivial Automata A Büchi tree automaton A with a trivial acceptance condition
(called a trivial automaton, for short) is a quadruple (Q,Σ, qS ,∆)1 where Q is a
finite set of states, Σ is a finitely-ranked alphabet, qS ∈ Q is an initial state, and
∆ ⊆ Q × Σ × Q∗ is a transition relation. The transition relation must respect
the rank, i.e., if (q, a, q1, . . . , qn) ∈ ∆, then n = Σ(a). A trivial automaton is
deterministic if, for each pair (q, a) ∈ Q× dom(Σ), there is at most one element
of the form (q, a, q1, . . . , qn) in ∆.

For a well-ranked Σ-labeled tree r : T → Σ, a run of A on r is a Q-labeled
tree % : T → Q, satisfying (%(p), r(p), %(p1), . . . , %(pn)) ∈ ∆ for each p ∈ T ,
where n = Σ(r(p)).

For a state q, a Σ-labeled well-ranked tree r is accepted by A from the state
q, if there is a run % of A that satisfies %(ε) = q. We write LA(q) for the set of
trees accepted from q. The language recognized by A, written LA, is LA(qS).

We assume that there is one distinguished element ⊥ ∈ Σ with Σ(⊥) = 0,
and for any state q of any trivial automata, (q,⊥) ∈ ∆. Intuitively, ⊥ is the
undefined tree, which is accepted from any state.

Recursion Schemes An (untyped) recursion scheme G is a quadruple (Σ,N ,R, S),
where: (i) Σ is a ranked alphabet with a distinguished element ⊥ of rank 0. An
element of Σ is called a terminal ; (ii) N is a finite set of symbols called non-
terminals; (iii) S ∈ N is the start symbol ; and (iv) R is a set of rewriting rules of
the form {F1x̃1 → t1, . . . , Fnx̃n → tn}. Here, Fi is a nonterminal, x̃ abbreviates a
sequence of variables and ti is an applicative term over N ∪(Σ−{⊥})∪{x̃i} (i.e.
a term constructed from N ∪ (Σ−{⊥})∪{x̃i} and applications). There must be
exactly one rule for each non-terminal. If (Fx̃ → t) ∈ R, we write R(F) = λx̃.t,
where λx̃ abbreviates a sequence of lambda abstractions. We identify an ap-
plicative term over X with an X-labeled tree in the standard manner: a term
x t1 . . . tn (where x ∈ X) as a tree whose root is labeled by x, having t1, · · · , tn
as subtrees.

In the definition of standard recursion schemes [2], there are additional con-
ditions that each symbol or variable is assigned a simple type (with o, the type
of trees, as a unique base type), and that both the left- and right-hand sides of
each rule must have type o. In this paper, we call the standard recursion schemes
(simply-)typed recursion schemes, and call recursion schemes without the typing
constraint untyped recursion schemes or simply recursion schemes.

The rewriting relation −→G is defined inductively by: (i) F s̃ −→G [s̃/x̃]t, if
R(F) = λx̃.t, and (ii) if t −→G t′, then ts −→G t′s and st −→G st′.

For a term t, we define t⊥ by: (i) a⊥ = a for each terminal a; (ii) (t1t2)⊥ =
t⊥1 t⊥2 if t⊥1 6= ⊥; and (iii) t⊥ = ⊥ otherwise. The partial order v on Σ is defined

1 A trivial automaton is a Büchi automaton where all the states are final.

as a v b if and only if a = b or a = ⊥. We extend this ordering to the ordering
on Σ-labeled trees by: r1 v r2 if and only if T1 ⊆ T2 and r1(p) v r2(p) for every
p ∈ T1. The value tree of G, written [[G]], is

⊔
{t⊥ | S −→∗

G t}, where
⊔

S is the
least upper bound with respect to v. The value tree is always well-defined, as
the rewriting relation is confluent.

In this paper, we are interested in the model checking problem:
“Given a recursion scheme G and a trivial automaton A, does [[G]] ∈ LA hold?”
In the case of simply-typed recursion schemes, the problem is known to be decid-
able [2].2 In the case of untyped recursion schemes, however, the model checking
problem above (or, even the problem of checking whether the value tree is well-
ranked) is undecidable, as the untyped recursion schemes are essentially terms
of the untyped λ-calculus (with uninterpreted function symbols).

Remark 1. The reader may wonder why we have recursion as primitives, even
though a fixed-point combinator can be encoded in the untyped λ-calculus. That
is because we later impose various type constraints corresponding to those of ad-
vanced type systems (e.g. a type system with ML polymorphism), in which a
fixed-point combinator may no longer be encoded. Note that our main inter-
ests are in extending Kobayashi and Ong’s type-based method [3, 5] for model-
checking simply-typed recursion schemes to handle recursion schemes with vari-
ous advanced type systems, and that we study infinite intersection type systems
for untyped recursion schemes to establish common foundations.

3 Infinite Intersection Sorts

The goal of this section is to characterize the class of recursion schemes whose
value trees are well-ranked. For this purpose, we construct an intersection type
system in which a recursion scheme is well-typed if, and only if, the value trees
of recursion schemes are well-ranked. In the following, we call this type system
the sort system to avoid confusion with the type system for model checking
introduced in Section 4.

In the sort system, intersection types are infinite both in width (i.e. we
allow

∧
i<ω κi) and in depth (i.e. we allow sorts having infinite paths, like

o → o → o → · · ·). Note that such infinite intersection types are necessary
for the complete characterization of recursion schemes that generate well-ranked
trees: See Remark 2.

As defined below, a sort is a (possibly infinite) tree labeled by o, →, and ∧.
The sort o (i.e. a tree consisting of a single node labelled by o) describes trees.
The other constructors → and ∧ describe functions and intersections as usual;
for example, (o ∧ (o → o)) → o describes a function that takes as input a term
that can be both used as a tree and a tree function, and returns a tree.

Definition 1 (sorts). Let K = {(o, 0), (→, 2)} ∪ {(∧α, α) | α ≤ ω} be a ranked
alphabet. A sort κ is a well-ranked K-labeled tree that satisfies: (i) κ(ε) ∈ {o,→
2 Ong [2] proved the decidability for a more general case, where A is an alternating

parity tree automaton.

}; (ii) If κ(p) = →, then κ(p1) = ∧α and κ(p2) ∈ {o,→}; and (iii) If κ(p) = ∧α,
then κ(pi) ∈ {o,→} for every i such that pi ∈ dom(κ).

We often omit the superscript and simply write ∧ for ∧α. When κi’s (i < α)
are sorts, we write

∧
i<α κi for the tree whose root is labelled by ∧α and whose

children are κi’s. We write > for the empty intersection
∧

i<0 κi. Similarly, we
write

∧
i<α κi → κ for the sort whose root is labelled by →, and whose children

are
∧

i<α κi and κ. When α = 1, we just write κ0 → κ for
∧

i<α κi → κ (e.g.
(o → o) → o for

∧
i<1 κi → o where κ0 = o → o). We give a higher precedence

to ∧ than to →.
The three conditions in the definition above are imposed just for a technical

convenience (more specifically, for removing the introduction and elimination
rules for intersection types). Note that, for example, (κ1 → κ2) → κ3 (which
is prohibited by the restriction (ii)) can be represented as

∧
i<1 κ′

i → κ3, where
κ′

0 = κ1 → κ2. A similar restriction on the syntax of types has been used for
finite intersection type systems [6].

A type environment, denoted by Γ , is a (possibly infinite) set of bindings of
the form x:τ (where non-terminals of recursion schemes are treated as variables).
We often omit the curly brackets, and simply write x1 : κ1, . . . , xn : κn for {x1 :
κ1, . . . , xn : κn}. Note that we allow multiple bindings for the same variable, as
in {x :κ1, x :κ2}. We abbreviate {x :κi | i < α} as x :

∧
i<α κi. We write dom(Γ)

for the set {x | ∃τ.(x : τ ∈ Γ)}.
We fix a finitely ranked alphabet Σ below. The typing rules for λ-terms are

given as follows:

Γ, x : κ ` x : κ

Γ ` a : o → · · · → o︸ ︷︷ ︸
Σ(a)

→ o

Γ ` λx.t : o

Γ ` t1 :
∧

i<α κi → κ
Γ ` t2 : κi(for every i < α)

Γ ` t1t2 : κ

Γ ∪ {x : κi | i < α} ` t : κ
x 6∈ dom(Γ)

Γ ` λx.t :
∧

i<α κi → κ

The rules above are standard, except the rule on the left bottom. It is due
to our definition of the value tree of a recursion scheme. To see why, consider
the recursion scheme G, consisting of the two rules S → F and F x → a. The
rewriting of S gets stuck as S → F , so that the value tree of G is ⊥. Since ⊥ is
a well-ranked tree, F (which is essentially λx.a) should be assigned type o.

A recursion scheme G = (N , Σ,R, S) is well-typed under Γ , written ` G : Γ ,
if dom(Γ) ⊆ N , Γ ` R(F) : τ holds for every F : τ ∈ Γ , and S : o ∈ Γ . We write
` G if there exists Γ such that ` G : Γ .

The following theorem states soundness and completeness of the sort system.

Theorem 1. For any recursion scheme G, [[G]] is well-ranked if and only if ` G.

Proof. A special case of Theorems 2 and Theorem 3 in Section 4, where the

automaton A is ({o}, Σ, o,∆) such that (o, a,

n︷ ︸︸ ︷
o, . . . , o) ∈ ∆ for every a ∈ Σ of

rank n. 2

Remark 2. As already mentioned, intersection sorts in our type system may be
infinite both in width and depth, and non-regular (i.e. may not be expressed by
finite recursive types). The following observations explain why simpler intersec-
tion sorts are insufficient. First, intersection types that are infinite in width but
finite in depth guarantee that λ-terms are strongly normalizing [7]; thus the Y
combinator (which can be defined by Y f → (Af)(Af) and Af x → f (x x))
would not be typable. Secondly, the restriction of intersection sorts to finite re-
cursive types (i.e. sorts that are finite in width and infinite but regular in depth)
is also insufficient. This is because under this restriction, the typability would
be recursively enumerable,3 but the well-rankedness of the tree generated by an
untyped recursion scheme is not. The latter can be easily proved, for example,
by a reduction from the halting problem of a Minsky machine [8]. A Minsky ma-
chine consists of two counters holding natural numbers, and has instructions for
counter increment/decrement, conditional/unconditional jumps, and halting [8].
We can use the standard Church encoding for natural numbers and booleans
to simulate those instructions, and replace the halt command with a term gen-
erating an ill-ranked tree. The resulting untyped recursion scheme generates a
well-ranked tree if and only if the Minsky machine does not halt.

4 Type System for Model Checking Untyped Recursion
Schemes

In this section, we extend Kobayashi’s type system [3] (for model-checking re-
cursion schemes wrt safety properties) to deal with untyped recursion schemes.

Let A = (Q,Σ, qS , ∆) be a trivial automaton. We shall extend the sort
system of the previous section by refining the sort o into a type of the form∧
{q1, . . . , qk} where q1, . . . , qk ∈ Q. Intuitively, a state q of the automaton is

regarded as a type that describes the trees accepted by A from the state q, i.e.,
t has type q if and only if [[t]] ∈ LA(q).

Definition 2 (Types). Let T = {(q, 0) | q ∈ Q} ∪ {(→, 2)} ∪ {(∧α, α) | α ≤
ω} be the set of ranked alphabets. A type τ is a well-ranked T -labeled tree that
satisfies the following conditions: (i) τ(ε) 6= ∧ (ii) If τ(p) =→, then τ(p1) = ∧,
τ(p2) 6= ∧, and (iii) If τ(p) = ∧, then τ(pi) 6= ∧ for every i ∈ ω − {0}.

The typing rules are almost the same as the sorting rules, except that the
type of a terminal is determined by the transition function of the automaton.

Γ, x : τ `A x : τ
(q, a, q1, . . . , qn) ∈ ∆

Γ `A a : q1 → · · · → qn → q Γ `A λx.t : q

3 Note that since the set of finite recursive sorts is recursively enumerable, the set of
valid type judgements is also recursively enumerable.

Γ `A t1 :
∧

i<α τi → τ
Γ `A t2 : τi for all i < α

Γ `A t1 t2 : τ

Γ ∪ {x : τi | i < α} `A t : τ
x /∈ dom(Γ)

Γ `A λx.t :
∧

i<α τi → τ

We write `A G : Γ if (i) dom(Γ) ⊆ N , (ii) Γ `A R(F) : τ holds for every
F : τ ∈ Γ , and (iii) S : qS ∈ Γ .

4.1 Soundness of the Type System

We use the following lemma to establish the soundness of our type system.

Lemma 1 (Subject Reduction). Suppose `A G : Γ . If Γ `A t : τ and t →∗
G

t′, then Γ `A t′ : τ .

Theorem 2 (Soundness). Let G be a recursion scheme and A be a trivial
automaton. If `A G, then [[G]] is accepted by A.

Proof Sketch It suffice to show that if S →∗
G t, then t⊥ is accepted by A.

Assume S →∗
G t. By the definition of `A G, there is a type environment such

that `A G : Γ . By Lemma 1, we get Γ `A t : qS , from which t⊥ ∈ LA follows. 2

4.2 Completeness of the Type System

We show that our type system is complete in the sense that a recursion scheme is
well-typed if its value tree is accepted by A. The overall idea of the proof is similar
to the completeness proof of Kobayashi and Ong’s type system for the modal
µ-calculus model checking of typed recursion schemes [5]; Type information is
extracted from a reduction sequence of the recursion scheme, by observing how
each non-terminal is used in the reduction. Some non-trivial adjustments are
necessary, however, since sorts (which are called kinds in [5]) are infinite (thus,
we cannot use induction on sorts unlike in [5]).

Theorem 3 (Completeness). Let G be a recursion scheme and A be a trivial
automaton. If [[G]] is well-ranked and accepted by A, then `A G.

We fix below a recursion scheme G and a trivial automaton A. By the as-
sumption that [[G]] is accepted by A, there is a run tree of A over [[G]] whose root
is labeled by qS . We fix such a run tree r below.

We shall define a reduction tree T ∞, which expresses the process of the value
tree of G being constructed in a reduction sequence. In the reduction tree, each
term is annotated with a label to keep track of the origin of the term. The set
TermL of annotated terms, ranged over by u, is given by:

u ::= xl | al | F l | (u1u2)l,

where l ⊆ ω∗ × ω. Intuitively, ul with (p, n) ∈ l means that the term u has
occurred in the node p of T ∞, in the form c · · · uun−1 · · · u1 (where c is a non-
terminal or a terminal). We often write ul for u when the outermost label is l.

We define (ul)+(p,i) as ul∪(p,i). We write [(u) for the term obtained by removing
all the labels from u. We omit some of the labels of an annotated term when
they are not important. The substitution of annotated terms is defined as a
homomorphism satisfying [vl/x](xl′) = vl∪l′ .

The expansion relation . on (finite and unranked) (ω∗ × TermL)-labelled
trees is the least relation that satisfies the following condition.

If T is a (ω∗ × TermL)-labelled tree with T (p) = (p′, c un . . . u1), where
c ∈ Σ ∪N , and there is no child of p in T , then:
1. If c = F l and R(F) = λxn . . . xk.s and k ≥ 1, then

T . T ∪ {(p1, (p′, ([u+(p,n)
n . . . u

+(p,k)
k /xn . . . xk]s)u+(p,k−1)

k−1 . . . u
+(p,1)
1))}

2. If c = al (which implies n = Σ(a)), then:

T . T ∪ {(pi, (p′i, u+(p,n−i+1)
n−i+1))) | 1 ≤ i ≤ n}

In a label of the form (p′, u), the annotated term u represents the term being
reduced, and p′ represents the corresponding position in the value tree of G. In
other words, the subtree of [[G]] at position p′ will be generated by reducing u.

The reduction tree T ∞ is the (ω∗ × TermL)-labelled tree obtained by an
infinite expansion of (ε, S{ }), i.e. T ∞ =

∪
{T | { (ε, S{}) } .∗ T}.

It is easy to see that T ∞ is well-defined. Note that V = {(p′, a) | ∃p ∈
ω∗, T∞(p) = (p′, a un . . . u1))} is essentially equal to the value tree [[G]]. The only
difference is that if [[G]] (p′) = ⊥, then V (p′) is undefined.

Example 1. Let G0 = (Σ, {S, F},R, S), where Σ = {(br, 2), (a, 1), (b, 1), (c, 0)},
R = {S → F c, F x → br c (a(F (b(x))))}. The reduction tree T ∞ is shown in
Figure 4.2. We have T ∞(1121) = (21, · · · c(1,1) · · ·), which means this occurrence
c appears at 1 as the 1st argument (counting from right to left). The node at
112 is of the form (2, au), which means [[G0]] (2) = a. 2

Lemma 2. Let ul1
1 be an annotated term occurring in T ∞, i.e., there exists a

path p1 such that T ∞(p1) = (p′1, u) and ul1
1 is a subterm of u. If (p, n) ∈ l1 then

T ∞(p) = (p′, v vl
n . . . v1) with ul1

1 = vl∪l′

n for some l′.

We define θ(∧,p,i) and θ(→,p,i) as the (possibly infinite) trees that satisfy the
following equations.

θ(∧,p,i) =
∧

{θ(→,p0,n) | T ∞(p0) = (p′0, u
l un . . . u1) and (p, i) ∈ l}

θ(→,p,i) = θ(∧,p,i) → · · · → θ(∧,p,1) → r(p′)
where T ∞(p) = (p′, u) and r is the run tree.

In the first equation, we assume that θ(→,p0,i)’s are ordered according to a certain
linear order among elements of (ω−{0})∗. Thus, θ(∧,p,i) and θ(→,p,i) are uniquely
determined, and every θ(→,p,i) is a type.

Let Γ r
G be {F : θ(→,p,n) | T ∞(p) = (p′, F l un . . . u1)}. We show that Γ r

G is the
witness of well-typing of G, i.e. ` G : Γ r

G .
We first show that each term occurring in T ∞ is well-typed under Γ r

G .

(ε, S) : ε

(ε, F c) : 1

(ε, br c (a(F (b(c(1,1)))))) : 11

©©©©©©©

HHHHHHH

(1, c(11,2)) : 111 (2, (a(F (b(c(1,1)))))(11,1)) : 112

(21, (F (b(c(1,1)))))(112,1)) : 1121

(21, br c (a(F (b (b(c(0,1)))(1121,1)))))) : 11211

...

Fig. 1. T ∞ for G0. We omit the empty annotation. . Here p of (p0, u) : p is the path of
the node (p0, u), hence they are not a part of the nodes.

Lemma 3. If T ∞(p) = (p′, uun . . . u1), then Γ r
G ` [(u) : θ(→,p,n).

The following lemma is a kind of the inverse of the substitution lemma;
we derive a typing for t from that of [sl1

1 . . . slk
k /x1 . . . xlk]t. Recall that Γ, x :∧

i<α τi `A t : τ is the abbreviation of Γ, x : τ0, x : τ1, · · · `A t : τ . We define
Γ `A t :

∧
i<α τi as the abbreviation of Γ `A t : τi for all i < α.

Lemma 4. Suppose that T ∞(p) = (p′, u un . . . u1) and u = [sl1
1 . . . slk

k /x1 . . . xk]v,
with (pi, ji) ∈ li for each i ∈ {1, . . . , k}. Let Γ be x1 : θ(∧,p1,j1), . . . , xk : θ(∧,pk,jk).
Then Γ r

G , Γ `A [(v) : θ(→,p,n).

Proof. By induction on the structure of v.
– Case where v does not contain xi for any i: Immediate from Lemma 3.
– Case v = xi: Note that T ∞(p) = (p′, sli

i u1 . . . un). By the assumption
(pi, ji) ∈ li and the definition of θ(∧,pi,ji), we have x : θ(→,p,n) ∈ Γ . So, by using
(T-Var), we obtain Γ r

G , Γ ` xi : θ(→,p,n) as required.
– Case v = v00v01: Let u0j = [s1 . . . sk/x1 . . . xk]vj for j = 0, 1 and l

be the outermost label of v01, i.e., vl
01. Note that u = u00u01 and T ∞(p) =

(p′, ul00
00 ul01

01 un . . . u1). By the induction hypothesis, Γ r
G , Γ `A [(v00) : θ(→,p,n+1).

Because θ(→,p,n+1) = θ(∧,p,n+1) → θ(→,p,n), what we should show is Γ r
G , Γ `A

[(v01) : θ(∧,p,n+1). Let p0 be any path such that T ∞(p0) = (p′0, v
′l′ v′

m, . . . , v′
1)

and (p, n + 1) ∈ l′. By Lemma 2, we obtain v′l′ = u
l01∪l′01
01 . Therefore v′l′ =

[s1 . . . sk/x1 . . . xk](vl∪l′01
01). By using induction hypothesis, we have Γ r

G , Γ `A
[(v01) : θ(→,p0,m). So by the definition of θ(∧,p,n+1), we obtain Γ r

G , Γ `A [(v00) :
θ(∧,p,n+1) as required. 2

We are now ready to prove the completeness of the type system.

Proof of Theorem 3. It is easy to see that S : qS ∈ Γ r
G . Thus, it remains to show

that Γ r
G ` R(F) : τ holds for each F : τ ∈ Γ r

G . By the construction of Γ r
G , there

is a path p that satisfies T ∞(p) = (p′, F lun . . . u1) and τ = θ(∧,p,n) → · · · →
θ(∧,p,1) → r(p′). Suppose F : τ ∈ Γ r

G and R(F) = λxnλxn−1 . . . λxk.s (here, k
may be a negative integer).

– Case k ≤ 0: By using (T-Bot), we obtain Γ r
G ∪{xi : θ(∧,p,i) | 1 ≤ i ≤ n} `

λx0λx−1 . . . λxk.s : r(p′). By using (T-Abs), we obtain Γ r
G ` λxn . . . λxk : τ .

– Case k > 0: By the definition of T ∞, we have:

T ∞(p1) = (p′, ([u+(p,n)
n . . . u

+(p,k)
k /xn . . . xk]s)u(p,k−1)

k−1 . . . u
(p,1)
1).

By Lemma 4, Γ r
G , {xi : θ(∧,p,i) | k ≤ i ≤ n} ` s : θ(∧,p,k−1) → · · · → θ(∧,p,1) →

r(p′). By using (T-Abs), we obtain Γ r
G ` λxn . . . λxk.s : θ(∧,p,n) → · · · →

θ(∧,p,1) → r(p′) as required. 2

5 Theory of Refinement

The purpose of this section is to develop a theory for applying our type system
to verification of recursion schemes that model programs written in typed pro-
gramming languages. The soundness and completeness theorems in the previous
section imply that our type system for untyped recursion schemes is undecid-
able in general (as the model-checking problem is undecidable). Note, however,
that a recursion scheme obtained from a typed program is well-typed under a
certain type system. Thus, we are interested in the model checking problem:
“Given a recursion scheme G that is well-typed in a type system T , is the value
tree G accepted by A?” Note that the type system T may ensure, in addition
to the well-rankedness, certain properties of the value tree, like “every child of
the node labelled by cons is true or false” (e.g. when the source program has
type bool list). Thus, the type system T can be regarded as a restricted form
of the intersection type system TA′ for another automaton A′. Therefore, the
above model checking problem is refined to:

Given a recursion scheme G well-typed in a certain restriction of TA′ , is
the value tree G accepted by A (or equivalently, is G well-typed in TA)?

Because of the assumption that G is well-typed, the model checking problem can
be solved in certain cases. For example, Kobayashi and Ong’s work [3, 5] can
be considered as studies of a special case of the problem above, where A′ is the
Büchi automaton with a single state o, and sorts are restricted to simple and
finite ones (without intersections). The main result of this section (Theorem 5)
is that if G is well-typed in TA′ , then G is well-typed in TA if, and only if, G is
so under certain restricted type environments of TA, so that the model checking
problem can sometimes be solved effectively. Below we focus on the case where
there is an automata homomorphism from A to A′.

Definition 3. Let A1 = (Q1, Σ, q1
S ,∆1) and A2 = (Q2, Σ, q2

S ,∆2) be trivial
automata. A homomorphism f : A1 → A2 of automata is a map from the states

of A1 to the states of A2 satisfying the following conditions: (i) f maps the
initial state to the initial state, i.e. f(q1

S) = q2
S. (ii) f respects the transitions,

i.e. (q, a, q1, . . . , qn) ∈ ∆1 implies (f(q), a, f(q1), . . . , f(qn)) ∈ ∆2.

For a given homomorphism f : A1 → A2 of automata, we extend this function
to a map f̂ from types of TA1 to those of TA2 , by:

f̂(τ)(p) =
{

f(τ(p)) (if τ(p) ∈ Q1)
τ(p) (if τ(p) =→ or ∧)

and we define f̂(Γ) by f̂({F1 : τ1, . . . }) = {F1 : f̂(τ1), . . . }. Then we can see
that any homomorphism f preserves typability.

Theorem 4. Let A1 and A2 be automata, G be a recursion scheme and f :
A1 → A2 be a homomorphism of automata. If Γ `A1 G, then f(Γ) `A2 G.

Note that the sort system given in Section 3 is the same as TA> , where A>

is the trivial automaton ({o}, Σ, o,∆) such that (o, a,

n︷ ︸︸ ︷
o, . . . , o) ∈ ∆ for every

a ∈ Σ of rank n. Moreover, for any trivial automaton A, f : A → A> : q 7→ o is
a (unique) homomorphism.

The main goal of this section is to establish a “backward” property. Given a
homomorphism f : A1 → A2, we want to derive a property about the typability
of G in TA1 , assuming that Γ `A2 G. For that purpose, we define a refinement
relation vf between types of A1 and those of A2.

Definition 4. The binary relation v on types is the largest relation that satisfies
the following conditions: (i) If τ v q, then τ = q. (ii) If τ v

∧
j<β σj → σ′,

then τ =
∧

i<α τi → τ ′, with τ ′ v σ′ and ∀i < α.∃j < β.τi v σj. Given a
homomorphism f : A1 → A2, we define the refinement relation τ1 vf τ2 by
f(τ1) v τ2.

The refinement relation can be considered as a generalization of the kinding
relation τ ::κ (which means “a type τ has sort κ”) used in Kobayashi and Ong’s
type systems [3, 5]. Note that the relation v is not a subtyping relation; the type
constructor → is covariant wrt v.

Example 2. v is reflexive and transitive. If q1 6= q2, q1 → q v (q1∧q2) → q holds
but (q1 ∧ q2) → q v q1 → q does not. If f(q1) = f(q2) = q, then (q1 ∧ q2) →
q1 vf q → q. 2

We write Γ1 v Γ2 if for each F : τ ∈ Γ1, there exists F : σ ∈ Γ2 such that
τ v σ. The definition of Γ1 vf Γ2 is similar. The following is a key lemma to
obtain the main result.

Lemma 5. Let A be a deterministic trivial automaton and G be a recursion
scheme. If G is typable in TA, then Γ r

G (where r is a run tree of A over [[G]],
which is unique by the assumption that A is deterministic) is the minimum type
environment in {Γ | `A G : Γ} with respect to v.

Proof Sketch Assume `A G : Γ . By the proof of Lemma 1 (which is constructive
in the sense that it gives a procedure to construct a derivation tree for t′ from that
of t), we can construct a type derivation for each term occurring in T ∞ (recall
that T ∞ is a tree representing an infinite reduction sequence). For T ∞(p) =
(p′, uvn . . . v1)), let φ(p,n) be the type assigned to the term u. Then, we can prove
by co-induction that θ(→,p,n) v φ(p,n) holds for every p and n. Let T −1(F) =
{(p, n) | T ∞(p) = (p′, Fun . . . u1)}. Thus, we have:

Γ r
G = {F : θ(→,p,n) | (p, n) ∈ T −1(F)} v {F : φ(p,n) | (p, n) ∈ T −1(F)} ⊆ Γ

as required. 2

The following main result implies that if Γ `A2 G, then it suffices to consider
only refinements of Γ to check whether G is well-typed in TA1 .

Theorem 5. Let A1 be a trivial automaton, A2 be a deterministic trivial au-
tomaton, G be a recursion scheme and f : A1 → A2 be a homomorphism of
automata. Assume Γ `A2 G. Then, G is typable in TA1 iff G is so under some
type environment Γ ′ such that Γ ′ vf Γ .

Proof. The “if” direction is trivial. To prove the converse, assume G is well-typed
in TA1 . By the soundness of the type system, [[G]] ∈ LA1 holds, i.e. there exists
a run tree r1 of A1 over [[G]]. Let r2 be a unique run tree of A2 over [[G]]. It
is easy to show that r2(p) = f(r1(p)). Then, by the definition of Γ r1

G and Γ r2
G ,

f(Γ r1
G) v Γ r2

G . By Lemma 5, for any type environment Γ such that Γ `A2 G, we
have f(Γ r1

G) v Γ r2
G v Γ , which implies Γ r1

G vf Γ . 2

As the sort system is equivalent to the type system for the automaton A>

and there are only finitely many refinements of a finite sort, we obtain:

Corollary 1. If G is a finitely sorted recursion scheme (i.e. the sort of every
non-terminal in G is finite), then it is decidable whether [[G]] is accepted by A.

We can obtain a model checking algorithm by modifying Kobayashi’s algo-
rithm [9] for simply-typed recursion schemes.

6 Applications

We now discuss how the foregoing theory can be applied to verification of func-
tional programs written in languages with advanced type systems (like polymor-
phism and recursive types). As shown in [3, 4], a higher-order functional program
can be easily transformed into a recursion scheme that simulates the output or
the event sequences of the source program, and then model-checked. Since the
recursion scheme thus obtained is well-sorted under a similar type system, we
focus here on model-checking of recursion schemes that are well-sorted under
advanced type systems.

As already mentioned, polymorphic types and recursive types may be re-
garded as restricted forms of infinite intersection types (or sorts). For exam-
ple, a (predicative) polymorphic type ∀α.τ can be regarded as

∧
{[σ/α]τ |

σ is a finite sort} with infinite width, and a recursive sort µX.o → X as a sort
o → o → . . . with an infinite path. Thus, the model-checking problem of interest
is: “Given a recursion scheme G well-sorted under a certain fragment S of the
sort system of Section 3 and an automaton A, is [[G]] accepted by A?” We discuss
below decidable and undecidable fragments of the sort system.

Decidable fragments By Corollary 1, if S allows only finite sorts (intersection
sorts with finite width and depth), then the model-checking problem is decidable.
The ML-style let-polymorphism (where the set of rewriting rules is of the form
F1 x̃ → t1; · · · ; Fm x̃ → tm; S → tm+1 and Fi can have polymorphic sorts only in
tj(j > i)) satisfies this condition. It is easy to see that if F1 x̃ → t1; · · · ; Fm x̃ →
tm; S → tm+1 is well-typed under the ML-style polymorphic type system, then
the recursion scheme is well-sorted by using only finite sorts.

Another fragment that has only finite sorts is the system S studied in [10].
As system S contains rank-2 intersection with polymorphic recursion (I2 +
REC-INT, for which the typability is undecidable [11]) as a subsystem, this
is an interesting example for which well-sorting is undecidable, but the model-
checking problem for well-sorted recursion schemes is decidable. We do not know
whether the model-checking problem is decidable for the fragment with Milner-
Mycroft-style polymorphic recursion.

Remark 3. Note that if a recursion scheme is well-sorted by using finite sorts,
then it can be transformed into an equivalent, simply-typed recursion scheme.
(To see why, observe that a function of sort τ1∧τ2 → τ can be transformed into a
function of sort τ1 → τ2 → τ). Thus, extending simply-typed recursion schemes
to those with finite intersection sorts does not increase the expressive power of
recursion schemes. Our approach of using intersection sorts would, however, be
more efficient, as the transformation from a finitely-sorted recursion scheme into
a simply-typed recursion scheme will blow up the size of the recursion scheme.

Undecidable Fragments The model-checking problem is undecidable for frag-
ments that contain either recursive types or System F-style polymorphic types.
With System F-style (impredicative) polymorphism, we can encode a natural
number as a term of type ∀α.(α → α) → α → α and express the successor,
predecessor, and zero-equality test on natural numbers. Thus, by a combination
with recursion,4 we can encode a Minsky machine [8] M into a recursion scheme
G such that M halts if and only if [[G]] contains a terminal h. A similar reasoning
applies to recursion schemes with recursive types.

For these undecidable fragments, we can still obtain a sound but incomplete
model-checking algorithm, by restricting the refinement. For example, for recur-
sive sorts, we can restrict their refinements to recursive types (i.e. regular infinite
intersection types) of a fixed size, so that the number of possible refinements for

4 Note that although terms of System F are strongly normalizing, we have recursion
as a primitive.

each recursive sort is finite. Then Theorem 5 can be used to obtain a sound
model-checking algorithm.

7 Related Work

The model checking of recursion schemes has been studied extensively [1, 2, 5, 12,
13], and applied to higher-order program verification [3, 4, 9]. Knapik et al. [1]
showed the decidability of the modal µ-calculus model-checking of safe recursion
schemes, and Ong [2] showed the decidability for arbitrary (typed) recursion
schemes. Kobayashi and Ong [3, 5] recently proposed type-based model checking
algorithms for recursion schemes. To our knowledge, all the previous studies
dealt with simply-typed recursion schemes (simply-typedness was a part of the
definition of recursion schemes).

Infinite intersection types have been studied by Leivant [7] and Bonsangue
and Kok [14]. One of the main advantages of their type systems is that infinite
intersection types give a “natural master formalism” [7] for various type disci-
plines. It is for this reason that we have introduced infinite intersection types
for recursion schemes. To our knowledge, the previous type systems [7, 14] do
not allow types having infinite paths (like the type τ defined by τ((11)∗) =→,
τ((11)∗1) = ∧1, and τ((11)∗2) = o).

There may be some connection between our work and studies on infinitely
λ-calculi [15–17], where infinite objects generated by infinite reductions of λ-
terms are considered. Note that the model checking of recursion schemes is also
concerned about properties of the infinite objects generated by λ-terms. Direct
connection is however unclear, since different properties of the infinite objects are
considered. Tatsuta [16] showed that there is no decidable type system that char-
acterizes the class of hereditary head-normalizing terms (λ-terms whose Böhm
trees do not have ⊥), and also gave a type-based characterization of that class
by using an intersection type system with a countably infinite set of types.

8 Conclusion

We have developed an infinite intersection type system that is equivalent to the
model-checking of untyped recursion schemes for safety properties (the proper-
ties expressed by trivial automata). Future work includes an extension of the
type system to deal with the full modal µ-calculus, along the line of Kobayashi
and Ong’s work for typed recursion schemes [5]. It is also left for future work
to find good decidable restrictions of the infinite intersection type system and
apply them to verification of programs written in a language with polymorphic
and/or recursive types.

Acknowledgments We would like to thank anonymous referees for useful com-
ments. This work was partially supported by Kakenhi 20240001.

References

1. Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy.
In: FoSSaCS 2002. Volume 2303 of Lecture Notes in Computer Science., Springer-
Verlag (2002) 205–222

2. Ong, C.H.L.: On model-checking trees generated by higher-order recursion
schemes. In: LICS 2006, IEEE Computer Society Press (2006) 81–90

3. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-
order programs. In: Proceedings of ACM SIGPLAN/SIGACT Symposium on Prin-
ciples of Programming Languages. (2009) 416–428

4. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree transduc-
ers and recursion schemes for program verification. In: POPL. (2010) To appear.

5. Kobayashi, N., Ong, C.H.L.: A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In: Proceedings of LICS 2009,
IEEE Computer Society Press (2009) 179–188

6. van Bakel, S.: Intersection type assignment systems. Theor. Comput. Sci. 151(2)
(1995) 385–435

7. Leivant, D.: Discrete polymorphism. In: LISP and Functional Programming. (1990)
288–297

8. Minsky, M.L.: Computation: Finite and infinite Machines. Prentice-Hall (1967)
9. Kobayashi, N.: Model-checking higher-order functions. In: Proceedings of PPDP

2009, ACM Press (2009)
10. Hallett, J.J., Kfoury, A.J.: Programming examples needing polymorphic recursion.

Electr. Notes Theor. Comput. Sci. 136 (2005) 57–102
11. Terauchi, T., Aiken, A.: On typability for rank-2 intersection types with polymor-

phic recursion. In: LICS, IEEE Computer Society (2006) 111–122
12. Knapik, T., Niwinski, D., Urzyczyn, P.: Deciding monadic theories of hyperalge-

braic trees. In: TLCA 2001. Volume 2044 of Lecture Notes in Computer Science.,
Springer-Verlag (2001) 253–267

13. Aehlig, K., de Miranda, J.G., Ong, C.H.L.: The monadic second order theory of
trees given by arbitrary level-two recursion schemes is decidable. In: TLCA 2005.
Volume 3461 of Lecture Notes in Computer Science., Springer-Verlag (2005) 39–54

14. Bonsangue, M.M., Kok, J.N.: Infinite intersection types. Inf. Comput. 186(2)
(2003) 285–318

15. Berarducci, A., Dezani-Ciancaglini, M.: Infinite lambda-calculus and types. Theor.
Comput. Sci. 212(1-2) (1999) 29–75

16. Tatsuta, M.: Types for hereditary head normalizing terms. In Garrigue, J.,
Hermenegildo, M.V., eds.: FLOPS. Volume 4989 of Lecture Notes in Computer
Science., Springer (2008) 195–209

17. Tatsuta, M.: Types for hereditary permutators. In: LICS, IEEE Computer Society
(2008) 83–92

