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In this article, we give an overview of our project on higher-order program verification based on HFL
(higher-order fixpoint logic) model checking. After a brief introduction to HFL, we explain how it
can be applied to program verification, and summarize the current status of the project.

1 Introduction

In this article, we give a brief overview of our project on automated verification of higher-order programs
based on (a variation of) Viswanathan and Viswanathan’s higher-order fixpoint logic (HFL) [42]. HFL
is a higher-order extension of the modal µ-calculus and is strictly more expressive than the modal µ-
calculus, but the HFL model checking problem for finite state systems remains decidable.

In Section 2, we first review HFL, and HFL(Z), an extension of HFL with integer arithmetic, and
show that HFL(Z) may also be viewed as an extension of Constrained Horn Clauses (CHC) [3,12,18,35]
with higher-order predicates and fixpoint alternations.

In Section 3, we show how various program verification problems can naturally be reduced to HFL(Z)
model/validity checking problems. Our program verification framework based on HFL(Z) can be con-
sidered a generalization of CHC-based program verification framework [3, 12, 18, 35]. In Section 4, we
summarize our methods for automatically solving the HFLZ model/validity checking problems, using
higher-order model checkers and CHC solvers as backends.

This article is intended to be a non-exhaustive survey of HFL-based approaches to program verifica-
tion. The main objective is to provide references to technical papers and clarify how they are connected
with each other; the explanation of each topic is admittedly short and cryptic.

2 Higher-Order Fixpoint Logic

The syntax of HFL(Z) formulas and types is given as follows.

ϕ (formulas) ::= xτ | ϕ1∨ϕ2 | ϕ1∧ϕ2
| 〈a〉ϕ | [a]ϕ (modal operators)
| µxκ .ϕ | νxκ .ϕ (fixpoint operators)
| ϕ1ϕ2 | λxτ .ϕ (λ -abstractions and applications)

pure HFL

| ϕ e | e1 ≤ e2 (extension with integers)
e (integer expressions) ::= n | xint | e1 + e2

τ (types) ::= int | κ
κ (predicate types) ::= o | τ → κ

Here, each variable (denoted by the metavariable x,y, . . .) has its own type (specified as a superscript),
and we consider only well-typed formulas and expressions; for example, in ϕ1∨ϕ2, both ϕ1 and ϕ2 must
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have the type o of propositions. We often omit the type annotation of a variable. Each formula must have
a predicate type, and integer expression must have type int. See [26] for typing rules.

The first three lines of the definition of formulas correspond to the syntax of the modal µ-calculus [14,
29] in negation normal form (if the types κ and τ are restricted to the type o of propositions), and the
first four lines correspond to the syntax of pure HFL [42]. Each formula of type o describes a property of
labeled transition systems. The formula 〈a〉ϕ means that there exists a transition labeled a after which the
proposition ϕ holds, while the formula [a]ϕ means that, after any transition labeled a, the proposition ϕ

holds. The formulas µxκ .ϕ and νxκ .ϕ respectively denote the least and greatest predicates x such that x=
ϕ . For example, µxo.xo and νxo.xo respectively denote the least and greatest propositions such that x= x,
i.e., false and true respectively; henceforth, we treat false and true as propositional constants. The
fifth line is for the extension with integers. We have only constants, additions, and inequality constraints
on integers, but other predicates and operations, as well as quantifiers, are definable, as shown below.

Example 1. Let ϕ be a formula of type int→ o, and ψ be νx.λn.ϕ(n)∨ x(n+1). Then we have

ψ(0) ≡ (λn.ϕ(n)∨ψ(n+1))0 (by unfolding ψ)
≡ ϕ(0)∨ψ(1) (by β -reduction)
≡ ϕ(0)∨ (λn.ϕ(n)∨ψ(n+1))(1) (by unfolding ψ)
≡ ϕ(0)∨ϕ(1)∨ (λn.ϕ(n)∨ψ(n+1))(2) (by β -reduction)
≡ ϕ(0)∨ϕ(1)∨ϕ(2)∨·· · .

Thus, ψ(0) denotes ∃x≥ 0.ϕ(x). Similarly, ∀x≥ 0.ϕ(x) can be expressed by (νx.λn.ϕ(n)∧ x(n+1))0,
and ∀x∈Z.ϕ(x) (where Z is the set of integers) can be expressed by (νx.λn.ϕ(n)∧x(n−1)∧x(n+1))0.
The multiplication can be expressed as a ternary predicate mult(x,y,z) (which means x×y = z), e.g., by:

mult :=µu.λ (x,y,z).y = z = 0∨ (1≤ y∧u(x,y−1,z− x))∨ (y+1≤ 0∧u(x,y+1,z+ x)).

Here we have used tuple notations and subtractions (−) for readability; as usual, subtractions can be
defined by using additions and existential quantifiers.

As shown in the example below, pure HFL is already strictly more expressive than the modal µ-
calculus.

Example 2. Consider ϕ be the formula νx.λy.y∨〈a〉x(〈b〉y). Then, we have:

ϕ(〈c〉true) ≡ (λy.y∨〈a〉ϕ(〈b〉y))(〈c〉true) (unfolding of ϕ)
≡ 〈c〉true∨〈a〉ϕ(〈b〉〈c〉true) (β -reduction)
≡ 〈c〉true∨〈a〉(〈b〉〈c〉true∨〈a〉〈a〉ϕ(〈b〉〈b〉〈c〉true)) (unfolding, followed by β )
≡ 〈c〉true∨〈a〉〈b〉〈c〉true∨〈a〉2〈b〉2〈c〉true∨·· ·

Thus, ϕ(〈c〉true) means that there exists a transition sequence of the form anbn after which a c-transition
is enabled.

We write M |= ϕ when a labeled transition system M satisfies ϕ . We omit the formal semantics
of HFL(Z) [26]. The model checking problem for HFL(Z) is the problem of checking whether M |= ϕ

holds, given a finite labeled transition system M and a HFL(Z) formula ϕ of type o. The validity
checking problem is a special case: it is the problem of checking whether M0 |= ϕ holds, where ϕ is
a HFL(Z) formula of type o without modal operators (〈a〉, [a]), and M0 is a trivial model consisting
of a single state without transitions. We often just write |= ϕ for M0 |= ϕ and say “ϕ is valid” when
|= ϕ holds. For pure HFL, the model checking problem (hence also the validity checking problem) is
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decidable [42] and k-EXPTIME complete for the order-k fragment [1]. Here, the order of the model
checking problem is defined as the the largest order of types that occur in the HFL formula, and the order
of a type τ , written ord(τ), is defined by:

ord(o) = ord(int) = 0 ord(τ → κ) = max(ord(τ)+1,ord(κ)).

For example, the order of the formula in Example 2 is 1. For HFL(Z), both the model and validity
checking problems are undecidable due to Gödel’s incompleteness theorem (recall that quantifiers and
multiplications can be expressed, as discussed in Example 1).

We now explain the connection between the HFL(Z) validity checking problem and the CHC satis-
fiability problem, through examples. Here, we assume that the reader is familiar with Constrained Horn
Clauses (CHCs); those not familiar with CHCs may wish to consult [3], which is a good survey CHCs
and their applications to program verification.

Let us consider the following system S of CHCs.

∀x,y,r. y = 0∧ r = 0 =⇒ mult(x,y,r)
∀x,y,r,s. y 6= 0∧mult(x,y−1,s)∧ r = s+ x =⇒ mult(x,y,r)

∀x,y,r. mult(x,y,r)∧ x > 0 =⇒ r ≥ y.

The satisfiability of CHCs above (i.e., the existence of an assignment of a predicate to the predicate vari-
able mult) is equivalent to the safety property of the following OCaml program (that assertion failures
never occur):

let rec mult(x,y) =

if y=0 then 0

else let s = mult(x, y-1) in s+x

let main x y = if x>0 then assert(mult(x,y)>=y)

Here, the ternary predicate mult(x,y,r) in the CHCs intuitively means that the return value of mult(x,y)
in the program is r.

Let us now convert the satisfiability problem for the CHCs above to the validity checking problem
for a HFL(Z) formula. First, note that the first two clauses are equivalent to:

∀x,y,r.(y = 0∧ r = 0)∨∃s.(y 6= 0∧mult(x,y−1,s)∧ r = s+ x) =⇒ mult(x,y,r).

The least predicate ϕ that satisfies the condition above is expressed by:

µu.λ (x,y,r).(y = 0∧ r = 0)∨∃s.(y 6= 0∧u(x,y−1,s)∧ r = s+ x).

Thus, the satisfiability of S is equivalent to:

∀x,y,r. ϕ(x,y,r)∧ x > 0 =⇒ r ≥ y,

which is equivalent to:
∀x,y,r. ϕ(x,y,r)∨ x≤ 0∨ r ≥ y,

where ϕ is the de Morgan dual of ϕ , given as:

νu.λ (x,y,r).(y 6= 0∨ r 6= 0)∧∀s.(y = 0∨u(x,y−1,s)∨ r 6= s+ x).

In this manner, the satisfiability problem for any CHCs on integer arithmetic can be converted to the
validity checking problem for a formula of the first-order, ν-only fragment (i.e. the fragment without
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Figure 1: An LTS Mfile expressing the valid file access protocol

µ) of HFL(Z); recall that universal quantifiers can be expressed by using ν . Conversely, the validity
checking problem for any formula of the first-order, ν-only fragment where the types of fixpoint variables
are restricted to those of the form int→ ··· → int→ o can be reduced to the satisfiability problem for
CHCs on integer arithmetic [24]. In this sense, the HFL(Z) validity checking problem can be considered a
generalization of the CHC satisfiability problem, where higher-order predicates and fixpoint alternations
between µ and ν are allowed.

Burn et al. [5, 34] recently studied a higher-order extension of CHCs called HoCHC. the HFL(Z)
validity checking problem can also be considered an extension of the satisfiability problem for HoCHC
with fixpoint alternations.

3 From Program Verification to HFL(Z) Model Checking

This section explains how HFL(Z) model/validity checking can be applied to program verification. As
seen at the end of the last section, HFL(Z) validity checking subsumes CHC solving, which already
have a plenty of applications to program verification [3], but how can we exploit the additional power of
HFL(Z) model/validity checking for program verification?

A standard approach to applying model checking to program verification is to model a program as a
transition system, and a property of the program to be checked as a specification; that is indeed the case
for applications of finite-state model checking [7], pushdown model checking [2], and HORS model
checking (which is another kind of higher-order extension of model checking) [20, 33]. In applying
HFL(Z) model checking to higher-order program verification, we actually switch the roles of systems
and specifications: a program is mapped to a HFL(Z) formula, and a property is mapped to a finite
state system, where the HFL(Z) formula is a kind of “characteristic formula” of the program. This has
been partially inspired by the correspondence between HFL model checking and HORS model checking,
where we also need to switch the roles of systems and specifications [23].

Let us consider the following file-accessing program, taken from [26].

let x = open "foo" in read(x); close(x)

This program opens the file “foo”, and then reads and closes the file. Suppose we wish to check that
the file “foo” is indeed accessed as a read-only file. To this end, we express the valid access protocol
for a read-only file pointer as a labeled transition system, as shown in Figure 1. Here, end denotes the
termination of a program. In the state q0 (which is the initial state immediately after a file is opened),
both read and close operations are allowed, but after the close operation, only the end operation is
allowed. The program can be converted to the following HFL(Z) formula, which intuitively means that
the program follows the access protocol represented by the LTS.

〈read〉〈close〉〈end〉true.

It is obtained by just replacing each of the read, close, and end operations with the corresponding modal
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operators that say “those actions are allowed in the current state.”1 It is easy to see that the program
accesses the file “foo” just if

Mfile |= 〈read〉〈close〉〈end〉true.

The same idea applies to more complex programs that contain recursion and conditionals. Let us
consider the following program:

let x = open "foo" in

let rec f n = if n<=0 then close x else (read x; f (n-1) x) in

f 10

To make the reduction clearer, let us write it in the continuation passing style.

let x = open "foo" in

let rec f n k = if n<=0 then close x k else read x (f (n-1) x k) in

f 10 ()

Here, read and close now take an additional continuation parameter, which is invoked after the read/close
operations. Then, the property that the program accesses the file “foo” as a read-only file just if:

Mfile |= (µ f .λn.λk.(n≤ 0⇒ 〈close〉k)∧ (n > 0⇒ 〈read〉( f (n−1)k)))10(〈end〉true).

Here, again, we have just replaced each of the read/close operations, and program termination (repre-
sented by ()) with the corresponding modal operator. The conditional “if n<=0 then ... else

...” has been replaced by the corresponding logical formula (n ≤ 0⇒ ·· ·)∧ (n > 0⇒ ·· ·), and the
recursion has been replaced by the fixpoint operator µ (here, by using µ , we require that the program
terminates).

We have given above just order-1 examples, but it should be clear that the idea of the translation
should work for higher-order programs. A general translation for linear-time properties is found in [26],
a translation for arbitrary ω-regular properties (including both linear-time and branching time properties)
is found in [43]. For linear-time properties of first-order recursive programs, a more optimized translation
is given in [24]. In those general translations, program verification problems are actually reduced to the
validity checking problem for HFL(Z) formulas, by using a kind of product construction.

4 Solving HFL(Z) Model Checking Problems

In this section, we discuss how to solve instances of the HFLZ model checking problem obtained from
program verification problems. For the sake of simplicity, we actually focus on the validity checking
problem, but most of the techniques apply to the model checking problem as well.

Our overall method for HFL(Z) validity checking is summarized in Figure 2. In the figure, a
“νHFL(Z) formula” refers to a HFL(Z) formula without the least fixpoint operator µ . The overall strat-
egy for solving the validity checking problem is analogous to, and has been inspired by automated
program verification methods. The first phase of removing the least fixpoint operator µ corresponds to
reductions from liveness property verification (such as termination verification) to safety property veri-
fication [8, 31, 36]. The two methods for checking the validity of νHFL(Z) formula correspond to two
major approaches to automated verification of higher-order programs: higher-order model checking [25]
and refinement types [37, 40, 41, 44]. We discuss each step of Figure 2 below.

1Please ignore the open operation here; it matters when more than one file is used in a program, as in [20].
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Figure 2: An overview of our method for HFL(Z) validity checking

Due to underapproximation in various steps (a formula ϕ is replaced by another formula ϕ ′ such that
ϕ ′⇒ ϕ , so that the validity of ϕ ′ implies that of ϕ , but not vice versa), the procedure shown in Figure 2
cannot conclude that the original formula ϕ is invalid even if an approximation of the formula is invalid.
Thus, given a HFL(Z) formula ϕ , we also prepare its de Morgan dual ϕ , and applies the whole procedure
in parallel to ϕ and ϕ . If ϕ is valid, then we can conclude that ϕ is invalid.

4.1 Removing µ

In the reductions from program verification problems to HFL(Z) validity checking [24, 26, 43], liveness
and safety properties are respectively turned into µ- and ν-formulas. Thus, following the techniques for
liveness property verification [8,13,31,32,36], it is natural to first remove µ-formulas by using analogous
techniques.

In [24], we have adopted the technique of Fedyukovich et al. [13] for the first-order fragment of
HFL(Z) formulas. Suppose that we wish to prove the validity of a µ-formula of the form µx.ϕ(x). By
the standard fixpoint theorem, we have

ϕ
n(false)⇒ µx.ϕ(x)

for any natural number n. The formula ϕn(false) is equivalent to (νx′.λ z.(z > 0∧ϕ(x′(z− 1))))n,
which is also equivalent to the following formula ψ:

ψ :=∀u≥ n.(νx′.λ i.(i > 0∧ϕ(x′(i−1))))u.

Thus, it suffices to show that ψ is valid. Here, n can be considered a bound for the number of unfoldings
of the original µ-formula; by gradually increasing n, we can obtain a better approximation of the original
formula.

In the case of the first-order HFL(Z) formulas, the above translation yields order-1 νHFL(Z) formulas
(where all the types are of the form intk→ o), whose validity checking problems can be further reduced
to the CHC satisfiability problem, as discussed in Section 2.

Example 3. Let us consider the formula:

∀i.(µx.λy.y≤ 0∨ x(y−1))i.

Based on the above translation, it suffices to show:

∀i.∀u≥max(i+1,1).(νx′.λ (z,y).z > 0∧ (y≤ 0∨ x′(z−1,y−1)))(u, i).
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Here, max(i+1,1) corresponds to the bound n above; in general, the bound may depend on free variables
as in this example. Note that the resulting formula contains only ν and ∀, where the latter can also be
expressed by ν , as seen in Example 1.

To translate the formula above to CHCs, observe that the formula is equivalent to:

∀i.∀u≥max(i+1,1).(µx′.λ (z,y).z≤ 0∨ (y > 0∧ x′(z−1,y−1)))(u, i)⇒ false.

The µ-formula µx′.λ (z,y).z ≤ 0∨ (y > 0∧ x′(z− 1,y− 1))) is the least predicate X that satisfies the
following clauses:

z≤ 0 =⇒ X(z,y)
y > 0∧X(z−1,y−1) =⇒ X(z,y).

Thus, the validity of the formula above is equivalent to the satisfiability of the two clauses above with
the goal clause:

u≥ i+1∧u≥ 1∧X(u, i) =⇒ false.

The above system of CHCs is indeed satisfiable, and has the model: X(z,y) := z≤ 0∧ z≤ y. We can thus
conclude that the original HFL(Z) formula is valid.

We have implemented the above method for the first-order fragment of HFL(Z) and applied it to
automated verification of temporal properties [24]. Despite the generality of the approach (which works
for arbitrary ω-regular properties of while-programs), our implementation generally outperformed Cook
and Koskinen’s method specialized for CTL verification [9], probably thanks to the recent advance of
CHC solvers [6,15,27] and the streamlined approach. Work is under way to extend the translation above
for HFL(Z) formulas of arbitrary orders.

4.2 Predicate Abstraction for νHFL(Z) Validity Checking

One approach [17] to proving the validity of a νHFL(Z) formula ϕ is to apply predicate abstraction to
obtain a pure νHFL formula ϕ ′ (i.e., a νHFL(Z) formula without integers) as an underapproximation
of ϕ , and then apply an algorithm for pure HFL model checking [16]2 (recall that pure HFL model
checking is decidable; despite its high worst-case complexity, practical algorithms exist, which do not
always suffer from the high complexity). This approach may be viewed as a generalization of HORS
model checking approach to (un)reachability verification [25] and non-termination verification [30].

Given a set of predicates on integers, a given νHFL(Z) formula can be underapproximated by a pure
HFL formula. For example, suppose that we have decided to abstract every integer with the predicate
λy.y > 0. Then, the formula φ :=(νx.λy.y≥ 0∧ x(y+1))1 can be underapproximated by φ ′:

(νx.λb.b∧ x(b))true,

where b is a Boolean variable corresponding to the condition y> 0. Since φ ′ is valid (as can be confirmed
by a pure HFL model checker), we can conclude that the original formula φ is also valid. As in standard
approaches to combining predicate abstraction and model checking, predicates to be used for abstraction
can be found in a counterexample-guided manner. More details can be found in [17].

2In the actual implementation, we actually use a HORS model checker [4, 21] based on the correspondence between HFL
and HORS model checking [23].
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4.3 Refinement Types for νHFL(Z) Validity Checking

We have also studied another approach to νHFL(Z) validity checking, based on a (sound but incomplete)
reduction to a refinement type inference problem [19]. The approach has been inspired by the refinement
type system of Burn et al. [5] for HoCHC, whose idea can further be traced back to refinement type
systems for functional programs [37, 40, 41, 44].

The syntax of refinement types for νHFL(Z) is given by:

σ ::= o[ψ] | σ1→ σ2 | x :int→ σ .

Here, ψ is a quantifier-free formula of integer arithmetic (which may contain integer variables bound by
x :int→ ···). The type o[ψ] describes propositions that hold whenever ψ holds. For example, the νHFL
formula x≥ 0 has type o[x > 0], since x≥ 0 holds whenever x > 0 holds. A predicate λ p.p(0) has type
(x :int→ o[x≥ 0])→ o[true], because p(0) holds whenever p is a predicate on integers such that p(x)
holds for every x ≥ 0. Based on the intuition, one can construct a refinement type system for νHFL(Z),
such that a νHFL(Z) formula ϕ is valid if ϕ has type o[ψ], and reduce the type inference problem to
a constraint satisfaction problem on predicate variables in a standard manner [5, 6, 40]. Unlike the case
of refinement type systems for (un)reachability verification of functional programs [6, 40], the resulting
constraint satisfaction problem is no longer the CHC problem in general; constraints on predicates may
be of the form:

P1(x̃, ỹ)∧·· ·∧Pk(x̃, ỹ)∧ψ(x̃, ỹ) =⇒ Q1(x̃)∨·· ·∨Q`(x̃),

where disjunction may occur in the head (here, Pi,Q j are unknown predicate variables and ψ(x̃, ỹ) is a
formula of integer arithmetic). Solving this generalized form of constrained clauses [38] is the current
major bottleneck of this approach; work is under way to extend the ICE-based CHC solving approach [6]
to deal with the generalized constrained clauses.

Despite the bottleneck mentioned above, the refinement type-based approach to νHFL(Z) validity
checking is generally faster than the predicate abstraction-based approach, while the latter tends to be
more precise. Thus, the two approaches are complementary to each other.

4.4 Unfold/fold Transformations for Simplification

Inspired by the unfold/fold transformation techniques for CHC solving [10, 11], we have also studied
unfold/fold transformations for the first-order fragment of HFL(Z) [22], to enhance the power of an
automated HFLZ validity checker. The transformations are useful for reasoning about relations between
fixpoint formulas.

For example, consider proving ∀n.Even(n)⇒ Odd(n+1), where Even and Odd are defined by:

Even := µx.λy.(y = 0∨ x(y−2))
Odd := µx.λy.(y = 1∨ x(y−2)).

It can be expressed as the HFL(Z) formula ∀n.Even(n)∨Odd(n+1), where

Even := νx.λy.(y 6= 0∧ x(y−2)).

Let Even(y)∨Odd(y+1) be ϕ(y). It can be transformed as follows:

ϕ(y) ≡ Even(y)∨Odd(y+1)
≡ (y 6= 0∧Even(y−2))∨ (y+1 = 1∨Odd(y−1)) (unfold Even and Odd)
≡ y+1 = 1∨Even(y−2)∨Odd(y−1) (shuffle the formula)
≡ y = 0∨ϕ(y−2) (by the definition of ϕ).
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Based on the transformations above, we can replace Even(n)∨Odd(n+1) with (νx.λy.y= 0∨x(y−2))n,
which is obviously valid (since νx.λy.y = 0∨ x(y− 2) ≡ λy.true). The above sequence of transfor-
mations are analogous to unfold/fold transformations for CHCs [10], but the soundness of the overall
transformations is more subtle, due to the mixture of the least and greatest fixpoint operators: see [22]
for the conditions of soundness of unfold/fold transformations for the first-order fragment of HFL(Z).

4.5 Semi-Automated Methods

We have so far discussed automated methods for HFL(Z) validity checking. As the HFLZ formula
obtained from a program verification problem can be considered a kind of “verification condition,”3 it is
also natural to prove the validity of the formula semi-automatically, possibly using a proof assistant like
Coq, as exploited in our recent work [28, 43]. Integration with the automated methods is left for future
work.

5 Conclusion

We have given an overview of our project on automated program verification based on HFL(Z) model
and validity checking. Our framework can be considered a generalization of the CHC-based program
verification framework, and provides a uniform approach to higher-order program verification. One may
wonder whether HFL(Z) is too expressive as the target of reductions from program verification problems.
To answer the question, Tsukada [39] has recently shown that, in a certain sense, HFL(Z) is just as
expressive as needed for encoding higher-order program verification problems. A lot of work is still left
to be done, including a full implementation of the HFL(Z) validity checker, and further improvement of
backend solvers for CHCs and generalized constrained clauses.
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