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Abstract. Intersection and union type assignment systems are powerful
tools for reasoning programs that completely characterise many seman-
tic properties such as strong normalisation. At the same time, they are
known to be subtle, particularly in the presence of computational ef-
fect. To address the difficulty, this paper develops an approach based on
polarities and refinement intersection type systems.

We introduce a simply-typed polarised calculus, in which a type is either
positive or negative, based on Curien and Herbelin’s calculus λ̄µµ̃. This
polarised calculus interacts well with intersection and union types: by
adding intersection on positive types and union on negative types, we
obtain a sound and complete type system. One can design an intersection
and union type system for another calculus, guided by a translation to
the polarised calculus. To demonstrate usefulness of the approach, we
derive the first intersection and union type system for the call-by-value
λ̄µµ̃, which satisfies expected properties.

1 Introduction

Intersection and union type assignment systems [6,5,23] are an attractive re-
search area because of their expressive power and of their subtlety. They can
completely characterise interesting semantic properties such as solvability and
(weak and strong) normalisation of terms [7]. It recently serves as a basis of
model-checking higher-order programs [18] and automated verification of func-
tional programs [17]. At the same time, it is well-known that intersection and
union types are subtle. For example, fairly natural introduction and elimination
rules for union types lead to a type system in which neither subject reduction
nor subject expansion do not hold (see, e.g., [5, Section 2]). The situation is
more difficult in the presence of computational effect. Davies and Pfenning [10]
observed that the standard rules for intersection types are unsound for a call-by-
value language with references and show that a value restriction on intersection
introduction leads to a sound system. As for unions, Dunfield and Pfennig [13]
noticed that the standard rules are unsound for effectful languages and one needs
evaluation-context restriction on union elimination.

Hence it is important to investigate a principled way to design sound (and, if
possible, complete) intersection and union type systems for an effectful calculus.
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This paper studies an approach based on polarities and refinement intersec-
tion and union types. Polarities [15] are a logical notion that allows us to describe
evaluation strategies at the level of formulas (or types). A refinement type [14]
describes a detailed property of a program that is already typed by a coarser
type system.

In this paper, we employ a polarised system as a coarser type system and
develop an intersection and union type system that refines the polarised sys-
tem. What we found is that intersection and union interacts quite well with a
polarised system, in contrast to call-by-name or call-by-value calculi. One can
design an intersection and union type system for a call-by-value calculus guided
by a translation from the call-by-value calculus to the polarised calculus.

To demonstrate usefulness of this approach, we derive an intersection and
union type system for the (untyped version of the) call-by-value λ̄µµ̃ [9]. This
has been still open, although several researches has addressed it (e.g. [11,12,2]).

The connection between polarities and refinement intersection and union
types has already been observed and discussed by Zeilberger [30], using his cal-
culus based on focusing proofs [29]. His work and our work are in the comple-
mentary relationship: see Section 6.

Organisation of the paper Section 2 introduces our polarised calculus λ̄µµ̃P ,
to which an intersection and union type system is developed in Section 3. We
discuss translations from call-by-value and call-by-name λ̄µµ̃ to the polarised
calculus λ̄µµ̃P in Section 4. Section 5 describes how to design an intersection
and union type system from a translation to λ̄µµ̃P . Related work is discussed in
Section 6.

2 Polarised calculus λ̄µµ̃P

This section introduces a polarised calculus named λ̄µµ̃P , as well as that with
recursive types. As the name suggests, the calculus is based on Curien and
Herbelin’s λ̄µµ̃ [9], a symmetric calculus corresponding to the classical sequent
calculus. The main difference from λ̄µµ̃ lies in the cut rule: λ̄µµ̃ has one cut rule,
whereas λ̄µµ̃P has two rules, one for each polarity. The evaluation strategy is
built-in as the directions of cuts. Because of this change, λ̄µµ̃P has no critical
pair and enjoys confluence. The calculus is carefully designed so that it has a
strong connection to the typed λ-calculus with pairs.

We shall call the simple types of the calculus sorts in order to avoid confusion
with intersection and union types introduced in the next section.

2.1 Preliminaries: λ̄µµ̃

First we briefly review the syntax and operational semantics of λ̄µµ̃ [9]. We shall
not see the simple type system in [9].

The syntax of terms, commands and co-terms is given by:

v ::= x | λx.v | µα.c c ::= 〈v | e〉 e ::= α | v · e | µ̃x.c,
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where x and α are variables of different kinds. Values and co-values are dis-
tinguished terms and co-terms, respectively, defined by V ::= x | λx.v and
E ::= α | v · e. There are three reduction rules:

〈λx.v | v′ ·e〉 −→ 〈v′ | µ̃x.〈v | e〉〉 〈µα.c | e〉 −→ c[e/α] 〈v | µ̃x.c〉 −→ c[v/x].

The calculus has a critical pair 〈µα.c | µ̃x.c′〉, to which both of the last two rules
are applicable, and is not confluent. The conflict is resolved by an evaluation
strategy. The former rule has the priority in the call-by-value calculus, and the
latter has in call-by-name. Hence, in the call-by-value calculus, the third rule
is applicable only if v 6= µα.c′, and thus changed to 〈V | µ̃x.c〉 −→ c[V/x].
Similarly, in call-by-name, the second rule is changed to 〈µα.c | E〉 −→ c[E/α].

We write =cbv
β for the equivalence relation on expressions induced by the

call-by-value reduction relation, and =cbn
β for call-by-name.

2.2 Terms of λ̄µµ̃P

Similar to λ̄µµ̃, the calculus λ̄µµ̃P has three kinds of expressions: positive ones
called terms, negative ones called co-terms, and neutral ones called commands.
Assume infinite sets of positive variables, ranged over by x, y and z, and negative
variables, ranged over by α, β and γ. The syntax of expressions is given by:

(Terms) v ::= x | λx.v | µα.c | v / e
(Commands) c ::= 〈v

�

e〉 | 〈v � e〉
(Co-terms) e ::= α | λα.e | µx.c | v . e.

We use a metavariable t for expressions. Unlike λ̄µµ̃, we do not put tilde on
the µ-construct for co-terms and the two µ-constructs are distinguished by their
binding variable.

We have two command constructors 〈v

�

e〉 and 〈v � e〉 that correspond to
〈v | e〉 of λ̄µµ̃ [9]. The arrow indicates which of the term and the co-term has
the priority: the term v has the priority in 〈v

�

e〉, whereas the co-term e has
the priority in 〈v � e〉. The distinction controls the reduction as we shall see in
the next subsection.

2.3 Reduction

We write t[v/x] for the capture-avoiding substitution of v for x in t, and t[e/α]
for the substitution of e for α in t. The calculus has 4 reduction rules, namely,
positive/negative λ/µ reductions. Note that the positive and negative rules are
completely symmetric. The rules are listed below:

〈(λx.v1)

�

(v2 . e)〉 −→ 〈(v1[v2/x])

�

e〉 〈(µα.c)

�

e〉 −→ c[e/α]

〈(v / e1) � (λα.e2)〉 −→ 〈v � (e2[e1/α])〉 〈v � (µx.c)〉 −→ c[v/x]

The reduction is supposed to be full, i.e. any redex at any position can be
reduced. We write −→∗ for the reflexive and transitive closure of −→, and =β for
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the least equivalence containing −→. Some expression gets stuck, e.g. 〈(λx.v1) �
(v2 . e)〉 and 〈(λx.v1)

�

(µy.c)〉.
Our calculus λ̄µµ̃P has no critical pair and enjoys confluence. In other words,

the result of the evaluation is not affected by the order of reductions. The eval-
uation strategy is just built-in as the direction of cuts.

Proposition 1 (Confluence). If t −→∗ t1 and t −→∗ t2, there exists t′ such
that t1 −→∗ t′ and t2 −→∗ t′.

Remark 1. Recall that λ̄µµ̃ [9] has a critical pair 〈µα.c | µ̃x.c′〉:

c[µ̃x.c′/α] ←− 〈µα.c | µ̃x.c′〉 −→ c′[µα.c/x].

Each of the two cuts in λ̄µµ̃P allows only one of the above reductions:

c[µ̃x.c′/α] ←− 〈µα.c

�

µx.c′〉 or 〈µα.c � µx.c′〉 −→ c′[µα.c/x].

2.4 Simple Sort System

Polarised sorts A sort of the calculus λ̄µµ̃P has its polarity [15], i.e. a sort
is either positive or negative. We assume countably infinite sets of positive and
negative atomic sorts, ranged over by p and n, respectively. The positive sorts
are those for terms, and the negative sorts are those for co-terms.

The syntax of simple polarised sorts is given by:

(Positive sorts) P,Q ::= p | P ← N | ↓N
(Negative sorts) N,M ::= n | P → N | ↑P.

The sort P → N is the sort for the continuations of functions from P to N and
the sort ↑P is for continuations with a hole of sort P . Note that a continuation
↑P with a positive hole is a negative sort. An abstraction λx.v is considered as
a continuation of continuations of functions and has sort ↓(P → N).

It might be helpful to think that positive sorts are for values and negative
sorts are for continuations. By the symmetry, one can also consider that negatives
are for (co-)values and positives are for continuations of negatives.

Sort environments and judgements A positive sort environment Γ (resp. neg-
ative sort environment ∆) is a finite set of sort bindings of the form x :: P
(resp. α :: N). We use double colon for sort bindings, reserving single colon for
type bindings. A sort environment is considered as a set and the order of sort
bindings is not significant. We write Γ, Γ ′ for Γ ∪ Γ ′.

There are tree kinds of sort judgements, which have both positive and neg-
ative sort environments and a subject depending on its kind. The first one
Γ ` v :: P | ∆ means that the term v has the positive sort P under the en-
vironments Γ and ∆. The second one Γ | e :: N ` ∆, which is the dual to
the first one, means that the co-term e has the negative sort N . The third one
c :: (Γ ` ∆) means that the command c is well-sorted.
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Sorting rules The sorting rules are listed below.

Γ, x :: P ` x :: P | ∆
Γ, x :: P ` v :: ↓N | ∆

Γ ` λx.v :: ↓(P → N) | ∆
c :: (Γ ` α :: N,∆)

Γ ` µα.c :: ↓N | ∆

Γ | α :: N ` α :: N,∆

Γ | e :: ↑P ` α :: N,∆

Γ | λα.e :: ↑(P ← N) ` ∆
c :: (Γ, x :: P ` ∆)

Γ | µx.c :: ↑P ` ∆

Γ ` v :: Q | ∆ Γ | e :: N ` ∆
Γ ` v / e :: Q← N | ∆

Γ ` v :: ↓N | ∆ Γ | e :: N ` ∆
〈v

�

e〉 :: (Γ ` ∆)

Γ | e :: N ` ∆ Γ ` v :: P | ∆
Γ | v . e :: P → N ` ∆

Γ | e :: ↑P ` ∆ Γ ` v :: P | ∆
〈v � e〉 :: (Γ ` ∆)

By ignoring the subject, separator | and shifts ↑· and ↓· in sorts, they are the
rules of the classical seqent calculus (where P ← N is understood as P ∧ (¬N)).

Proposition 2. If Γ ` v :: P | ∆ and v −→∗ v′, then Γ ` v′ :: P | ∆. The
similar statements hold for reduction of co-terms and commands.

2.5 Recursive Sorts

The simply-sorted calculus λ̄µµ̃P is so weak that untyped calculi (e.g. the un-
typed call-by-value λ̄µµ̃) cannot be embedded into λ̄µµ̃P .

We extend λ̄µµ̃P by recursive sorts. Assume finite sets of positive and negative
sort variables, for which we use the typewriter font T. Each positive (resp. nega-
tive) sort variable T is equipped with an equation T = P (resp. T = N), where P
(resp. N) is a sort constructed from atomic sorts and sort variables. We require
that, for every equation T = P (resp. T = N), P (resp. N) is not a sort variable.
Let us write ∼ for the congruence induced by the equations. For example, if we
have a positive sort variable V = ↓(V→ ↑V), then (V → n) ∼ (↓(V→ ↑V) → n).
In the extended system, we deal with sorts modulo ∼.

The extended calculus also enjoys Confluence and Subject Reduction. Fur-
thermore one can embed some untyped calculi into the extended calculus. For
example, V above is the sort used in the embedding of the call-by-value λ̄µµ̃.

2.6 Translation to λ→×

The calculus λ̄µµ̃P is strongly related to the typed λ-calculus λ→× (with recur-
sive sorts) via the translation described below.

We assume a fixed simple sort O of λ→×, called the response sort. Polarised
sorts P and N of λ̄µµ̃P are translated into sorts P ∗ and N∗ of λ→× as follows:

(P ← N)∗ := P ∗ ×N∗ (P → N)∗ := P ∗ ×N∗

(↓N)∗ := (N∗)→ O (↑P )∗ := (P ∗)→ O,
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where we assume a fixed translation of atomic sorts. Note that a function type of
λ→× appearing in the translation must be of the form (−)→ O as in Thielecke-
style CPS translation [28] into a calculus with “negation” and pairs.

For example, the translation of the sort ↓(P → N) for (positive) lambda
abstractions is (↓(P → N))∗ = (P ∗×N∗)→ O. Translation of a type environ-
ment is component-wise, e.g., (x1 : P1, . . . , xk : Pk)∗ := x1 : P ∗1 , . . . , xk : P ∗k . A
recursive sort defined by T = P is translated to T∗ with T∗ = P ∗.

Translation of expressions is defined by:

(x)∗ := x (λx.v)∗ := λ(x, β).(v∗ β) (µα.c)∗ := λα.(c∗) (v / e)∗ := (v∗, e∗)
(α)∗ := α (λα.e)∗ := λ(y, α).(e∗ y) (µx.c)∗ := λx.(c∗) (v . e)∗ := (v∗, e∗)
〈e � v〉∗ := v∗ e∗ 〈e

�

v〉∗ := e∗ v∗,

where y and β are fresh variables not appearing in v nor e. Cut expressions,
which mean context-filling, are translated into the application of the context to
the term. The direction of the application is controlled by the direction, or the
polarity, of the cut. In other words, the cut expression tells us which is a context
and which is a term. This is in contrast to λ̄µµ̃, in which the direction of the cut
is globally determined by the evaluation strategy.

The translation preserves typing and reduction.

Proposition 3. We haveΓ ` v : P | ∆
Γ | e : N ` ∆
c : (Γ ` ∆)

 in λ̄µµ̃P =⇒

Γ ∗, ∆∗ ` v∗ : P ∗

Γ ∗, ∆∗ ` e∗ : N∗

Γ ∗, ∆∗ ` c∗ : O.

 in λ→×.

Proof. Easy induction on the structure of the expression of λ̄µµ̃P . ut

Lemma 1. Let t be a (possibly not well-sorted) expression of λ̄µµ̃P .

– If t −→ u in λ̄µµ̃P , then t∗−→u∗ in λ→×.
– If t∗ −→ u in λ→×, then t −→ s in λ̄µµ̃P and s∗ = u for some s.

Corollary 1. A λ̄µµ̃P -expression t is strongly normalising iff so is t∗.

3 Refinement Intersection and Union Type System

This section develops a refinement intersection and union type system for λ̄µµ̃P
that has intersection on positive types and union on negative types. Perhaps sur-
prisingly, this simple extension works quite well. For example, (1) the set of types
for an expression is preserved by =β and (2) strongly normalising expressions
are completely characterised by the type system.

Fix finite sets of positive and negative sort variables as well as associated
equations. Expressions in this section are implicitly equipped with their sorts.

Remark 2. The results of this section does not rely on well-sortedness of expres-
sions (though the statement of Theorem 2 needs a slight modification). Expres-
sions in the images of the translations from call-by-name and call-by-value λ̄µµ̃
are well-sorted, and the sort will play an important rôle in Section 5.
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3.1 Intersection and Union Types

Syntax Assume a (possibly empty) set XP (resp. XN ) of atomic types for each
positive sort P (resp. negative sort N). For simplicity, we assume XP , XQ, XM
and XN are pairwise disjoint if P 6= Q and M 6= N . We use aP (resp. aN ) for a
metavariable that ranges over XP (reps. XN ). The syntax of types is given by

(Positive raw types) τ, σ ::= aP | τ ← θ | ↓θ | τ ∧ τ | >P
(Negative raw types) θ, δ ::= aN | τ → θ | ↑τ | θ ∨ θ | ⊥N .

Compared with the syntax of sorts, we simply add intersection on positive and
union on negative. A raw type is {>,⊥}-free if it does not contain >P nor ⊥N .

Refinement relation A type is a raw type that follows the structure of a sort.
To describe this notion formally, we introduce the refinement relation:

aP ∈ XP
aP :: P

τ :: P θ :: N

τ ← θ :: P ← N

θ :: N

↓θ :: ↓N
τ1, τ2 :: P

τ1 ∧ τ2 :: P >P :: P

aN ∈ XN
aN :: N

τ :: P θ :: N

τ → θ :: P → N

τ :: P

↑τ :: ↑P
θ1, θ2 :: N

θ1 ∨ θ2 :: N ⊥N :: N

Every raw type has at most one sort.

Example 1. A negative raw type (↑a) ∨ (b→ c) is not a type.

Subtyping The subtyping relation is defined by the following rules.

aP ∈ XP
aP �P aP

τ �P σ θ �N δ

(τ ← θ) �P←N (τ ← θ)

θ �N δ

↓θ �↓N ↓δ

aN ∈ XN
aN �N aN

τ �P σ θ �N δ

(τ → θ) �P→N (σ → δ)

τ �P σ
↑τ �↑P ↑σ

τ �P σ1 τ �P σ2
τ �P σ1 ∧ σ2

τ1 ∧ τ2 :: P ∃i ∈ {1, 2}. τi �P σ
τ1 ∧ τ2 �P σ

τ :: P

τ �P >P
θ1 �N δ θ2 �N δ

θ1 ∨ θ2 �N δ

δ1 ∨ δ2 :: N ∃i ∈ {1, 2}. θ �N δi

θ �N δ1 ∨ δ2
θ :: N

⊥N �N θ

If τ �P σ, then τ :: P and σ :: P . We simply write τ � σ if τ �P σ for some P .
It is easy to show that the subtyping relation is transitive.

3.2 Typing Rules

Let us write Θ for a type environment for positive variables and Ξ for negative
variables: Θ ::= · | Θ, x : τ and Ξ ::= · | Ξ,α : θ. For type environments,
we assume that each variable occurs at most once. The refinement relation on
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environments is defined by point-wise refinement: Θ :: Γ just if {x | x :: P ∈
Γ} = {x | x : τ ∈ Θ} and, for all x, x : τ ∈ Θ and x :: P ∈ ∆ implies τ :: P .
The subtyping relation on environments is also defined by point-wise subtyping:
given Θ1 :: Γ and Θ2 :: Γ , we write Θ1 �Γ Θ2 (or simply Θ1 � Θ2) if x : τ1 ∈ Θ1

and x : τ2 ∈ Θ2 implies τ1 �P τ2 (where x :: P ∈ Γ ).
Recall that expressions and variables are implicitly equipped with their sorts.

Hereafter we assume that a type environment respects the sorts. For example, if
x : τ ∈ Θ for a positive variable x of sort P , then we assume that τ :: P . It might
be better to write x : τ :: P to make the sort explicit, but we do not choose this
heavy notation.

The intersection and union type system has the rules of the sort system in
Section 2 (but for types, not sorts) and the following additional rules.

Θ ` v :τ1 | Ξ Θ ` v :τ2 | Ξ
Θ ` v : τ1∧τ2 | Ξ

v :: P

Θ ` v :>P | Ξ
Θ ` v :τ | Ξ τ �P τ ′

Θ ` v : τ ′ | Ξ

Θ | e :θ1 ` Ξ Θ | e :θ2 ` Ξ
Θ | e : θ1∨θ2 ` Ξ

e :: N

Θ | e :⊥N ` Ξ
Θ | e :θ ` Ξ θ′ �N θ

Θ | e : θ′ ` Ξ

The conditions of >P and ⊥N rules ensures that Θ ` v : τ |Ξ and v ::P implies
τ ::P . Since τ1∧τ2 �P τ1 and θ1 �N θ1∨θ2, the elimination rules are admissible:

Θ ` v : τ1 ∧ τ2 | Ξ
Θ ` v : τ1 | Ξ

Θ | e : θ1 ∨ θ2 ` Ξ
Θ | e : θ1 ` Ξ

The subtyping rule for type environments is also admissible.

Lemma 2. Assume that Θ ` v : τ | Ξ and Θ′ � Θ and Ξ � Ξ ′. Then Θ′ ` v :
τ | Ξ ′ is derivable. The similar statement holds for co-terms and commands.

Proof. Easy induction on the structure of the derivation. ut

By the previous lemma, one can introduce intersection to the positive type
environment and union to the negative type environment:

Θ, x : σ ` v : τ | Ξ
Θ, x : σ ∧ σ′ ` v : τ | Ξ

Θ ` v : τ | α : θ,Ξ

Θ ` v : τ | α : θ ∨ θ′, Ξ

We cannot derive Θ ` v : τ ∨ σ | Ξ from Θ ` v : τ | Ξ since union is not defined
on positive types. Instead Θ ` v : ↓(θ ∨ δ) | Ξ is derivable from Θ ` v : ↓θ | Ξ.

3.3 Subject Reduction

Subject Reduction (Proposition 4) can be proved by the standard technique us-
ing Substitution Lemma and Inversion (Lemmas 3 and 4). The proof of Inversion
needs some case because of the subtyping rule.

Lemma 3 (Substitution). Assume Θ ` v : τ | Ξ, which refines Γ ` v :: P | ∆.
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– If Θ, x : τ ` v′ : σ | Ξ, then Θ ` v′[v/x] : σ | Ξ.
– If Θ, x : τ | e : θ ` Ξ, then Θ | e[v/x] : θ | Ξ.
– If c : (Θ, x : τ ` Ξ), then c[v/x] : (Θ ` Ξ).

The similar statements hold for substitution of co-terms.

Lemma 4 (Inversion).

1. If Θ ` λx.v :↓θ | Ξ, there are σ and δ s.t. Θ, x :σ ` v :↓δ | Ξ and σ → δ � θ.
2. If Θ ` µα.v : ↓θ | Ξ, then c : (Θ ` α : θ,Ξ).
3. If Θ ` e / v : σ ← θ | Ξ, then Θ ` v : σ | Ξ and Θ | e : θ ` Ξ.

The similar statements hold for co-terms.

Proposition 4 (Subject Reduction). If c : (Θ ` Ξ) and c −→ c′, then
c′ : (Θ ` Ξ). The similar statements hold for terms and co-terms.

Proof (Sketch). We prove one of the base cases of which the proof is most com-
plicated. Consider the case that c = 〈(λx.v1)

�

(v2 . e)〉 and c′ = 〈(v1[v2/x])

�

e〉.
By the assumption, 〈(λx.v1)

�

(v2 . e)〉 : (Θ ` Ξ). Then Θ ` λx.v1 : ↓θ | Ξ and
Θ | v2 . e : θ ` Ξ. By Lemma 4, one has Θ, x : σ ` v1 : ↓δ | Ξ and σ → δ � θ for
some σ and δ. By the subtyping rule, we have Θ | v2 . e : σ → δ ` Ξ. Again, by
Lemma 4, Θ ` v2 : σ | Ξ and Θ | e : δ ` Ξ. By Substitution Lemma (Lemma 3),
Θ ` v1[v2/x] : ↓δ | Ξ. Hence 〈v1[v2/x]

�
e〉 : (Θ ` Ξ). ut

3.4 Subject Expansion

The proof of Subject Expansion is rather straightforward.

Lemma 5 (De-substitution). Suppose that Γ ` v :: P | ∆, Θ :: Γ and Ξ :: ∆.
Let x be a variable of sort P .

– If Θ ` v′[v/x] :σ |Ξ, then Θ, x :τ ` v′ :σ |Ξ and Θ ` v :τ |Ξ for some τ ::P .
– If Θ | e[v/x] :θ ` Ξ, then Θ, x :τ | e :θ ` Ξ and Θ ` v :τ |Ξ for some τ ::P .
– If (c[v/x]) : (Θ ` Ξ), then c : (Θ, x :τ ` Ξ) and Θ ` v :τ |Ξ for some τ ::P .

The similar statements hold for substitution of co-terms.

Proposition 5 (Subject Expansion). If c −→ c′ and c′ : (Θ`Ξ), then c : (Θ`
Ξ). The similar statements hold for terms and co-terms.

Proof (Sketch). We prove one of the base cases of which the proof is most compli-
cated. Consider the case that Case c = 〈(λx.v1)

�

(v2 . e)〉 and c′ = 〈(v1[v2/x])

�

e〉. By the assumption, 〈(v1[v2/x])

�

e〉 : (Θ ` Ξ). Then Θ ` v1[v2/x] : ↓θ | Ξ
and Θ | e : θ ` Ξ for some θ. By De-substitution Lemma (Lemma 5), we have σ
such that Θ, x : σ ` v1 : ↓θ | Ξ and Θ ` v2 : σ | Ξ. Hence we have Θ ` λx.v1 :
↓(σ → θ) | Ξ and Θ | v2 . e : σ → θ ` Ξ. Now 〈(λx.v1)

�

(v2 . e)〉 : (Θ ` Ξ). ut

Corollary 2. Validity of a judgement is preserved by =β on subjects.
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3.5 Normalisation

Let us consider the {>,⊥}-free subsystem of the intersection and union type
system, in which one cannot use >P nor ⊥N at all. We write Γ  v : τ ‖ Ξ
to mean Γ ` v : τ | Ξ is derivable in the subsystem. Like an intersection type
system for the λ-calculus [7], this subsystem completely characterises strongly
normalising expressions.

Here we prove soundness, appealing to the connection to the calculus λ→×

(see Section 2.6). The intersection type system for λ̄µµ̃P is also closely related
to that for λ→× by design.3 Because all connectives except for intersection and
union are in the sort system as well, what we shall define is the translation of
intersection and union, which is given by:

(τ1 ∧ τ2)∗ := τ∗1 ∧ τ∗2 (θ1 ∨ θ2)∗ := θ∗1 ∧ θ∗2 .

Note that the union on negatives is understood as an intersection.

Lemma 6. In the respective intersection (and union) type systems, we haveΘ  v : τ ‖ Ξ
Θ ‖ e : θ  Ξ
c : (Θ  Ξ)

 in λ̄µµ̃P =⇒

Θ∗, Ξ∗  v∗ : τ∗

Θ∗, Ξ∗  e∗ : θ∗

Θ∗, Ξ∗  c∗ : O.

 in λ→×.

Recall that the translation (−)∗ preserves and reflects the reduction relation
(Lemma 1), and thus t is strongly normalising if and only if so is t∗ (Corollary 1).
Hence soundness of our subsystem follows from that for the intersection type
system for the λ→×-calculus with recursive sorts.

Theorem 1. An expression typable in the subsystem is strongly normalising.

3.6 Completeness

We prove completeness of the {>,⊥}-free subsystem with respect to strong nor-
malisation. Recall that our intersection and union type system is parameterised
by finite sets of recursive sorts as well as families of atomic types {XP }P and
{XN}N . Obviously, if XP = XN = ∅ for every P and N , completeness fails, since
there is no {⊥,>}-free (raw) type. To avoid this, here we assume the following.

Every sort has at least one {>,⊥}-free refinement type. (?)

Lemma 7. Every well-sorted normal form is typable in the subsystem.

Theorem 2 (Completeness). A strongly normalising (well-sorted) expression
is typable in the {>,⊥}-free subsystem.

3 The intersection type system for the λ-calculus with pairs that we consider is the
straightforward extension of the simple type system λ→×.
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Proof (Sketch). We prove the claim by induction on the length of the longest
reduction sequence starting from the expression. If the expression is in normal
form, we use Lemma 7. For reducible expressions, we prove the claim by induc-
tion on the structure of the derivation of the reduction relations. For example,
consider a base case 〈(λx.v1)

�

(v2 . e)〉 −→ 〈(v1[v2/x])

�

e〉. By the induction
hypothesis, 〈(v1[v2/x])

�

e〉 is typable in the {>,⊥}-free subsystem. Assume that
〈(v1[v2/x])

�

e〉 : (Θ  Ξ), and hence Θ  v1[v2/x] : ↓θ ‖ Ξ and Θ ‖ e : θ  Ξ
for some θ. There are two cases. If x occurs freely in v1, then one can prove De-
substitution Lemma for the subsystem, which completes the proof for this case. If
x does not occur in v1, the näıve adaptation of De-substitution Lemma does not
work, since the judgement obtained by the lemma isΘ ` v2 : >P | Ξ, which is not
derivable in the subsystem. However, in this case, Θ, x : τ  v1 : θ ‖ Ξ for every
{>,⊥}-free type τ (which refines the sort of x). By the induction hypothesis, one
has Θ′  v2 : τ ‖ Ξ ′ in the {>,⊥}-free subsystem for some Θ′, Ξ ′, and τ ′. Then
we have Θ′∧Θ  λx.v1 : ↓(τ → θ) ‖ Ξ ∨Ξ ′ and Θ′∧Θ ‖ v2 .e : τ → θ  Ξ ∨Ξ ′,
and thus 〈(λx.v1)

�

(v2 . e)〉 is typable in the subsystem. ut

4 Translations to the Polarised Calculus

We shall see how to translate call-by-value and call-by-name λ̄µµ̃ into the po-
larised calculus λ̄µµ̃P , using the polarity to encode evaluation strategies.

We introduce a convenient abbreviation that will be used in this section:
��v := µα.〈v � α〉. If ` v : P , then ` ��v : ↓↑P (hence the notation). Similarly ��e
is defined as µx.〈x

�

e〉. We have 〈��v

�

e〉 −→ 〈v � e〉 and 〈v � ��e〉 −→ 〈v

�

e〉. Do
not confuse them with “η-expansion” v 7→ µα.〈v

�

α〉, which does not change the
meaning including the sort. (If ` v :: ↓N , then ` µα.〈v

�

α〉 :: ↓N .) The double-
shifting ��(−) corresponds to λk.k(−) (i.e. passing a value to the continuation)
in the λ-calculus.

4.1 Embedding of CBV λ̄µµ̃

Given an expression t of λ̄µµ̃, we define an expression tv of λ̄µµ̃P as follows.

(Values) Φ(x) = x Φ(λx.v) = λx.vv

(Terms) V v = ��Φ(V ) (µα.c)v = µα.cv

(Co-terms) αv = α (µ̃x.c)v = µx.cv

(v · e)v = µf.〈vv

�

µy.〈f

�

y . ev〉〉
(Commands) 〈v | e〉v = 〈vv

�

ev〉.

In the translation of cuts of the call-by-value calculus, the term side has the
priority. We focus on the co-term side when the term side is evaluated to a
value: 〈V v

�

ev〉 = 〈��Φ(V )

�

ev〉 −→ 〈Φ(V ) � ev〉.
The translation preserves operational semantics in the following sense.

Proposition 6. If t −→ u, then tv −→+ uv.

Corollary 3. t =cbv
β u implies tv =β u

v. If tv is SN, then so is t in call-by-value.
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Although we do not assume well-sortedness of the source expression, the
image of the translation is always well-sorted. Let V be a positive sort variable

with the equation V = ↓(V→ (↑V)). Then one has
−−→
x ::V ` Φ(V ) ::V |

−−−→
α ::↑V and

−−→
x ::V ` vn ::↓↑V |

−−−→
α ::↑V, −−→

x ::V | en ::↑V `
−−−→
α ::↑V, and cn :: (

−−→
x ::V `

−−−→
α ::↑V).

4.2 CBN λ̄µµ̃

Given an expression t of λ̄µµ̃, we define an expression tn of λ̄µµ̃P as follows.

(Terms) xn = x (λx.v)n = λx.(��vn) (µα.c)n = µα.cn

(Co-values) Ψ(α) = α Ψ(v · e) = vn . en

(Co-terms) En = ��Ψ(E) (µ̃x.c)n = µx.cn

(Commands) 〈v | e〉n = 〈vn � en〉.

In the interpretation of cuts of the call-by-name calculus, the co-term side has
priority. When the co-term side is a co-value E, then we focus on the term side
by the rule 〈vn � ��Φ(E)〉 −→ 〈vn

�

Φ(E)〉.
The translation preserves operational semantics in the following sense.

Proposition 7. t =cbn
β u implies tn =β u

n. If tn is SN, so is t in call-by-name.

Unfortunately it is not the case that t −→ u in λ̄µµ̃ implies tn −→∗ un in λ̄µµ̃P .
This holds if we choose 〈λx.v | v′ · e〉 −→ 〈v[v′/x] | e〉 as the β-rule.

The image of this translation is well-sorted. Let N be a negative sort variable
in λ̄µµ̃P equipped with N = (↓N)→ (↑↓N). Then

−−−→
x ::↓N ` vn ::↓N | −−→α ::N,

−−−→
x ::↓N | en ::↑↓N ` −−→α ::N, and cn :: (

−−−→
x ::↓N ` −−→α ::N).

5 Intersection and Union Types for Untyped CBV λ̄µµ̃

This section develops a sound and complete type assignment system for the un-
typed version of call-by-value λ̄µµ̃ as an application of our development. The
types for an expression is preserved by β-equivalence, i.e. the type system enjoys
both Subject Reduction and Subject Expansion. Furthermore the {>,⊥}-free
subsystem completely characterises strongly normalising expressions, as the tra-
ditional intersection type systems do for the untyped λ-calculus.

The type assignment system is induced from the translation of CBV λ̄µµ̃
to λ̄µµ̃P . Given an expression t of λ̄µµ̃, the types for tv is preserved by β-
equivalence, because the translation preserves reduction (Proposition 6) and the
type system for λ̄µµ̃P enjoys Subject Reduction and Expansion (Propositions 4
and 5). Now the goal is to develop a type system for λ̄µµ̃ that is equivalent to
typing after the translation.

We first decide the syntax of types by using the refinement relation. Recall
that, given a λ̄µµ̃-expression t, the result tv of the translation is well-sorted
by using the recursive sort defined by V = ↓(V→ (↑V)). The sorts we need to
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show well-sortedness of tv are V, ↑V, V → (↑V), and ↓↑V. This suggests that the
syntax of types for the call-by-value λ̄µµ̃ should have four classes. We define the
intersection and union types for the call-by-value λ̄µµ̃ by the following grammar:

ψ ::= a | ν → ϕ | ψ ∨ ψ | ⊥V→(↑V) ϕ ::= ↑ν | ϕ ∨ ϕ | ⊥↑V
ν ::= ↓ψ | ν ∧ ν | >V % ::= ↓ϕ | ρ ∧ ρ | >↓↑V.

It is easy to see that the above syntax properly defines refinement types of
V→ (↑V), V, ↑V, and ↓↑V, respectively.

A positive type environment Θ is a finite set of type binding of the form
x : ν, since the sort environment is

−−−→
x :: V. By the same reason, a negative type

environment Ξ is a set of type binding of the form α : ϕ.
We use `cbv for judgements of the type system for the call-by-value λ̄µµ̃. We

have two kinds of judgements for terms. The first one is Θ `cbv V : ν ; Ξ for
values. The second one is Θ `cbv v : % | Ξ for terms. Even if v is a value, we
distinguish the two judgements.

The typing rules are listed below. To save the space, we omit the intersection
and union introduction rules and the subtyping rules.

Θ, x : ν `cbv x : ν ; Ξ

Θ `cbv V : ν ; Ξ

Θ `cbv V : ↓↑ν | Ξ
Θ, x : ν `cbv v : ↓ϕ | Ξ

Θ `cbv λx.v : ↓(ν → ϕ) ; Ξ

c : (Θ `cbv α : ϕ,Ξ)

Θ `cbv µα.c : ↓ϕ | Ξ Θ | α : ϕ `cbv α : ϕ,Ξ

c : (Θ, x : ν `cbv Ξ)

Θ | µ̃x.c : ↑ν `cbv Ξ

Θ `cbv v : ↓(
∨
i∈I(↑νi)) | Ξ

Θ | e : ϕ `cbv Ξ
Θ | v · e : ↑(

∧
i∈I ↓(νi → ϕ)) `cbv Ξ

Θ `cbv v : ↓ϕ | Ξ
Θ | e : ϕ `cbv Ξ
〈v | e〉 : (Θ `cbv Ξ)

Lemma 8. We have

Θ `cbv V : ν ; Ξ ⇐⇒ Θ ` Φ(V ) : ν | Ξ
Θ `cbv v : % | Ξ ⇐⇒ Θ ` vv : % | Ξ
Θ | e : ϕ `cbv Ξ ⇐⇒ Θ | ev : ϕ ` Ξ
c : (Θ `cbv Ξ) ⇐⇒ cv : (Θ ` Ξ).

The similar statements hold for the {>,⊥}-free subsystems.

By Lemma 8 and Corollary 3, the set of valid type judgements for a λ̄µµ̃-
expression is preserved by call-by-value β-reduction.

Theorem 3. Validity of a type judgement is preserved by =cbv
β on subjects.

Another consequence of Lemma 8 and Corollary 3 is that a λ̄µµ̃-expression
typable in the {⊥,>}-free subsystem is strongly normalising with respect to the
call-by-value reduction. If t is typable in the {>,⊥}-free subsystem, then tv is
typable in the subsystem and thus tv is strongly normalising by Theorem 1, which
implies that t is strongly normalising in the call-by-value evaluation strategy.
Completeness can be proved directly as in the proof of Theorem 2.
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Theorem 4. A λ̄µµ̃-expression is typable in the {⊥,>}-free subsystem if and
only if it is strongly normalising with respect to the call-by-value reduction.

6 Related work

The connection between polarity and intersection and union types has been
pointed out by Zeilberger [30]. He aimed to clarify without trial and error valid
typing and subtyping rules, which heavily depends on computational effect and
the evaluation strategy of the calculus (see, e.g. [10,13]). His approach is based
on a refinement of a focusing proof, closely related to the notion of polarity. In
his focused calculus, a value has a sort different from a term, and the unrestricted
intersection introduction rule is admissible for refinements of a sort for values
but not for refinements of a sort for terms.4

We found a complementary relationship between his work and our work.
Our starting point is a well-know calculus λ̄µµ̃ [9], and the notion of polarities
is introduced by a simple change, whereas his calculus looks quite different from
the conventional calculi. We showed that intersection interacts well with posi-
tives and unions with negatives, and this conclusion seems different from [30].
We proved properties that one expects for an intersection (and union) type sys-
tem, including a completeness result. Usefulness of our idea is demonstrated by
deriving an intersection and union type system for the call-by-value λ̄µµ̃.

Intersection and union types for λ̄µµ̃ and related calculi Dougherty et
al. [11] proposed an intersection and union type system M∩∪ for the untyped
λ̄µµ̃ (that they called Gemini) and claimed Subject Reduction of the system
(as well as strong normalisation of well-typed expressions). However it contains
an error (see Section 4.2 and related work of [12]). Then they gave another
type system M∩ based on intersection and “negation”, and stated that it en-
joys Subject Reduction and Expansion [12]. However van Bakel [2] constructed
counterexamples of both properties (see Section 8 of [2]).

Van Bakel [2] investigated the failure of Subject Reduction and Expansion
of (a slight variant of) M∩∪ and introduced several variants. The system Mc

has additional typing rules and satisfies Subject Expansion but not Subject
Reduction. He also developed type systems for call-by-name and call-by-value
λ̄µµ̃, which enjoy Subject Reduction but not Subject Expansion.

To the best of our knowledge, development of an intersection (and union)
type system that satisfies Subject Reduction and Expansion and characterises
strongly normalising expression for the call-by-value λ̄µµ̃ had been open.

In those systems, a left-hand environment Θ (corresponding to a positive
type environment in this paper) is limited to intersection types and a right-hand
type environment (corresponding to a negative type environment) is to union
types (see, e.g., [11] for the reason of this design). The exception isMc in which
a positive type environment can have union type binding x : τ∨σ but at the price

4 Unfortunately his terminology is opposite to ours: in [30], a sort refines a type.
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of loss of Subject Reduction. Our type system does not allow Θ, x : τ ∨ σ to be
a positive type environment, since ∨ is not allowed for positive types. However,
in our system, a positive type environment can have x : ↓(θ ∨ δ), a shifted union
type. We believe that this explicit shifting plays a crucial rôle.

Van Bakel et al. [4] developed an intersection type system for λµ whose
syntax is induced from the domain equation for λµ-model. Their approach might
be somewhat parallel to our approach, in which the syntax is induced by the
sort equation about V. Other intersection (and union) type systems for the λµ-
calculus can be found in [3,21]. We are not sure if those type systems are derivable
by our method. Kikuchi and Sakurai [16] gave a translation from [4] to [21] that
somewhat resembles to the translation in this paper from the intersection type
system for λ̄µµ̃P to that for λ→×.

Polarised/focalised calculi The notions of polarity [15] and focusing [1] have
been extensively studied in the field of logic and computation. Our polarised
calculus λ̄µµ̃P is inspired by work of many researchers including Andreoli [1],
Girard [15], Laurent [19,20,22], Melliés [24], Melliés and Selinger [25], Munch-
Maccagnoni [27], Zeilberger [29].

Curien and Munch-Maccagnoni [8] and Munch-Maccagnoni [26] gave fo-
calised variants of λ̄µµ̃. These calculi appear different from ours, at least su-
perficially. First positive and negative terms of their calculi have different syn-
tax, whereas our calculus is symmetric. Second the notion of values plays an
important role in their calculus, whereas our calculus does not have the notion
of values (nor co-values). Third their calculi have a pair constructor (·, ·) and
variant constructors inl and inr , whereas our calculus does not. A more mature
comparison is left for future work.

7 Conclusion and Future Work

We introduced the polarised calculus λ̄µµ̃P , to which the simple intersection
and union extension works quite well. The intersection and union type system
is a refinement type system, in which intersection is restricted to refinements of
positive sorts and union to those of negative sorts. Using the polarised calculus
as an intermediate language, we developed an intersection and union type system
for the call-by-value λ̄µµ̃, which enjoys both Subject Reduction and Expansion
and characterises strongly normalising expressions.

The intersection type system provides us with a characterisation of weakly
normalising expressions, although we do not have enough space to discuss it.
Our approach is applicable to the call-by-name λ̄µµ̃ as well.

We are not sure if the refinement type system of this paper is the simplest
one for λ̄µµ̃P . We suspect that use of intersection and union can be more re-
strictive without losing any desired properties. It is also interesting to extend the
calculus by pairs and variants. This would clarify the connection to the focalised
calculi [8,26,29] and to LC [15].
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A Precise Definitions of Calculi

This section gives the precise definitions of the systems in this paper, some of
which are omitted in the body.

A.1 Calculus λ̄µµ̃P

Terms Assume infinite sets of positive variables, ranged over by x, y and z, and
negative variables, ranged over by α, β and γ. The syntax of expressions is given
by:

(Terms) v ::= x | λx.v | µα.c | v / e
(Commands) c ::= 〈v

�

e〉 | 〈v � e〉
(Co-terms) e ::= α | λα.e | µx.c | v . e.

We use a metavariable t for expressions.

Reduction We write t[v/x] for the capture-avoiding substitution of v for x in
t, and t[e/α] for the substitution of e for α in t. The calculus has 4 reduction
rules, namely, positive/negative λ/µ reductions. The rules are listed below:

〈(λx.v1)

�

(v2 . e)〉 −→ 〈(v1[v2/x])

�

e〉 〈(µα.c)

�

e〉 −→ c[e/α]

〈(v / e1) � (λα.e2)〉 −→ 〈v � (e2[e1/α])〉 〈v � (µx.c)〉 −→ c[v/x]

The reduction is supposed to be full, i.e. any redex at any position can be
reduced. We write −→∗ for the reflexive and transitive closure of −→, and =β for
the least equivalence containing −→. Some expression gets stuck, e.g. 〈(λx.v1) �
(v2 . e)〉 and 〈(λx.v1)

�

(µy.c)〉.

A.2 Sort system for λ̄µµ̃P

Let P and N be finite sets of positive and negative sort variables, respectively.
We write E for the associated equations. For each P ∈ P, we have a unique P
such that (P = P ) ∈ E , where P is not a sort variable.

Sorts The syntax of simple polarised sorts is given by:

(Positive sorts) P,Q ::= p | P | P ← N | ↓N
(Negative sorts) N,M ::= n | N | P → N | ↑P.

Let ∼ be the least relation which satisfies the rules in Fig. 1. It is easy to see
that ∼ is an equivalence relation on sorts.
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(P = P ) ∈ E
P ∼ P

(∼-PV-L)

(P = P ) ∈ E
P ∼ P

(∼-PV-R)

p ∼ p
(∼-PA)

P ∼ P ′ N ∼ N ′

P ← N ∼ P ′ ← N ′
(∼-PTo)

N ∼ N ′

↓N ∼ ↓N ′
(∼-PShift)

P1 ∼ P2 P2 ∼ P3

P1 ∼ P3

(∼-PTrans)

(N = N) ∈ E
N ∼ N

(∼-NV-L)

(N = N) ∈ E
N ∼ N

(∼-NV-R)

n ∼ n
(∼-NA)

P ∼ P ′ N ∼ N ′

P → N ∼ P ′ → N ′
(∼-NTo)

P ∼ P ′

↑P ∼ ↑P ′
(∼-NShift)

N1 ∼ N2 N2 ∼ N3

N1 ∼ N3

(∼-NTrans)

Fig. 1. Sort equivalence

Sort environments and judgements A positive sort environment Γ (resp. neg-
ative sort environment ∆) is a finite set of sort bindings of the form x :: P
(resp. α :: N). We use double colon for sort bindings, reserving single colon for
type bindings. A sort environment is considered as a set and the order of sort
bindings is not significant. We write Γ, Γ ′ for Γ ∪ Γ ′.

There are tree kinds of sort judgements, which have both positive and neg-
ative sort environments and a subject depending on its kind. The first one
Γ ` v :: P | ∆ means that the term v has the positive sort P under the en-
vironments Γ and ∆. The second one Γ | e :: N ` ∆, which is the dual to
the first one, means that the co-term e has the negative sort N . The third one
c :: (Γ ` ∆) means that the command c is well-sorted.

Sorting rules Figure 2 is the complete list of the sorting rules.

A.3 Refinement intersection and union type system for λ̄µµ̃P

Fix finite sets of positive and negative sort variables as well as associated equa-
tions. Expressions in this subsection are implicitly equipped with their sort.

Assume a (possibly empty) set XP (resp. XN ) of atomic types for each posi-
tive sort P (resp. negative sort N). For simplicity, we assume XP , XQ, XM and
XN are pairwise disjoint if P 6= Q and M 6= N . We use aP (resp. aN ) for a
metavariable that ranges over XP (reps. XN ).
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Γ, x : P ` x : P | ∆
(S-PVar)

Γ, x : P ` v : ↓N | ∆
Γ ` λx.v : ↓(P → N) | ∆

(S-PAbs)

c : (Γ ` α : N,∆)

Γ ` µα.c : ↓N | ∆
(S-PMu)

Γ ` v : Q | ∆ Γ | e : N ` ∆
Γ ` v / e : Q← N | ∆

(S-PApp)

Γ ` v :: P | Ξ P ∼ P ′

Γ ` v :: P ′ | Ξ
(S-P∼)

Γ | e : ↑P ` ∆ Γ ` v : P | ∆
〈v � e〉 : (Γ ` ∆)

(S-PCmd)

Γ | α : N ` α : N,∆
(S-NVar)

Γ | e : ↑P ` α : N,∆

Γ | λα.e : ↑(P ← N) ` ∆
(S-NAbs)

c : (Γ, x : P ` ∆)

Γ | µx.c : ↑P ` ∆
(S-NMu)

Γ | e : N ` ∆ Γ ` v : P | ∆
Γ | v . e : P → N ` ∆

(S-NApp)

Γ | e :: N ` Ξ N ∼ N ′

Γ | e :: N ′ ` Ξ
(S-N∼)

Γ ` v : ↓N | ∆ Γ | e : N ` ∆
〈v

�

e〉 : (Γ ` ∆)
(S-NCmd)

Fig. 2. Sorting rules
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aP ∈ XP

aP :: P
(R-PA)

τ :: P θ :: N

τ ← θ :: P ← N
(R-PTo)

θ :: N

↓θ :: ↓N
(R-PShift)

τ1, τ2 :: P

τ1 ∧ τ2 :: P
(R-PInt)

>P :: P
(R-PTop)

τ :: P P ∼ P ′

τ :: P ′
(R-P∼)

aN ∈ XN

aN :: N
(R-NA)

τ :: P θ :: N

τ → θ :: P → N
(R-NTo)

τ :: P

↑τ :: ↑P
(R-NShift)

θ1, θ2 :: N

θ1 ∨ θ2 :: N
(R-NUni)

⊥N :: N
(R-NBot)

θ :: N N ∼ N ′

θ :: N ′
(R-N∼)

Fig. 3. Refinement Relation

Raw types The syntax of raw types is given by

(Positive raw types) τ, σ ::= aP | τ ← θ | ↓θ | τ ∧ τ | >P
(Negative raw types) θ, δ ::= aN | τ → θ | ↑τ | θ ∨ θ | ⊥N .

Refinement relation A type is a raw type that follows the structure of a sort.
To describe this notion formally, we introduce the refinement relation defined
by Fig. 3.

Subtyping The subtyping relation is defined by the rules in Fig. 4.

Type environments and judgements Let us write Θ for a type environment
for positive variables and Ξ for negative variables: Θ ::= · | Θ, x : τ and Ξ ::=
· | Ξ,α : θ. For type environments, we assume that each variable occurs at
most once. The refinement relation on environments is defined by point-wise
refinement: Θ :: Γ just if {x | x :: P ∈ Γ} = {x | x : τ ∈ Θ} and, for all x,
x : τ ∈ Θ and x :: P ∈ ∆ implies τ :: P . The subtyping relation on environments
is also defined by point-wise subtyping: given Θ1 :: Γ and Θ2 :: Γ , we write
Θ1 �Γ Θ2 (or simply Θ1 � Θ2) if x : τ1 ∈ Θ1 and x : τ2 ∈ Θ2 implies τ1 �P τ2
(where x :: P ∈ Γ ).

Recall that expressions and variables are implicitly equipped with their sorts.
Hereafter we assume that a type environment respects the sorts. For example, if
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τ :: P

τ �P τ
(Sub-PRefl)

τ �P σ θ �N δ

(τ ← θ) �P←N (τ ← θ)
(Sub-PTo)

θ �N δ

↓θ �↓N ↓δ
(Sub-PShift)

τ �P σ1 τ �P σ2

τ �P σ1 ∧ σ2

(Sub-PInt-R)

τ1 ∧ τ2 :: P ∃i ∈ {1, 2}. τi �P σ

τ1 ∧ τ2 �P σ
(Sub-PInt-L)

τ :: P

τ �P >P

(Sub-PTop)

θ :: N

θ �N θ
(Sub-NRefl)

τ �P σ θ �N δ

(τ → θ) �P→N (σ → δ)
(Sub-NTo)

τ �P σ

↑τ �↑P ↑σ
(Sub-NShift)

θ1 �N δ θ2 �N δ

θ1 ∨ θ2 �N δ
(Sub-NUni-L)

δ1 ∨ δ2 :: N ∃i ∈ {1, 2}. θ �N δi

θ �N δ1 ∨ δ2
(Sub-NUni-R)

θ :: N

⊥N �N θ
(Sub-NBot)

Fig. 4. Subtyping rules
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Θ, x : τ ` x : τ | Ξ
(T-PVar)

Θ, x : τ ` v : ↓θ | Ξ
Θ ` λx.v : ↓(τ → θ) | Ξ

(T-PAbs)

c : (Θ ` α : θ,Ξ)

Θ ` µα.c : ↓θ | Ξ
(T-PMu)

Θ ` v : τ | Ξ Θ | e : θ ` Ξ
Θ ` v / e : τ ← θ | Ξ

(T-PApp)

Θ ` v :τ1 | Ξ Θ ` v :τ2 | Ξ
Θ ` v : τ1∧τ2 | Ξ

(T-PInt)

v :: P

Θ ` v :>P | Ξ
(T-PTop)

Θ ` v :τ | Ξ τ �P τ ′

Θ ` v : τ ′ | Ξ
(T-PSub)

Θ | e : ↑τ ` Ξ Θ ` v : τ | Ξ
〈v � e〉 : (Θ ` Ξ)

(T-PCmd)

Θ | α : θ ` α : θ,Ξ
(T-NVar)

Θ | e : ↑τ ` α : θ,Ξ

Θ | λα.e : ↑(τ ← θ) ` Ξ
(T-NAbs)

c : (Θ, x : τ ` Ξ)

Θ | µx.c : ↑τ ` Ξ
(T-NMu)

Θ | e : θ ` Ξ Θ ` v : τ | Ξ
Θ | v . e : τ → θ ` Ξ

(T-NApp)

Θ | e :θ1 ` Ξ Θ | e :θ2 ` Ξ
Θ | e : θ1∨θ2 ` Ξ

(T-NUni)

e :: N

Θ | e :⊥N ` Ξ
(T-NBot)

Θ | e :θ ` Ξ θ′ �N θ

Θ | e : θ′ ` Ξ
(T-NSub)

Θ ` v : ↓θ | Ξ Θ | e : θ ` Ξ
〈v

�

e〉 : (Θ ` Ξ)
(T-NCmd)

Fig. 5. Typing rules

x : τ ∈ Θ for a positive variable x of sort P , then we assume that τ :: P . It might
be better to write x : τ :: P to make the sort explicit, but we do not choose this
heavy notation.

There are three kinds of judgements, similar to the sort system.

Typing rules The complete list of the typing rules are in Fig. 5.

A.4 Untyped λ̄µµ̃

The syntax of terms, commands and co-terms is given by:

v ::= x | λx.v | µα.c c ::= 〈v | e〉 e ::= α | v · e | µ̃x.c,
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where x and α are variables of different kinds. Values and co-values are dis-
tinguished terms and co-terms, respectively, defined by V ::= x | λx.v and
E ::= α | v · e. There are three reduction rules:

〈λx.v | v′ ·e〉 −→ 〈v′ | µ̃x.〈v | e〉〉 〈µα.c | e〉 −→ c[e/α] 〈v | µ̃x.c〉 −→ c[v/x].

The calculus has a critical pair 〈µα.c | µ̃x.c′〉, to which both of the last two rules
are applicable, and is not confluent. The conflict is resolved by an evaluation
strategy. The former rule has the priority in the call-by-value calculus, and the
latter has in call-by-name. Hence, in the call-by-value calculus, the third rule
is applicable only if v 6= µα.c′, and thus changed to 〈V | µ̃x.c〉 −→ c[V/x].
Similarly, in call-by-name, the second rule is changed to 〈µα.c | E〉 −→ c[E/α].

We write =cbv
β for the equivalence relation on expressions induced by the

call-by-value reduction relation, and =cbn
β for call-by-name.

A.5 Intersection and union type system for call-by-value λ̄µµ̃

Let V be a positive sort variable with the equation V = ↓(V→ (↑V)).
Let X be non-empty set of atomic types. Let X− be the family of atomic

types defined by:

XV→(↑V) := X
XV := ∅
X↑V := ∅
X↓↑V := ∅

and, for other cases, XP := {P} and XN := {N}. Then every sort has a {>,⊥}-
free refinement type.

Types The syntax of types is given by the following grammar:

ψ ::= a | ν → ϕ | ψ ∨ ψ | ⊥V→(↑V) ϕ ::= ↑ν | ϕ ∨ ϕ | ⊥↑V
ν ::= ↓ψ | ν ∧ ν | >V % ::= ↓ϕ | ρ ∧ ρ | >↓↑V.

It is easy to see that the above syntax properly defines refinement types of
V→ (↑V), V, ↑V, and ↓↑V, respectively.

Subtyping The subtyping relation is inherited from the refinement type system
for λ̄µµ̃P .

Type environments and judgements A positive type environment Θ is a
finite set of type binding of the form x : ν. A negative type environment Ξ is a
set of type binding of the form α : ϕ. Note that they can be considered as type
environments of the refinement type system for λ̄µµ̃P .

There are four kinds of type judgements:
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– Θ `cbv V : ν ; Ξ,
– Θ `cbv v : % | Ξ,
– Θ | e : ϕ `cbv Ξ, and
– c : (Θ `cbv Ξ).

Typing rules The complete list of typing rules is found in Fig. 6 and 7.

A.6 λ→× and intersection types

Here we introduce a calculus λ→× and its intersection type system. We do not
formally define a simply-typed version of λ→× with recursive sorts, since it is
obvious.

Terms The syntax of terms is given as follows.

M ::= x | λx.M | λ(x, y).M |MM | (M,M).

The meaning of the term constructors is obvious.
The base rules of the reduction relation are listed below:

(λx.M)N −→M [N/x]

(λ(x1, x2).M) (N1, N2) −→M [N1/x1, N2/x2].

Reduction is full, i.e. a redex of any position can be reduced.
We write π1 for λ(x, y).x and π2 for λ(x, y).y. Then πi(M1,M2) −→Mi.

Types The syntax of types is given as follows.

A ::= a | A→ A | A×A | A ∧A.

A type is simple is it does not contain ∧.

Subyping Figure 8 defines the subtyping relation.
For a technical convenience, we require the side condition on the last two

rules. It is easy to see that this side condition is harmless, i.e. the set of derivable
subtyping relation does not increase when we employ the unrestricted rules.

Typing rules The typing rules are in Figure 9. These are the straightforward
extension of the standard intersection type system to a calculus with pairs.

B Supplementary Materials for Section 2

B.1 Proof of Confluence (Proposition 1)

It is straightforward to prove Proposition 1 by using the notions of parallel
reduction and complete development. Note that we cannot apply Newman’s
lemma to the calculus with recursive sorts, although weak Church-Rosser can
be proved easily.
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Θ, x : ν `cbv x : ν ; Ξ
(CH-VVar)

Θ, x : ν `cbv v : ↓ϕ | Ξ
Θ `cbv λx.v : ↓(ν → ϕ) ; Ξ

(CH-VAbs)

Θ `cbv V : ν ; Ξ

Θ `cbv V : ↓↑ν | Ξ
(CH-VL)

c : (Θ `cbv α : ϕ,Ξ)

Θ `cbv µα.c : ↓ϕ | Ξ
(CH-TMu)

Θ | α : ϕ `cbv α : ϕ,Ξ
(CH-CVar)

c : (Θ, x : ν `cbv Ξ)

Θ | µ̃x.c : ↑ν `cbv Ξ
(CH-CMu)

Θ `cbv v : ↓(
∨

i∈I(↑νi)) | Ξ Θ | e : ϕ `cbv Ξ
Θ | v · e : ↑(

∧
i∈I ↓(νi → ϕ)) `cbv Ξ

(CH-CApp)

Θ `cbv v : ↓ϕ | Ξ Θ | e : ϕ `cbv Ξ
〈v | e〉 : (Θ `cbv Ξ)

(CH-Com)

Fig. 6. Typing rules for the call-by-value λ̄µµ̃ (Part 1: computational rules)
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Θ `cbv V : ν1 ; Ξ Θ `cbv V : ν2 ; Ξ

Θ `cbv V : ν1 ∧ ν2 ; Ξ
(CH-VInt)

Θ `cbv V : >V ; Ξ
(CH-VTop)

Θ `cbv V : ν ; Ξ ν �V ν
′

Θ `cbv V : ν′ ; Ξ
(CH-VSub)

Θ `cbv v : %1 | Ξ Θ `cbv v : %2 | Ξ
Θ `cbv v : %1 ∧ %2 | Ξ

(CH-TInt)

Θ `cbv v : >↓↑V | Ξ
(CH-TTop)

Θ `cbv v : % | Ξ % �↓↑V %′

Θ `cbv v : %′ | Ξ
(CH-TSub)

Θ | e : ϕ1 `cbv Ξ Θ | e : ϕ2 `cbv Ξ
Θ | e : ϕ1 ∨ ϕ2 `cbv Ξ

(CH-CUni)

Θ | e : ⊥↑V `cbv Ξ
(CH-CBot)

Θ | e : ϕ `cbv Ξ ϕ′ �↑V ϕ
Θ | e : ϕ′ `cbv Ξ

(CH-CSub)

Fig. 7. Typing rules for the call-by-value λ̄µµ̃ (Part 2: intersection, union and
subtyping rules)



28 Takeshi Tsukada and Koji Nakazawa

a ≤ a

A ≥ A′ B ≤ B′

A→ B ≤ A′ → B′

A ≤ A′ B ≤ B′

A×B ≤ A′ ×B′

A ≤ B1 A ≤ B2

A ≤ B1 ∧B2

A1 ≤ B B 6= B1 ∧B2

A1 ∧A2 ≤ B

A2 ≤ B B 6= B1 ∧B2

A1 ×A2 ≤ B

Fig. 8. Subtyping rules of intersection types for λ→×

B.2 Proof of Type Preservation (Proposition 2)

This subsection gives a routine proof of Subject Reduction of the sort system
for λ̄µµ̃P with recursive sort. As usual, we appeal to Substitution Lemma and
Inversion.

We define a map top by:

top(p) := p

top(P) := top(P ) (where P = P ∈ E)

top(P ← N) :=←
top(↓N) := ↓

top(n) := n

top(N) := top(N) (where N = N ∈ E)

top(P → N) :=→
top(↑P ) := ↑.

Recall that, if P = P ∈ E , then P is not a sort variable. Hence top is well-defined.

Lemma 9. If P ∼ Q, then top(P ) = top(Q). If N ∼M , then top(N) = top(N).

Proof. By induction on the derivation of P ∼ Q and N ∼M . ut

Hence, for example, ↓N 6∼ (Q←M).
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A ≤ A′ A′ 6= B1 ∧B2

Γ, x : A ` x : A′

Γ, x : A `M : B

Γ ` λx.M : A→ B

Γ, x : A, y : B `M : C

Γ ` λ(x, y).M : A×B → C

Γ `M : A→ B Γ ` N : A

Γ `M N : B

Γ `M1 : A1 Γ `M2 : A2

Γ ` (M1,M2) : A1 ×A2

Γ `M : A1 Γ `M : A2

Γ `M : A1 ∧A2

Γ `M : A A ≤ B
Γ `M : B

Fig. 9. Typing rules of the intersection type system for λ→×
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Lemma 10.

– (P → N) ∼ (P ′ → N ′) implies P ∼ P ′ and N ∼ N ′.
– ↓N ∼ ↓N ′ implies N ∼ N ′.
– (P ← N) ∼ (P ′ ← N ′) implies N ∼ N ′ and P ∼ P ′.
– ↑P ∼ ↑P ′ implies P ∼ P ′.

Proof. We prove stronger results. For example, for the first claim, we prove the
following result.

If (P → N) ∼ M , then either M = (P ′ → N ′) or M is a negative sort
variable, say M, and (M = (P ′ → N ′)) ∈ E . Furthermore P ∼ P ′ and
N ∼ N ′. A similar statement holds for M ∼ (P → N).

This claim can be easily proved by induction on the structure of the derivation
of (P → N) ∼M (or M ∼ (P → N)), using Lemma 9. ut

Lemma 11 (Substitution). Assume Γ ` v : P | ∆. Then:

Γ, x : P ` v′ : Q | ∆ implies Γ ` v′[v/x] : Q | ∆
Γ, x : P | e : N ` ∆ implies Γ | e[v/x] : N ` ∆
c : (Γ, x : P ` ∆) implies c[v/x] : (Γ ` ∆).

Assume Γ | e : N ` ∆. Then:

Γ ` v : P | α : N,∆ implies Γ ` v[e/α] : P | ∆
Γ | e′ : M ` α : N,∆ implies Γ | e′[e/α] : M ` ∆

c : (Γ ` α : N,∆) implies c[e/α] : (Γ ` ∆).

Proof. By induction on derivations. ut

Lemma 12 (Inversion).

– If Γ ` x :: P | ∆, then x :: Q ∈ Γ and P ∼ Q for some Q.
– If Γ ` λx.v :: P | ∆, then P ∼ ↓(Q→ N) and Γ, x :: Q ` v :: ↓N | ∆ for

some Q and N .
– If Γ ` µα.c :: P | ∆, then P ∼ ↓N and c :: (Γ ` α :: N,∆) for some N .
– If Γ ` e / v :: P | ∆, then P ∼ Q← N and Γ ` v :: Q | ∆ and Γ | e :: N ` ∆

for some N and Q.
– If Γ | α :: N | ∆, then α :: M ∈ ∆ and N ∼M for some M .
– If Γ | λα.e :: N ` ∆, then N ∼ ↑(P ←M) and Γ | e :: ↑P ` α :: M,∆ for

some M and P .
– If Γ | µx.c :: N ` ∆, then N ∼ ↑P and c :: (Γ, x :: P ` ∆) for some P .
– If Γ | e.v :: N ` ∆, then N ∼ P ←M and Γ ` v :: P | ∆ and Γ | e :: M ` ∆

for some M and P .

Proof. By induction on the structure of derivations. ut
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We prove Proposition 2 by induction on the structure of the derivation of
t −→ t′.

We first prove the base cases.
Suppose that t = 〈(λx.v1)

�

(v2 . e)〉 and t′ = 〈(v1[v2/x])

�

e〉. By the
assumption t :: (Γ ` ∆). Then we have

Γ ` λx.v1 :: ↓N | ∆

and

Γ | v2 . e :: N ` ∆

for some N . By Inversion (Lemma 12), the former implies N ∼ (Q→M) and

Γ, x :: Q ` v1 :: ↓M | ∆

for some Q and M . Again, by Inversion, the latter implies N ∼ (Q′ →M ′) and

Γ ` v2 :: Q′ | ∆

and

Γ | e :: M ′ ` ∆

for some Q′ and M ′. By Lemma 10, Q ∼ Q′ and M ∼ M ′. Hence Γ ` v2 :: Q
and Γ | e :: M ` ∆. By Substitution Lemma (Lemma 11), we have

Γ ` v1[v2/x] :: ↓M | ∆.

Hence

〈v1[v2/x]

�

e〉 :: (Γ ` ∆).

Suppose that t = 〈(µα.c)

�

e〉 and t′ = c[e/α]. By the assumption, one has
t :: (Γ ` ∆). Then we have

Γ ` µα.c :: ↓N | ∆

and

Γ | e :: N ` ∆.

By Inversion (Lemma 12), there exists N ′ such that c :: (Γ ` α :: N ′, ∆) and
N ∼ N ′. Then one has Γ | e :: N ′ ` ∆. By Substitution Lemma (Lemma 11),
we conclude that

c[v/x] : (Γ ` ∆).

Suppose that t = v / e and t′ = v′ / e with v −→ v′. By the assumption,
one has Γ ` v / e :: P | ∆ for some P . By Inversion (Lemma 12), P ∼ Q ← N
and Γ ` v :: Q | ∆ and Γ | e :: N ` ∆ for some N and Q. By the induction
hypothesis, Γ ` v′ :: Q | ∆. Hence Γ ` v / e :: Q← N | ∆. By applying (S-P∼),
we obtain Γ ` v / e :: P | ∆.

Other cases are similar.
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Remark 3. Term-level distinction of negative and positive cuts plays an impor-
tant role in the proof. For example, if

〈e

�

v〉 :: (Γ ` ∆),

then we have

Γ ` v :: N | ∆ and Γ | e :: ↓N ` ∆

without confusing the case that

Γ ` v :: ↑P | ∆ and Γ | e :: P ` ∆

because the latter derives a different judgement, 〈e � v〉 :: (Γ ` ∆).

B.3 Proof of Lemma 1

Lemma 13. (t[v/x])∗ = t∗[v∗/x]. Similarly (t[e/α])∗ = t∗[e∗/α].

Proof. By induction on the structure of t. ut

The first claim By induction on the structure of the derivation of the reduction
relation t −→ u.

We first prove the base cases.

Suppose that t = 〈(λx.v1)

�

(v2 . e)〉 and u = 〈(v1[v2/x])

�

e〉. Then

t∗ = (λx.v1)∗ (v2 . e)
∗

= (λ(x, β).(v∗1 β)) (v∗2 , e
∗) (where β is fresh)

−→ v∗1 [v∗2/x] e∗

= (v1[v2/x])∗ e∗ (by Lemma 13)

= 〈v1[v2/x]

�

e〉∗

= u∗.

Suppose that t = 〈(µα.c)

�

e〉 and u = c[e/α]. Then

t∗ = (µα.c)∗ e∗

= (λα.c∗) e∗

−→ c∗[e∗/α]

= (c[e/α])∗ (by Lemma 13)

= u∗.

The other base cases are the dual of the above.

The congruence cases are easy.
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The second claim By induction on the structure of the derivation of t∗ −→ u.
We first prove the base cases.
Suppose that t∗ = (λx.t1) t2 and u = t1[t2/x], where t1 and t2 are terms of

λ→×. Then either t = 〈v

�

e〉 or t = 〈v � e〉.

– Suppose that t = 〈v

�

e〉. Then v∗ = λx.t1 and t2 = e∗. Hence v = µx.c and
c∗ = t1, where x is a negative variable in λ̄µµ̃P . Then we have

t = 〈v

�

e〉
= 〈µx.c

�

e〉
−→ c[e/x].

By Lemma 13, one has (c[e/x])∗ = c∗[e∗/x] as desired.
– Suppose that t = 〈v � e〉. Then e∗ = λx.t1 and t2 = v∗. Hence e = µx.c and
c∗ = t1. Then we have

t = 〈v � e〉
= 〈v � µx.c〉
−→ c[v/x].

By Lemma 13, one has (c[v/x])∗ = c∗[v∗/x] as desired.

Suppose that t∗ = (λ(x1, x2).t1) (t21, t22) and u = t1[t21/x1, t22/x2], where
t1, t21 and t22 are terms of λ→×. Then either t = 〈v

�

e〉 or 〈v � e〉.

– Suppose that t = 〈v

�

e〉. Then v∗ = λ(x1, x2).t1 and e∗ = (t21, t22). Hence
v = λx1.v1 and t1 = v∗1 x2, where x2 is a negative variable and does not
appear in v1. We also have e = v2 . e2 and (v2)∗ = t21 and e∗2 = t22. Then
we have

t = 〈v

�

e〉
= 〈λx1.v1

�

v2 . e2〉
−→ 〈v1[v2/x1]

�

e2〉.

Now

〈v1[v2/x1]

�

e2〉∗ = (v1[v2/x1])∗ e∗2

=v∗1 [v∗2/x1] e∗2 (by Lemma 13)

=(v∗1 [v∗2/x1, e
∗
2/x2]) (x2[v∗2/x1, e

∗
2/x2]) (since x2 does not appear in v1)

=(v∗1 x2)[v∗2/x1, e
∗
2/x2]

=t1[t21/x1, t22/x2]

=u.

– Suppose that t = 〈v � e〉. This case is similar to the above case.

The congruence cases are easy.
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C Supplementary Materials for Section 3

C.1 Proof of Substitution Lemma 3

By induction on the structure of derivations of judgements having x in their
environment.

– Case (T-PVar) and v′ = x: Then σ = τ and thus Θ ` v : σ | Ξ.
– Case (T-PVar) and v′ = y 6= x: Then v′[v/x] = y. Hence Θ ` v′[v/x] : σ |
Ξ.

– Case (T-PAbs): Then v′ = λy.v′′ and σ = ↓(σ′ → θ′). We can assume
without loss of generality that y is not occur in v and we get Θ, y : σ′, x :
τ ` v′′ : ↓θ′ | Ξ. By the induction hypothesis, we have Θ, y : σ′ ` v′′[v/x] :
↓θ′ | Ξ. So Θ ` λy.(v′′[v/x]) : ↓(σ′ → θ′) | Ξ.

– Case (T-PMu): Then v′ = µα.c and σ = ↓θ and c : (Θ, x : τ ` α : θ,Ξ). By
the induction hypothesis, c[v/x] : (Θ ` α : θ,Ξ) and thus Θ ` µα.c : ↓θ | Ξ.

– Case (T-PApp): Then v′ = v′′ / e and σ = θ′ ← σ′. We have Θ, x : τ ` v′′ :
σ′ | Ξ and Θ, x : τ | e : θ′ ` Ξ. By the induction hypothesis, Θ ` v′′[v/x] :
σ′ | Ξ and Θ | e[v/x] : θ′ ` Ξ, which implies Θ ` (v′′ / e)[v/x] : θ′ ← σ′ | Ξ.

– Case (T-PCmd): Then c = 〈v′′ � e〉 and Θ, x : τ ` v′′ : σ | Ξ and Θ, x :
τ | e : ↑σ ` Ξ. By the induction hypothesis, Θ ` v′′[v/x] : σ | Ξ and
Θ | e[v/x] : ↑σ ` Ξ. Hence (〈v′′ � e〉[v/x]) : (Θ ` Ξ).

– Case (T-PInt): Then σ = σ1∧σ2 and Θ, x : τ ` v′ : σi | Ξ for i ∈ { 1, 2 }. By
the induction hypothesis, Θ ` v′[v/x] : σi | Ξ for i ∈ { 1, 2 }. By (T-PInt),
we have Θ ` v′[v/x] : σ1 ∧ σ2 | Ξ.

– Case (T-PTop): Then σ = > and Θ ` v′[v/x] : > | Ξ trivially holds.
– Case (T-PSub): Then Θ, x : τ ` v′ : σ′ | Ξ for some σ′ ≤ σ. By the induction

hypothesis, Θ ` v′[v/x] : σ′ | Ξ. By the subtyping rule, Θ ` v′[v/x] : σ | Ξ.

Other cases are the dual of the above.
The claim about substitution of co-terms can be proved by a similar way.

C.2 Proof of Inversion Lemma (Lemma 4)

We prove a stronger version of the lemma, what we call General Inversion here.
The statement of Lemma 4 is a weaker version that suffices to prove Subject
Reduction (Proposition 4).

We define∧
1≤i≤k

τi := (((τ1 ∧ τ2) ∧ · · · ) ∧ τk−1) ∧ τk

and ∨
1≤i≤k

θi := (((θ1 ∨ θ2) ∨ · · · ) ∨ θk−1) ∨ θk.

Lemma 14 (General Inversion).
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1. If Θ ` x : τ | Ξ, there exists τ ′ such that
– τ ′ � τ , and
– x : τ ′ ∈ Θ.

2. If Θ ` λx.v : τ | Ξ, there exists a (possibly empty) finite collection of types
{ ↓(σi → θi) }1≤i≤k such that
–

∧
1≤i≤k(↓(σi → θi)) � τ , and

– Θ, x : σi ` v : ↓θk | Ξ for every i (1 ≤ i ≤ k).
3. If Θ ` µα.c : τ | Ξ, there exists a (possibly empty) finite collection of types
{ ↓θi }1≤i≤k such that
–

∧
1≤i≤k(↓θi) � τ , and

– c : (Θ ` α : θi, Ξ) for every i (1 ≤ i ≤ k).
4. If Θ ` e / v : τ | Ξ, there exists a (possibly empty) finite collection of types
{σi ← θi }1≤i≤k such that
–

∧
1≤i≤k(σi ← θi) � τ , and

– Θ ` v : σi | Ξ and Θ | e : θi ` Ξ for every i (1 ≤ i ≤ k).
5. If Θ | α : θ ` Ξ, there exists θ′ such that

– θ � θ′, and
– α : θ′ ∈ Ξ.

6. If Θ | λα.e : θ ` Ξ, there exists a (possibly empty) finite collection of types
{ ↑(τi ← δi) }1≤i≤k such that
– θ �

∨
1≤i≤k(↑(τi ← δi)), and

– Θ | e : ↑τi ` α : δi, Ξ for every i (1 ≤ i ≤ k).
7. If Θ | µx.c : θ ` Ξ, there exists a (possibly empty) finite collection of types
{ ↑τi }1≤i≤k such that
– θ �

∨
1≤i≤k(↑τi), and

– c : (Θ, x : τi ` Ξ) for every i (1 ≤ i ≤ k).
8. If Θ | e . v : θ ` Ξ, there exists a (possibly empty) finite collection of types
{ τi → δi }1≤i≤k such that
– θ �

∨
1≤i≤k(τi → δi), and

– Θ ` v : τi | Ξ and Θ | e : δi ` Ξ for every i (1 ≤ i ≤ k).
9. If 〈v

�

e〉 : (Θ ` Ξ), there exists θ such that
– Θ ` v : ↓θ | Ξ and Θ | e : θ ` Ξ.

10. If 〈e � v〉 : (Θ ` Ξ), there exists τ such that
– Θ ` v : τ | Ξ and Θ | e : ↑τ ` Ξ.

Proof. By induction on the structure of the derivations. We prove (2) for exam-
ple.

Suppose that Θ ` λx.v : τ | Ξ. There are four rules that can derive this
judgement:

– (T-PAbs): Then τ = ↓(σ → θ) and Θ, x : σ ` v : ↓θ | Ξ.
– (T-PInt): Then τ = τ1 ∧ τ2 and Θ ` v : τ1 | Ξ and Θ ` v : τ2 | Ξ.

By the induction hypothesis, each judgement has a finite collection of types
that satisfies the requirements. Then the union of the collection satisfies the
requirements for Θ ` v : τ1 ∧ τ2 | Ξ.

– (T-PTop): Then τ = > and the empty collection satisfies the requirement.
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– (T-PSub): Then Θ ` λx.v : τ ′ | Ξ and τ ′ � τ . By the induction hypothesis,
we have a finite collection { ↓(σi → θi) }1≤i≤k that satisfies the requirements.
Since

∧
1≤i≤k(↓(σi → θi)) � τ ′ � τ , this collection is what we need.

ut

Basically Inversion Lemma (Lemma 4) is a consequence of the above general
lemma. We prove the first claim of Lemma 4 for example.

Suppose that Θ ` λx.v : ↓θ | Ξ. By Lemma 14, there is a finite collection of
types { ↓(τi → δi) }1≤i≤k } such that∧

1≤i≤k

(↓(τi → δi)) � ↓θ

and Θ, x : τi ` v : ↓δi | Ξ for every i (1 ≤ i ≤ k). We claim that there exists j
such that τj → δj � θ. We prove this claim by induction on the structure of the
derivation of

∧
1≤i≤k(↓(τi → δi)) � ↓θ. If the last rule is (Sub-PShift), then

k = 1 and τ1 → σ1 � θ as desired. If the last rule is (Sub-PIntL), then we have
either

∧
1≤i≤k−1(↓(τi → δi)) � ↓θ or ↓(τk → δk) � ↓θ. For the former case, we

appeal to the induction hypothesis. For the latter case, let j = k.

C.3 Subject Reduction (Proposition 4)

We prove the base cases.

– Case c = 〈(λx.v1)

�

(v2 . e)〉 and c′ = 〈(v1[v2/x])

�

e〉:
Assume that 〈(λx.v1)

�

(v2 . e)〉 : (Θ ` Ξ). Then Θ ` λx.v1 : ↓θ | Ξ and
Θ | v2 . e : θ ` Ξ. By Lemma 4, one has Θ, x : σ ` v1 : ↓δ | Ξ and σ → δ � θ
for some σ and δ. By the subtyping rule, we have Θ | v2 . e : σ → δ ` Ξ.
Again, by Lemma 4, Θ ` v2 : σ | Ξ and Θ | e : δ ` Ξ. By Substitution
Lemma (Lemma 3), Θ ` v1[v2/x] : ↓δ | Ξ. Hence 〈v1[v2/x]

�

e〉 : (Θ ` Ξ).
– Case c = 〈(µα.c0)

�

e〉 and c′ = c0[e/α]:
Assume that 〈(µα.c0)

�

e〉 : (Θ ` Ξ). Then Θ ` µα.c0 : ↓θ | Ξ and Θ | e :
θ ` Ξ for some θ. By Lemma 4, one has c0 : (Θ ` α : θ,Ξ). By Substitution
Lemma (Lemma 3), we have c0[e/α] : (Θ ` Ξ).

The other cases are easy.

C.4 De-substitution (Lemma 5)

We first prove the case in which v′ is a variable.

– Case v′ = x: Let τ = σ.
– Case v′ = y 6= x: Let τ = >.

We prove the other cases by induction on the structure of derivations. Since v′

is not a variable, the top-level structure of v′[v/x] is that of v′.
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– Case (T-PAbs): Then v′ = λy.v′′ and σ = ↓(σ′ → θ′). We can assume
without loss of generality that y is not occur in v and we get Θ, y : σ′,`
v′′[v/x] : ↓θ′ | Ξ. By the induction hypothesis, we have Θ, y : σ′, x : τ ` v′′ :
↓θ′ | Ξ and Θ, y : σ′ ` v : τ | Ξ for some τ . Since y does not appear in v,
the latter can be refined as Θ ` v : τ | Ξ. By applying (T-PAbs), we have
Θ, x : τ ` v′′ : ↓(σ′ → θ′) | Ξ as desired.

– Case (T-PMu): Then v′ = µα.c and σ = ↓θ and c[v/x] : (Θ ` α : θ,Ξ). We
can assume without loss of generality that α does not appear in v. By the
induction hypothesis, there exists θ such that c : (Θ, x : τ ` α : θ,Ξ) and
Θ ` v : τ | α : θ,Ξ, which can be strengthened as Θ ` v : τ | Ξ. The former
judgement leads to Θ ` µα.c : ↓θ | Ξ.

– Case (T-PApp): Then v′ = v′′ / e and σ = σ′ ← θ′. We have Θ ` v′′[v/x] :
σ′ | Ξ and Θ | e[v/x] : θ′ ` Ξ. By the induction hypothesis, there exist τ1
and τ2 such that
• Θ, x : τ1 ` v′′ : σ | Ξ,
• Θ ` v : τ1 | Ξ,
• Θ, x : τ2 | e : θ′ ` Ξ, and
• Θ ` v : τ2 | Ξ.

Then we have Θ ` v : τ1 ∧ τ2 | Ξ. Since τ1 ∧ τ2 ≤ τ1, by Lemma 2, one
has Θ, x : τ1 ∧ τ2 ` v′′ : σ | Ξ. Similarly Θ, x : τ1 ∧ τ2 | e : θ′ ` Ξ. Hence
Θ, x : τ1 ∧ τ2 ` v′′ / e : σ′ ← θ′ | Ξ.

– Case (T-PCmd): Then c = 〈v′′ � e〉 and Θ ` v′′[v/x] : σ | Ξ and Θ | e[v/x] :
↑σ ` Ξ for some σ. By the induction hypothesis for the former judgement,
we have Θ, x : τ1 ` v′′ : σ | Ξ and Θ ` v : τ1 | Ξ. By the induction hypothesis
for the latter judgement, we have Θ, x : τ2 | e : ↑σ ` Ξ and Θ ` v : τ2 | Ξ.
By the same argument as in the above case, one has Θ, x : τ1∧τ2 ` v′′ : σ | Ξ
and Θ, x : τ1 ∧ τ2 ` v′′ : ↑σ ` Ξ, which implies 〈v′′ � e〉 : (Θ, x : τ1 ∧ τ2 ` Ξ).
We have Θ ` v : τ1 ∧ τ2 | Ξ as required.

– Case (T-PInt): Then σ = σ1 ∧ σ2 and Θ ` v′[v/x] : σi | Ξ for i ∈ { 1, 2 }.
By the induction hypothesis, Θ, x : τi ` v′ : σi | Ξ and Θ ` v : τi | Ξ
for some τi for i ∈ { 1, 2 }. By the same argument as in the above case, we
have Θ, x : τ1 ∧ τ2 ` v′ : σi | Ξ for i ∈ { 1, 2 } and Θ ` v : τ1 ∧ τ2 | Ξ. By
(P-Int-I), we have Θ, x : τ1 ∧ τ2 ` v′ : σ1 ∧ σ2 | Ξ.

– Case (P->): Let τ = >. Then Θ ` v′ : > | Ξ and Θ ` v : > | Ξ trivially
hold.

– Case (P-Sub): Then Θ ` v′[v/x] : σ′ | Ξ for some σ′ ≤ σ. By the induction
hypothesis, Θ, x : τ ` v′ : σ′ | Ξ and Θ ` v : τ | Ξ for some τ . By the
subtyping rule, Θ, x : τ ` v′ : σ | Ξ.

The other cases are the dual of the above.

C.5 Subject Expansion (Proposition 5)

We prove the base cases.

– Case c = 〈(λx.v1)

�

(v2 . e)〉 and c′ = 〈(v1[v2/x])

�

e〉: Assume that
〈(v1[v2/x])

�

e〉 : (Θ ` Ξ). Then Θ ` v1[v2/x] : ↓θ | Ξ and Θ | e : θ ` Ξ. By
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De-substitution Lemma (Lemma 5), we have σ such that Θ, x : σ ` v1 : ↓θ |
Ξ and Θ ` v2 : σ | Ξ for some σ. Hence we have Θ ` λx.v1 : ↓(σ → θ) | Ξ
and Θ | v2 . e : σ → θ ` Ξ. Now 〈(λx.v1)

�

(v2 . e)〉 : (Θ ` Ξ) as desired.
– Case c = 〈(µα.c0)

�

e〉 and c′ = c0[e/α]: Assume that c0[e/α] : (Θ ` Ξ). By
De-substitution Lemma (Lemma 5), we have θ such that c0 : (Θ ` α : θ,Ξ)
and Θ | e : θ ` Ξ. The former implies Θ ` µα.c0 : ↓θ | Ξ. Hence 〈(µα.c0)

�

e〉 : (Θ ` Ξ).

The other cases are similar.

C.6 Relationship to the intersection type system for λ→×

(Lemma 6)

Fix an atomic type o :: O. Recall that the translation of types is given by:

(τ ← θ)∗ := τ∗ × θ∗ (τ → θ)∗ := τ∗ × θ∗

(↓θ)∗ := θ∗ → o (↑τ)∗ := τ∗ → o

(τ1 ∧ τ2)∗ := τ∗1 ∧ τ∗2 (θ1 ∨ θ2)∗ := θ∗1 ∧ θ∗2 ,

where we assume a fixed translation of atomic sorts. Note that >P and ⊥P does
not appear since we focus on the {>,⊥}-free subsystem.5

We first prove that the translation of types preserves the subtyping relation.
We note here that subtyping θ �N δ of negative types is translated to subtyping
θ∗ ≥ δ∗ in the opposite direction.

Lemma 15. If τ �P σ, then τ∗ ≤ σ∗. If θ �N δ, then θ∗ ≥ δ∗.

Proof. By induction on the structure of the subtyping derivation.

– (Sub-PRefl) and (Sub-NRefl): Obvious.
– (Sub-PTo): Suppose that τ �P σ and θ �N δ. By the induction hypothesis,
τ∗ ≤ σ∗ and θ∗ ≤ δ∗. Hence

(τ ← θ)∗ = τ∗ × θ∗ ≤ σ∗ × δ∗ = (σ ← δ)∗.

– (Sub-NTo): Suppose that τ �P σ and θ �N δ. By the induction hypethesis,
τ∗ ≥ σ∗ and θ∗ ≥ δ∗. Hence

(τ → θ)∗ = τ∗ × θ∗ ≥ σ∗ × δ∗ = (σ → δ)∗.

– (Sub-PShift): Suppose that θ �N δ. By the induction hypothesis, θ∗ ≥ δ∗.
Hence

(↓θ)∗ = θ∗ → o ≤ δ∗ → o = (↓δ)∗.
5 >P and ⊥N can be translated to the type for all terms, which is usually written as
ω, although our intersection type system for λ→× does not have such a constant.
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– (Sub-NShift): Suppose that τ �P σ. By the induction hypothesis, τ∗ ≤ σ∗.
Hence

(↑τ)∗ = τ∗ → o ≥ σ∗ → o = (↑σ)∗.

– (Sub-PInt-R): Suppose that τ �P σ1 and τ �P σ2. By the induction
hypothesis, τ∗ ≤ σ∗1 and τ ≤ σ∗2 . Hence

τ∗ ≤ σ∗1 ∧ σ∗2 = (σ1 ∧ σ2)∗.

– (Sub-NUni-L): Suppose that θ1 �N δ and θ2 �N δ. By the induction
hypothesis, θ∗1 ≥ δ∗ and θ∗2 ≥ δ∗. Hence

(θ1 ∨ θ2)∗ = θ∗1 ∧ θ∗2 ≥ δ∗.

– (Sub-PInt-L): Suppose (w.o.l.g.) that τ1 �P σ (and τ1 ∧ τ2 :: P ). By the
induction hypothesis, τ∗1 ≤ σ∗. Hence,

(τ1 ∧ τ2)∗ = τ∗1 ∧ τ∗2 ≤ σ∗.

– (Sub-NUni-R): Suppose (w.o.l.g.) that θ �N δ1 (and δ1 ∨ δ2 :: N). By the
induction hypothesis, θ∗ ≥ δ∗1 . Hence,

θ∗ ≥ δ∗1 ∧ δ∗2 = (δ1 ∨ δ2)∗.

ut

The proof of Lemma 6 is easy induction using the above lemma.

C.7 Typability of Normal Forms in the Subsystem (Lemma 7)

Definition 1 (Canonical Form). An expression in canonical form is defined
by the following grammar.

v̌ ::= x | λx.v̌ | µα.č | v̌ / ě
č ::= 〈x

�

ě〉 | 〈λx.v̌

�

α〉 | 〈v̌ � α〉 | 〈x � λα.ě〉
ě ::= α | λα.ě | µx.č | v̌ . ě

Lemma 16. A well-sorted expression in normal form is in canonical form.

Proof. By induction on the structure of expressions.

– c = 〈v

�

e〉 with c :: (Γ ` ∆): Then one has Γ ` v :: ↓N | ∆ and Γ | e : N `
∆. There are four subcases:

• v = x: Then c = 〈x

�

e〉. By the induction hypothesis, e is in canonical
form, i.e., e = ě. Hence c = 〈x

�

ě〉 is in canonical form.
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• v = λx.v′: By Inversion Lemma for the sort system (Lemma 12), we
have ↓N ∼ ↓(Q→M) and Γ, x :: Q ` v :: ↓M | ∆ for some Q and
M . By Lemma 10, N ∼ Q → M and thus Γ | e : Q → M ` ∆. If
e = λα.e′, then by Inversion (Lemma 12), one has N ∼ ↑(Q′ ←M ′),
which contradicts to Lemma 10. By the same reason, e 6= µx.c′. If e =
v′′ . e′, then c = 〈λx.v′

�

v′′ . e′〉 is reducible, which contradicts to the
assumption. Hence e = α. By the induction hypothesis, v = λx.v′ is in
canonical form, i.e. v = v̌ for some v̌, and thus c = 〈v̌

�

α〉 is in canonical
form.

• v = µα.c: Then c = 〈µα.c

�

e〉 is reducible, a contradiction.
• v = v′/e′: By Inversion (Lemma 12), ↓N ∼ (Q←M), which contradicts

to Lemma 10.

Other cases are easy. ut

We prove a bit stronger result.

Lemma 17. A well-sorted term v in normal form satisfies Θ  v : τ | Ξ for
some τ , Θ and Ξ. Furthermore τ can be chosen in such a way that τ is not
atomic unless the sort for v is atomic. The similar statement holds for co-terms
and commands.

Proof. By Lemma 16, we can assume without loss of generality that expressions
are in canonical form. We prove this claim by induction on the structure of
expressions in the canonical form.

We first prove the claim for terms (using the induction hypothesis for terms
as well as co-terms and commands).

– v̌ = x: Let P be the sort of x. By the assumption (?) (see Section 3.6),
there exists a {>,⊥}-free type τ :: P . It is easy to see that, if P is not an
atomic sort, then there exists non-atomic τ that refines P . For example, if
P ∼ ↓N for some N , let τ = ↓θ, where θ is a {>,⊥}-free type θ :: N . We
have x : τ  x : τ ‖ ·.

– v̌ = λx.v̌′: By the induction hypothesis, one has Θ  v̌′ : τ ‖ Ξ for some Θ,
τ , and Ξ. Since the sort of v̌ is ↓N for some N by Inversion (Lemma 12).
Hence τ is not atomic. We can assume without loss of generality that τ is
not an intersection (if τ = τ1 ∧ τ2, then Γ  v̌′ : τ1 ‖ Ξ by the subtyping
rule). Hence τ = ↑θ for some θ :: N .
If x : σ ∈ Θ, i.e. Θ = Θ′, x : σ, then Θ′  λx.v̌′ : ↓(τ → θ) ‖ Ξ. Suppose
that x is not in Θ. Let σ be a {>,⊥}-free refinement type of the sort of x.
Then Θ, x : σ  v̌′ : ↓θ ‖ Ξ, and thus Θ  λx.v̌′ : ↓(τ → θ) ‖ Ξ.

– v̌ = µα.č: By the induction hypothesis, č : (Θ  Ξ) for some Θ and Ξ. If
α : θ ∈ Ξ, then Ξ = Ξ ′, α : θ and Θ  µα.c : ↓θ | Ξ ′. Suppose that α
is not in Ξ. Let θ be a {>,⊥}-free refinement type of the sort of α. Then
č : (Θ  α : θ,Ξ) and thus Θ  µα.c : ↓θ ‖ Ξ.

– v̌ = v̌′ / ě′: By the induction hypothesis, we have Θ1  v̌′ : τ ‖ Ξ1 and
Θ2 ‖ e : θ  Ξ2. Then Θ1 ∧ Θ2  v̌′ / ě′ : τ ← θ | Ξ1 ∨ Ξ2, where Θ1 ∧ Θ2

and Ξ1 ∨Ξ2 is defined as the point-wise operations.
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The proof for co-terms is similar to the above. We prove the claim for com-
mands.

– č = 〈x

�

ě〉: By the induction hypothesis, one has Θ ‖ e : θ  Ξ. We have
x : ↓θ  x : ↓θ ‖ ·. Hence 〈x

�

ě〉 : (Θ ∧ (x : ↓θ)  Ξ).
– č = 〈λx.v̌

�

α〉: By the induction hypothesis, one has Θ  λx.v̌ : τ ‖ Ξ. Since
the sort of λx.v̌ is ↓N for some N by Inversion (Lemma 12), we can assume
that τ is not atomic. Because τ :: ↓N , we have τ = ↓θ for some θ :: N . Then
we have · ‖ α : θ  α : θ and thus 〈λx.v̌

�

α〉 : (Θ  Ξ ∨ (α : θ)).

Other cases are similar to the above. ut

C.8 Completeness for Strong Normalisation (Theorem 2)

We first prove De-substitution Lemma for the {>,⊥}-free subsystem. Recall that
derivablity in the subsystem is written as Θ  v : τ ‖ Ξ.

Lemma 18 (De-substitution). Suppose that Γ ` v :: P | ∆. Assume {>,⊥}-
free type environments Θ :: Γ and Ξ :: ∆. Let x be a variable of sort P .

– If Θ  v′[v/x] : σ ‖ Ξ and x has a free occurrence in v′, then Θ, x : τ  v′ :
σ ‖ Ξ and Θ  v : τ ‖ Ξ for some τ :: P .

– If Θ ‖ e[v/x] : θ  Ξ and x has a free occurrence in e, then Θ, x : τ ‖ e : θ 
Ξ and Θ  v : τ ‖ Ξ for some τ :: P .

– If (c[v/x]) : (Θ  Ξ) and x has a free occurrence in c, then c : (Θ, x : τ  Ξ)
and Θ  v : τ ‖ Ξ for some τ :: P .

The similar statements hold for substitution of co-terms.

Proof. The proof is basically the same as the proof of De-substitution Lemma
for the full system (Lemma 5). We prove the claim by induction on the structure
of the derivations.

We first prove the case in which v′ is a variable.

– Case v′ = x: Let τ = σ.
– Case v′ = y 6= x: This case never happens since x has a free occurrence.

We prove the other cases by induction on the structure of derivations. Since
v′ is not a variable, the top-level structure of v′[v/x] is that of v′.

– Case (T-PAbs): Then v′ = λy.v′′ and σ = ↓(σ′ → θ′). We can assume
without loss of generality that y is not occur in v and we get Θ, y : σ′ 
v′′[v/x] : ↓θ′ ‖ Ξ. Note that x has a free occurrence in v′′. By the induction
hypothesis, we have Θ, y : σ′, x : τ  v′′ : ↓θ′ ‖ Ξ and Θ, y : σ′  v : τ ‖ Ξ
for some τ . Since y does not appear in v, the latter can be refined as Θ 
v : τ ‖ Ξ. By applying (T-PAbs), we have Θ, x : τ  v′′ : ↓(σ′ → θ′) ‖ Ξ as
desired.
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– Case (T-PMu): Then v′ = µα.c and σ = ↓θ and c[v/x] : (Θ  α : θ,Ξ).
We can assume without loss of generality that α does not appear in v. Note
that x has a free occurrence in c. By the induction hypothesis, there exists
θ such that c : (Θ, x : τ  α : θ,Ξ) and Θ  v : τ ‖ α : θ,Ξ, which can be
strengthened as Θ  v : τ ‖ Ξ (since α does not occur in v). The former
judgement leads to Θ  µα.c : ↓θ ‖ Ξ.

– Case (T-PApp): Then v′ = v′′ / e and σ = σ′ ← θ′. We have Θ  v′′[v/x] :
σ′ ‖ Ξ and Θ ‖ e[v/x] : θ′  Ξ. There are four subcases:
• Both v′′ and e has a free occurrence of x: Then, by the induction hy-

pothesis, there exist τ1 and τ2 such that
∗ Θ, x : τ1  v′′ : σ ‖ Ξ,
∗ Θ  v : τ1 ‖ Ξ,
∗ Θ, x : τ2 ‖ e : θ′  Ξ, and
∗ Θ  v : τ2 ‖ Ξ.

Then we have Θ  v : τ1 ∧ τ2 ‖ Ξ, Θ, x : τ1 ∧ τ2  v′′ : σ ‖ Ξ, and
Θ, x : τ1 ∧ τ2 ‖ e : θ′  Ξ. Hence Θ, x : τ1 ∧ τ2  v′′ / e : σ′ ← θ′ ‖ Ξ.
• v′′ has a free occurrence of x but e does not: Then, by the induction

hypothesis, one has
∗ Θ, x : τ  v′′ : σ ‖ Ξ, and
∗ Θ  v : τ ‖ Ξ.

Since x does not appear in e, we have e[v/x] = e and thus Θ ‖ e : θ′  Ξ.
Because the weakening rule is admissible, Θ, x : τ ‖ e : θ′  Ξ. Hence
Θ, x : τ  v′′ / e : σ′ ← θ′ ‖ Ξ and Θ  v : τ ‖ Ξ.
• e has a free occurrence of x but v′′ does not: Similar to the above subcase.
• Neither v′′ nor e does not have a free occurrence of x: This never happens

since v′′ / e has a free occurrence by the assumption.
– Case (T-PCmd): Similar to the above case.
– Case (T-PInt): Then σ = σ1 ∧ σ2 and Θ  v′[v/x] : σi ‖ Ξ for i ∈ { 1, 2 }.

By the induction hypothesis, Θ, x : τi  v′ : σi ‖ Ξ and Θ  v : τi ‖ Ξ
for some τi for i ∈ { 1, 2 }. By the same argument as in the above case, we
have Θ, x : τ1 ∧ τ2  v′ : σi ‖ Ξ for i ∈ { 1, 2 } and Θ  v : τ1 ∧ τ2 ‖ Ξ. By
(T-PInt), we have Θ, x : τ1 ∧ τ2  v′ : σ1 ∧ σ2 ‖ Ξ.

– Case (P-Sub): Then Θ  v′[v/x] : σ′ ‖ Ξ for some σ′ �P σ. By the induction
hypothesis, Θ, x : τ  v′ : σ′ ‖ Ξ and Θ  v : τ ‖ Ξ for some τ . By the
subtyping rule, Θ, x : τ  v′ : σ ‖ Ξ.

The other cases are the dual of the above. ut

We prove Theorem 2 by induction on the length of the longest reduction
sequence starting from the expression.

If the expression is in normal form, we use Lemma 7.
For reducible expressions, we prove the claim by induction on the struc-

ture of the derivation of the reduction relations. For example, consider a base
case 〈(λx.v1)

�

(v2 . e)〉 −→ 〈(v1[v2/x])

�

e〉. By the induction hypothesis,
〈(v1[v2/x])

�

e〉 is typable in the {>,⊥}-free subsystem. Assume that 〈(v1[v2/x])

�

e〉 : (Θ  Ξ), and hence Θ  v1[v2/x] : ↓θ ‖ Ξ and Θ ‖ e : θ  Ξ for some θ.
There are two cases. If x occurs freely in v1, then one can prove De-substitution
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Lemma for the subsystem, which completes the proof for this case. If x does
not occur in v1, the näıve adaptation of De-substitution Lemma does not work,
since the judgement obtained by the lemma is Θ ` v2 : >P | Ξ, which is not
derivable in the subsystem. However, in this case, Θ, x : τ  v1 : θ ‖ Ξ for every
{>,⊥}-free type τ (which refines the sort of x). By the induction hypothesis, one
has Θ′  v2 : τ ‖ Ξ ′ in the {>,⊥}-free subsystem for some Θ′, Ξ ′, and τ ′. Then
we have Θ′∧Θ  λx.v1 : ↓(τ → θ) ‖ Ξ ∨Ξ ′ and Θ′∧Θ ‖ v2 .e : τ → θ  Ξ ∨Ξ ′,
and thus 〈(λx.v1)

�

(v2 . e)〉 is typable in the subsystem.

D Supplementary Materials for Section 4

D.1 Proof of Proposition 6

Lemma 19. Let t be an expression, V be a value and e be a co-term of λ̄µµ̃.
Then tv[Φ(V )/x] = (t[V/x])v and tv[ev/α] = (t[e/α])v.

Proof. By induction on the structure of t ut

Now we have the following reduction sequences:

〈V | µ̃x.c〉v = 〈��Φ(V )

�

µx.cv〉
−→ 〈Φ(V ) � µx.cv〉
−→ cv[Φ(V )/x]

= (c[V/x])v.

〈µα.c | e〉v = 〈µα.cv

�

ev〉
−→ cv[ev/α]

= (c[e/α])v.

〈λx.v1 | v2 · e〉v = 〈��(λx.vv1)

�

µf.〈vv2

�

µy.〈f

�

y . ev〉〉〉
−→ 〈λx.vv1 � µf.〈vv2

�

µy.〈f

�

y . ev〉〉〉
−→ 〈vv2

�

µy.〈λx.vv1

�

y . ev〉〉
−→ 〈vv2

�

µx.〈vv1

�

ev〉〉
= 〈v2 | µ̃x.〈v1 | e〉〉v.

D.2 Proof of Proposition 7

Lemma 20. Let t be an expression, v be a term and E be a co-value of λ̄µµ̃.
Then tn[vn/x] = (t[v/x])n and tn[Ψ(E)/α] = (t[E/α])n.

Proof. By induction on the structure of t. ut
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Now we have the following reduction sequences.

〈v | µ̃x.c〉n = 〈vn � µx.cn〉
−→ cn[vn/x]

= (c[v/x])n.

〈µα.c | E〉n = 〈µα.cn � ��Ψ(E)〉
−→ 〈µα.cn

�

Ψ(E)〉
−→ cn[Ψ(E)/α]

= (c[E/α])n.

〈λx.v1 | v2 · e〉n = 〈(λx.(��vv1)) � ��Ψ(v2 · e)〉
−→ 〈λx.(��vn1 )

�

Ψ(v2 · e)〉
= 〈λx.(��vn1 )

�

vn2 . e
n〉

−→ 〈��vn1 [vn2 /x]

�

en〉
−→ 〈vn1 [vn2 /x] � en〉
←− 〈vn2 � µx.〈vn1 � en〉〉
= 〈v2 | µ̃x.〈v1 | e〉 〉n.

They show that the translation preserves β-equivalences.
The latter claim is proved by contraposition. Suppose that t is not strongly

normalising. Then one has an infinite reduction sequence

t = t0 −→ t1 −→ t2 −→ · · · .

We construct an infinite reduction sequence starting from tn.
The crucial observation is as follows. Let us write −→λ (resp. −→µ, −→µ̃)

for reduction of λ-redex (resp. µ-redex, µ̃-redex). For every context C, if

t = C[〈λx.v1 | v2 ·e〉] −→λ C[〈v2 | µ̃x.〈v1 | e〉 〉] −→µ̃ C[〈v1[v2/x] | e〉] = t′,

we write t −→λ′ t′.

Lemma 21. Assume an infinite reduction sequence starting from t. Then there
exists an infinite reduction sequence

t = t0 −→ t1 −→ t2 −→ · · ·

such that either

– t0 −→µ t1 or t0 −→µ̃, or
– t0 −→λ′ t2.



Intersection and Union Type Assignment and Polarised λ̄µµ̃ 45

Proof. We first note that every infinite sequence has infinite µ or µ̃ reduction
(since reducing λ-redex decreases the number of λ in the expression). Let us
focus on the first such µ or µ̃ reduction in the given infinite reduction sequence,
say ti −→ ti+1. One can interchange the focused reduction with the previous λ
reduction ti−1 −→λ ti in the following sense.

– If ti−1 −→λ ti −→µ ti+1, then ti−1 −→µ t
′
i −→∗λ ti+1.

– If ti−1 −→λ ti −→µ̃ ti+1 and ti−1 6−→λ′ ti+1, then ti−1 −→µ̃ t
′
i −→∗λ ti+1.

– If ti−2 −→λ ti−1 −→λ ti −→µ̃ ti+1 with ti−1 −→λ′ ti+1, then ti−2 −→λ′

t′i −→∗λ ti+1.

By applying this argument as much as required, we will have an infinite reduction
sequence starting from −→µ, −→µ̃ or −→λ′ .

Formally we appeal to induction on the position of the first µ or µ̃ reduction.
ut

As a consequence of the previous lemma, we can assume without loss of gen-
erality that we have an infinite reduction sequence starting from t with respect

to (
cbn′

−→) := (−→µ) ∪ (−→µ̃) ∪ (−→λ′). Since u1
cbn′

−→ u2 implies un1 −→+ un2 , we
obtain an infinite reduction sequence starting from tn.

E Supplementary Materials for Section 5

E.1 Proof of Lemma 8

The left-to-right direction is proved by induction on the structure of the deriva-
tion. Most cases are easily proved. For example, let us consider the case in which
the last is (CH-VL). Then we have Θ `cbv V : ν ; Ξ. By the induction hypoth-
esis, Θ ` Φ(V ) : ν | Ξ. Hence Θ ` ��Φ(V ) : ↓↑ν | Ξ is required.

The only nontrivial case is (CH-CApp). Suppose that Θ `cbv v : ↓
∨
i∈I(↑νi) |

Ξ and Θ | e : ϕ `cbv Ξ. By the induction hypothesis, we have

Θ ` vv : ↓(
∨
i∈I

(↑νi)) | Ξ

and

Θ | ev : ϕ `cbv Ξ.

Then, for every j ∈ I, one has

Θ, f :
∧
i∈I(↓(νi → ϕ)), y : νj ` y : νj | Ξ Θ, f :

∧
i∈I(↓(νi → ϕ)), y : νj | ev : ϕ | Ξ

Θ, f :
∧
i∈I(↓(νi → ϕ)), y : νj | y . ev : νj → ϕ ` Ξ

.

Because Θ, f :
∧
i∈I(↓(νi → ϕ)), y : νj ` f : ↓(νj → ϕ) | Ξ for every j ∈ I by the

subtyping rule, one has

〈y . ev � f〉 : (Θ, f :
∧
i∈I

(↓(νi → ϕ)), y : νj ` Ξ)
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which implies

Θ, f :
∧
i∈I

(↓(νj → ϕ)) | µy.〈y . ev � f〉 : ↑νj ` Ξ.

Since this judgement is derivable for every j ∈ I, we have

Θ, f :
∧
i∈I

(↓(νj → ϕ)) | µy.〈y . ev � f〉 :
∨
i∈I

(↑νj) ` Ξ.

Hence

〈vv

�

µy.〈y . ev � f〉〉 : (Θ, f :
∧
i∈I

(↓(νj → ϕ)) ` Ξ).

Thus

Θ | µf.〈vv

�

µy.〈y . ev � f〉〉 : ↑(
∧
i∈I

(↓(νj → ϕ))) ` Ξ.

The right-to-left direction is proved by induction on the structure of the
expression t (where we regard that the subject V for a value judgement Θ `cbv
V : ν ; Ξ is smaller than the same subject V for a term judgement Θ `cbv V :
% | Ξ).

Most rules are easily provable by using General Inversion Lemma (Lemma 14).
For example, we show that Θ ` V v : % | Ξ implies Θ `cbv V : % | Ξ. By def-
inition of V v, we have Θ ` µα.〈Φ(V ) � α〉 : % | Ξ. By Lemma 14, one has a
finite collection of types { ↓ϕi }i∈I such that

∧
i∈I(↓ϕi) � % and, for every i ∈ I,

〈Φ(V ) � α〉 : (Θ ` α : ϕi, Ξ). By the same lemma, for every i ∈ I, there exists νi
such that Θ | α : ↑νi ` α : ϕi, Ξ and Θ ` Φ(V ) : νi | α : ϕi, Ξ. The latter can be
strengthened to Θ ` Φ(V ) : νi | Ξ since V has no free occurrence of α. Again, by
General Inversion (Lemma 14) and Θ | α : ↑νi ` α : ϕi, Ξ, one has ↑νi � ϕi for
every i ∈ I. By the induction hypothesis, Θ `cbv V : νi ; Ξ for every i ∈ I. Hence
Θ `cbv V : ↓↑νi | Ξ for every i ∈ I. Now we have Θ `cbv V :

∧
i∈I(↓↑νi) | Ξ.

Since∧
i∈I

(↓↑νi) �
∧
i∈I

(↓ϕi) � %,

we obtain Θ `cbv V : % | Ξ as desired.
The most complex case is v ·e. Suppose that Θ | (v ·e)v : ϕ ` Ξ. By definition,

Θ | µf.〈vv

�

µy.〈f

�

y . ev〉〉 : ϕ ` Ξ.

By General Inversion (Lemma 14), there is a finite collection of types { ↑νi }i∈I
such that ϕ �

∨
i∈I ↑νi and 〈vv

�

µy.〈f

�

y . ev〉〉 : (Θ, f : νi ` Ξ) for every
i ∈ I. Again, by General Inversion (Lemma 14), for every i ∈ I, there exists
ϕ′i such that Θ, f : νi ` vv : ↓ϕ′i | Ξ and Θ, f : νi | µy.〈f

�

y . ev〉 : ϕ′i ` Ξ.
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The latter can be strengthened to Θ ` vv : ↓ϕ′i | Ξ since v does not have a free
occurrence of f . Then, by the induction hypothesis, for every i ∈ I,

Θ `cbv v : ↓ϕ′i | Ξ.

Because Θ, f : νi | µy.〈f

�

y . ev〉 : ϕ′i ` Ξ, by General Inversion (Lemma 14),
there exists a finite family { ν′i,j }j∈Ji such that ϕ′i �

∨
j∈Ji ↑ν

′
i,j and 〈f

�

y . ev〉 :
(Θ, f : νi, y : ν′i,j ` Ξ) for every i ∈ I and j ∈ Ji. Again, by General Inversion
(Lemma 14), for every i and j ∈ Ji, there exists ψi,j such that Θ, f : νi, y : ν′i,j `
f : ↓ψi,j | Ξ and Θ, f : νj , y : ν′i,j | y . ev : ψi,j ` Ξ. By General Inversion
(Lemma 14) for the judgements, for every i ∈ I and j ∈ Ji, we have

– νi � ↓ψi,j , and
– there exists a family { ν′′i,j,k → ϕ′i,j,k }k∈Ki,j such that
• ψi,j �

∨
k∈Ki,j

(ν′′i,j,k → ϕ′i,j,k),

• Θ, f : νj , y : ν′i,j ` y : ν′′i,j,k | Ξ for every k ∈ Ki,j , and
• Θ, f : νj , y : ν′i,j | ev : ϕ′i,j,k ` Ξ for every k ∈ Ki,j .

Since f nor y dose not have a free occurrence in e, we have Θ | ev : ϕ′i,j,k ` Ξ
for every i ∈ I, j ∈ Ji and k ∈ Ki,j . By the induction hypothesis,

Θ | e : ϕ′i,j,k `cbv Ξ.

Let ϕ′′ :=
∨
i∈I,j∈Ji,k∈Ki,j

ϕ′i,j,k. Then

Θ | e : ϕ′′ `cbv Ξ.

Since Θ, f : νj , y : ν′i,j ` y : ν′′i,j,k | Ξ for every k ∈ Ki,j , we know that

ν′i,j � ν′′i,j,k for every k ∈ Ki,j . Recall that Θ `cbv v : ↓ϕ′i | Ξ for every i ∈ I and
ϕ′i �

∨
j∈Ji(↑ν

′
i,j). Hence

Θ `cbv v : ↓(
∨
j∈Ji

(↑ν′i,j)) | Ξ.

So by (CH-CApp), for every i ∈ I,

Θ | v · e : ↑(
∧
j∈Ji

(↓(ν′i,j → ϕ′′))) `cbv Ξ

and thus

Θ | v · e :
∨
i∈I

(↑(
∧
j∈Ji

(↓(ν′i,j → ϕ′′)))) `cbv Ξ.

It suffices to prove that ϕ �
∨
i∈I(↑(

∧
j∈Ji(↓(ν

′
i,j → ϕ′′)))). We have

ϕ �
∨
i∈I
↑νi �

∨
i∈I
↑(

∧
j∈Ji

↓ψi,j) �
∨
i∈I
↑(

∧
j∈Ji

↓(
∨

k∈Ki,j

(ν′′i,j,k → ϕ′i,j,k))).
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Recall that, for every i ∈ I, j ∈ Ji and k ∈ Ki,j , one has ν′i,j � ν′′i,j,k and
ϕ′i,j,k � ϕ′′. Hence∨

k∈Ki,j

(ν′′i,j,k → ϕ′i,j,k) � ν′i,j → ϕ′′.

So we have

ϕ �
∨
i∈I
↑(

∧
j∈Ji

↓(
∨

k∈Ki,j

(ν′′i,j,k → ϕ′i,j,k))). �
∨
i∈I
↑(

∧
j∈Ji

↓(ν′i,j → ϕ′′)).

E.2 Proof of Theorem 4

As discussed is Section 5, Soundness follows from Lemma 8 and Corollary 3.
Here we prove completeness.

We use cbv for judgements in the {>,⊥}-free subsystem for call-by-value
λ̄µµ̃.

Definition 2 (Canonical Form). λ̄µµ̃-expressions in canonical form is de-
fined by the following grammar:

V̌ ::= x | λx.v̌
v̌ ::= V̌ | µα.č
č ::= 〈x | v̌ · ě〉 | 〈V̌ | α〉
ě ::= α | v̌ · ě | µ̃x.č.

Lemma 22. A λ̄µµ̃-expression that is normal with respect to the call-by-value
reduction is in canonical form.

Proof. By induction on the structure of the expression. We show the claim for
commands. Other cases are easy.

Consider a command 〈v | e〉. Since it is in normal form, so are both v and e.
By the induction hypothesis, v = v̌ and e = ě.

– Case v̌ = x:
• Subcase ě = α: Then 〈v̌ | ě〉 = 〈x | α〉, which is in canonical form.
• Subcase ě = v̌′ · ě′: Then 〈v̌ | ě〉 = 〈x | v̌′ · ě′〉, which is in canonical form.
• Subcase ě = µ̃y.č: Then 〈v̌ | ě〉 = 〈x | µ̃y.č〉 −→ č[x/y], a contradiction.

– Case v̌ = λx.v̌′:
• Subcase ě = α: Then 〈v̌ | ě〉 = 〈λx.v̌′ | α〉, which is in canonical form.
• Subcase ě = v̌′′ · ě′: Then 〈v̌ | ě〉 = 〈λx.v̌′ | v̌′′ · ě′〉 −→ 〈v̌′′ | µ̃x.〈v̌′ | ě′〉 〉,

a contradiction.
• Subcase ě = µ̃y.č: Then 〈v̌ | ě〉 = 〈λx.v̌′ | µ̃y.č〉 −→ č[λx.v̌′/y], a contra-

diction.
– Case v̌ = µα.č: Then 〈v̌ | ě〉 = 〈µα.č | ě〉 −→ č[ě/α], a contradiction.

ut
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We show that every expression in normal form is typable.

Lemma 23. Every λ̄µµ̃-expression in normal form with respect to call-by-value
reduction is typable in the {>,⊥}-free subsystem.

– For every V̌ , there exist ν, Θ and Ξ such that Θ cbv V̌ : ν ; Ξ.
– For every v̌, there exist ϕ, Θ and Ξ such that Θ cbv v̌ : ↓ϕ ‖ Ξ.
– For every č, there exist Θ and Ξ such that č : (Θ cbv Ξ).
– For every ě, there exist ϕ, Θ and Ξ such that Θ ‖ ě : ϕ cbv Ξ.

Proof. By induction on the structure of the expression.

– Θ cbv V̌ : ν ; Ξ
• Case V̌ = x: Then x : ↓a cbv x : ↓a ‖ ·.
• Case V̌ = λx.v̌: By the induction hypothesis, Θ cbv v̌ : ↓ϕ ‖ Ξ for some
Θ and Ξ. We can assume without loss of generality that Θ = (Θ′, x : ν)
(otherwise, consider Θ, x : ↓a). We have Θ′ cbv λx.v̌↓(ν → ϕ) ; Ξ.

– Θ cbv v̌ : ↓ϕ ‖ Ξ
• Case v̌ = V̌ : By the induction hypothesis, Θ cbv V̌ : ν ; Ξ for some Θ

and Ξ. We have Θ cbv V̌ : ↓↑ν ‖ Ξ.
• Case v̌ = µα.č: By the induction hypothesis, č : (Θ cbv Ξ) for some Θ

and Ξ. We can assume without loss of generality that Ξ = (Ξ ′, α : ϕ)
(otherwise consider Ξ,α : ↑↓a). Then Θ cbv µα.č : ↓ϕ ‖ Ξ ′.

– č : (Θ cbv Ξ)
• Case č = 〈x | v̌′ · ě′〉: By the induction hypothesis, Θ1 cbv v̌′ : ↓ϕ1 ‖ Ξ1

and Θ2 ‖ ě′ : ϕ2 cbv Ξ2 for some Θ1, Θ2, ϕ1, ϕ2, Ξ1, and Ξ2. Since
ϕ1 is {>,⊥}-free, it must be the case that ϕ1 =

∨
i∈I ↑νi (up to the

equivalence induced by the subtyping relation). Then we have Θ1 ∧Θ2 ‖
v̌′ · ě′ | ↑(

∧
i∈I(↓(νi → ϕ2))) cbv Ξ1 ∨Ξ2. Now

〈x | v̌′ · ě′〉 : (Θ1 ∧Θ2 ∧ (x :
∧
i∈I

(↓(νi → ϕ2))) cbv Ξ1 ∨Ξ2)

because Θ1 ∧ Θ2 ∧ (x :
∧
i∈I(↓(νi → ϕ2))) cbv x :

∧
i∈I(↓(νi → ϕ2)) ;

Ξ1∨Ξ2 and thusΘ1∧Θ2∧(x :
∧
i∈I(↓(νi → ϕ2))) cbv x : ↓↑(

∧
i∈I(↓(νi → ϕ2))) ‖

Ξ1 ∨Ξ2.
• Case č = 〈V̌ | α〉: By the induction hypothesis, Θ cbv V̌ : ↓ϕ ‖ Ξ.

Hence 〈V̌ | α〉 : (Θ cbv Ξ ∨ (α : ϕ)).
– Θ ‖ ě : ϕ cbv Ξ
• Case ě = α: Similar to the case V̌ = x.
• Case ě = v̌′ · ě′: Similar to the argument in the case č = 〈x | v̌ · ě〉.
• Case ě = µ̃.č: Similar to the case v̌ = µα.č.

ut

The {>,⊥}-free subsystem also enjoys De-substitution if the substituted vari-
able has a free occurrence.

Lemma 24. For substitution of values, we have the following (where we assume
that x is a term variable not appearing in Θ).
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– If Θ cbv V ′[V/x] : ν′ ; Ξ and V ′ has a free occurrence of x, there exists ν
such that Θ, x : ν cbv V ′ : ν′ ; Ξ and Θ cbv V : ν ; Ξ.

– If Θ cbv v[V/x] : % ‖ Ξ and v has a free occurrence of x, there exists ν such
that Θ, x : ν cbv v : % ‖ Ξ and Θ cbv V : ν ; Ξ.

– If c[V/x] : (Θ cbv Ξ) and c has a free occurrence of x, there exists ν such
that c : (Θ, x : ν cbv Ξ) and Θ cbv V : ν ; Ξ.

– If Θ ‖ e[V/x] : ϕ cbv Ξ, there exists ν such that Θ, x : ν ‖ e : ϕ cbv Ξ and
Θ cbv V : ν ; Ξ.

For substitution of co-terms, we have the following (where we assume that α is
a co-term variable not appearing in Ξ).

– If Θ cbv V [e/α] : ν ; Ξ and V has a free occurrence of α, there exists ϕ
such that Θ cbv V : ν ; α : ϕ,Ξ and Θ ‖ e : ϕ cbv Ξ.

– If Θ cbv v[e/α] : % ‖ Ξ and v has a free occurrence of α, there exists ϕ such
that Θ cbv v : % ‖ α : ϕ,Ξ and Θ ‖ e : ϕ cbv Ξ.

– If c[e/α] : (Θ cbv Ξ) and c has a free occurrence of α, there exists ϕ such
that c : (Θ cbv α : ϕ,Ξ) and Θ ‖ e : ϕ cbv Ξ.

– If Θ ‖ e′[e/α] : ϕ′ cbv Ξ and e′ has a free occurrence of α, there exists ϕ
such that Θ ‖ e′ : ϕ′ cbv Ξ and Θ ‖ e : ϕ cbv Ξ.

Proof. By induction on the structure of derivations. We prove the claims for
substitution of values. The claims about Substitution of co-terms can be proved
similarly.

We first prove the case in which V ′ is a variable.

– Case V ′ = x: Let ν = ν′.
– Case V ′ = y 6= x: This contradicts to the assumption that x has a free

occurrence.

For other cases, we do case analysis on the last rule used in the derivation.

– Case (CH-VAbs): Then ν′ = ↓(ν′′ → ϕ), V ′ = λy.v′ (where y is a fresh
variable not appearing in V ), andΘ, y : ν′′ cbv v′ : ↓ϕ ‖ Ξ. By the induction
hypothesis, we have ν such that Θ, y : ν′′, x : ν cbv v′ : ↓ϕ ‖ Ξ and
Θ, y : ν′′ cbv V : ν ; Ξ. The latter can be strengthened to Θ cbv V : ν ; Ξ
since y is fresh. We have Θ, x : ν cbv λy.v′ : ↓(ν′′ → ϕ) ; Ξ as desired.

– Case (CH-VL): Then % = ↓↑ν′ and Θ cbv V ′[V/x] : ν′ ; Ξ. By the in-
duction hypothesis, there exists ν such that Θ, x : ν cbv V ′ : ν′ ; Ξ and
Θ cbv V : ν ; Ξ. We obtain Θ, x : ν cbv V ′ : ↓↑ν′ ‖ Ξ from the former
judgement.

– (CH-TMu): Then % = ↓ϕ, v = µα.c (where α is a fresh variable not ap-
pearing in V ), and c[V/x] : (Θ cbv α : ϕ,Ξ). By the induction hypothesis,
we have ν such that c : (Θ, x : ν cbv α : ϕ,Ξ) and Θ cbv V : ν ; α : ϕ,Ξ.
The latter can be strengthened to Θ cbv V : ν ; Ξ since α is fresh. We have
Θ, x : ν cbv µα.c : ↓ϕ ‖ Ξ as desired.

– (CH-CVar): This contradicts to the assumption that x has a free occur-
rence.
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– (CH-CMu): Similar to the case (CH-TMu).
– (CH-CApp): Then ϕ = ↑(

∨
i∈I(↓(ν′i → ϕ′))), e = v′ · e′, Θ cbv v′ :

↓(
∨
i∈I(↑ν′i)) ‖ Ξ, and Θ ‖ e′ : ϕ′ cbv Ξ.

• When both v′ and e′ have a free occurrence of x: By the induction
hypothesis, we have ν1 and ν2 such that
∗ Θ, x : ν1 cbv v′ : ↓(

∨
i∈I(↑ν′i)) ‖ Ξ,

∗ Θ cbv V : ν1 ; Ξ,
∗ Θ, x : ν2 ‖ e′ : ϕ′ cbv Ξ, and
∗ Θ cbv V : ν2 ; Ξ.

Then Θ, x : ν1 ∧ ν2 ‖ v′ · e′ : ↑(
∨
i∈I(↓(ν′i → ϕ′))) cbv Ξ and Θ cbv V :

ν1 ∧ ν2 ; Ξ.
• When v′ has a free occurrence of x but e′ does not: By the induction

hypothesis, there exists ν such that Θ, x : ν cbv v′ : ↓(
∨
i∈I(↑ν′i)) ‖ Ξ

and Θ cbv V : ν ; Ξ. Since e′[V/x] = e′, we have Θ, x : ν ‖ e′ : ϕ′ cbv

Ξ. Hence Θ, x : ν ‖ v′ · e′ : ↑(
∨
i∈I(↓(ν′i → ϕ′))) cbv Ξ.

• When e′ has a free occurrence of x but v′ does not: Similar to the above
subcase.

• When neither v′ nor e′ does not have a free occurrence of x: This con-
tradicts to the assumption that x has a free occurrence in v′ · e′.

– (CH-COM): Similar to the above case.
ut

We prove the completeness side of Theorem 4 by induction on the length of
the maximum reduction sequences.

If the expression is in normal form, then it is in a canonical form by Lemma 22
and typable in the {>,⊥}-free subsystem by Lemma 23.

Suppose that the expression is reducible. We use induction on the structure
of the derivation of the reduction relation. We prove the base cases. The other
cases are trivial.

– Case 〈µα.c | e〉 −→ c[e/α]: By the induction hypothesis, c[e/α] is typable in
the {>,⊥}-free subsystem. Suppose that c[eα] : (Θ cbv Ξ).
Suppose that c has a free occurrence of α. Then by Lemma 24, there exists
ϕ such that c : (Θ cbv α : ϕ,Ξ) and Θ ‖ e : ϕ cbv Ξ. Then Θ cbv µα.c :
↓ϕ ‖ Ξ. Hence 〈µα.c | e〉 : (Θ cbv Ξ).
Suppose that c does not have a free occurrence of α. Since 〈µα.c | e〉 is
strongly normalising, so is e. If e −→∗ e′ is the longest sequence from e,
then 〈µα.c | e〉 −→∗ 〈µα.c | e′〉 −→ c is a longer reduction sequence from
〈µα.c |〉. By the induction hypothesis, e is typable in the subsystem, say
Θ′ ‖ e : ϕ cbv Ξ ′. Then c : (Θ cbv α : ϕ,Ξ) since α is not free in c, and
thus Θ cbv µα.c : ↓ϕ ‖ Ξ. Then we have 〈µα.c | e〉 : (Θ ∧Θ′ cbv Ξ ∨Ξ ′).

– Case 〈V | µ̃x.c〉 −→ c[V/x]: Similar to the above case.
– Case 〈λx.v | v′ · e〉 −→ 〈v′ | µ̃x.〈v | e〉 〉 (where x is not free in e): By

the induction hypothesis, 〈v′ | µ̃x.〈v | e〉 〉 is typable in the {>,⊥}-free
subsystem. Suppose that 〈v′ | µ̃x.〈v | e〉 〉 : (Θ cbv Ξ). Then Θ cbv v′ :
↓ϕ ‖ Ξ and Θ ‖ µ̃x.〈v | e〉 : ϕ cbv Ξ. We appeal to the inversion of this
judgement described as follows:
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If Θ ‖ x̃.c′ : ϕ cbv Ξ, there exists a finite family of types { ↑νi }i∈I
such that ϕ �

∨
i∈I ↑νi and c′ : (Θ, x : νi cbv Ξ) for every i ∈ I.

This claim can be proved by induction on the structure of the derivation,
similar to the proof of Lemma 14. By this claim, we have a finite family
of types { ↑νi }i∈I such that ϕ �

∨
i∈I ↑νi and 〈v | e〉 : (Θ, x : νi cbv Ξ).

Hence, for every i ∈ I, there exists ϕ′i such that Θ, x : νi cbv v : ↓ϕ′i ‖ Ξ
and Θ, x : νi ‖ e : ϕ′i 

cbv Ξ, which can be strengthened to Θ ‖ e : ϕ′i 
cbv Ξ

since x is not free in e. Let ϕ′′ =
∨
i∈I ϕ

′
i. Then Θ, x : νi cbv v : ↓ϕ′′ ‖ Ξ

for every i ∈ I and

Θ ‖ e : ϕ′′ cbv Ξ.

From the former judgement, Θ cbv λx.v : ↓(νi → ϕ′′) ; Ξ for every i ∈ I,
and thus Θ cbv λx.v :

∧
i∈I(↓(νi → ϕ′′)) ; Ξ. So we have

Θ cbv λx.v : ↓↑(
∧
i∈I

(↓(νi → ϕ′′))) | Ξ.

Since ϕ �
∨
i∈I ↑νi and Θ cbv v′ : ↓ϕ ‖ Ξ, we have

Θ cbv v′ : ↓(
∨
i∈I

(↑νi)) ‖ Ξ.

By (CH-CApp), we obtain

Θ ‖ v′ · e : ↑(
∧
i∈I

(↓(νi → ϕ′′))) cbv Ξ.

So

〈λx.v | v′ · e〉 : (Θ cbv Ξ).
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