
HorSat2: A Saturation-Based Higher-Order
Model Checker

Naoki Kobayashi

The University of Tokyo

Abstract. We present HorSat2, a saturation-based higher-order model
checker. Higher-order model checking is a generalization of conventional
model checking such as finite state or pushdown model checking, and it
aims to check whether the tree generated by a given tree grammar, called
a higher-order recursion scheme, satisfies a given property. Thanks to
the expressiveness of higher-order recursion schemes, higher-order model
checking has recently been applied to automated verification of higher-
order functional programs. Like a previous higher-order model checker
HorSat, HorSat2 uses Broadbent and Kobayashi’s saturation-based
algorithm for higher-order model checking, but we have applied a num-
ber of new optimizations. According to experiments, HorSat2 is sig-
nificantly faster than other state-of-the-art higher-order model checkers,
including TRecS, Preface, HorSat and HorSatZDD.

1 Introduction

Higher-order model checking [11, 6] is concerned about whether the tree gener-
ated by a given higher-order recursion scheme (HORS) satisfies a given property.
HORS is a kind of tree grammar in which non-terminal symbols may take trees
or higher-order functions on trees as arguments. It may be considered a gen-
eralization of conventional model checking such as finite-state/pushdown model
checking, and has recently been applied to automated verification of higher-order
functional programs [6, 9, 13] following the successful applications of conventional
model checking to automated verification of imperative programs [3, 2].

Although the complexity of higher-order model checking is hyper-exponential
(more precisely, k-EXPTIME complete for order-k HORS [11, 8]), practical higher-
order model checking algorithms [6, 4, 13] have been recently developed, which
run fast for typical inputs. Several higher-order model checkers, such as TRecS [6],
HorSat [4], and Preface [13] have been implemented and used as backends of
various automated analysis/verification tools for higher-order programs [9, 16,
12, 13, 17].

Those higher-order model checkers have been working reasonably well until
recently, but some of the verification tools [10, 17] started to suffer from the
bottleneck of the backend higher-order model checker. To overcome the prob-
lem, we have built a new higher-order model checker HorSat2. Like HorSat,
HorSat2 is based on a saturation-based algorithm with an optimization based



on flow analysis [4], but we have employed a new flow-based optimization (in-
spired by Preface [13]), and applied a number of other optimizations (some of
which were inspired by HorSatZDD [15]), taking the scalability into account.
According to the experiments, HorSat2 is significantly faster than the previ-
ous higher-order model checkers. For example, for the Gk,m benchmark [6, 5],
it has been reported [13] that Preface could handle G2,10000 in less than one
minute, while HorSat2 can handle G2,200000 (which consists of 200, 006 rules),
and G7,10000 in less than one minute.

The rest of this paper is structured as follows. Section 2 introduces higher-
order model checking and explains the functionality provided by HorSat2. Sec-
tion 3 gives an overview of the algorithm and optimizations applied in HorSat2.
Section 4 reports experimental comparison between HorSat2 and the previous
higher-order model checkers.

2 Higher-Order Model Checking

A higher-order recursion scheme (HORS) is a higher-order tree grammar con-
sisting of rewriting rules of the form

F x1 · · · xk → t

where F is a non-terminal symbol, x1, . . . , xk are variables, and t is a term
consisting of tree constructors, non-terminals, and variables. The part enclosed
by %BEGING and %ENDG on the lefthand side of Figure 1 shows an example of
HORS, written in the input format of HorSat2. Here, br, open, read, close,
and end are tree constructors of arity 2, 1, 1, 1, and 0 respectively. The upper-
case letters S and F denote non-terminals, and S is the start symbol.

There must be exactly one rule for each non-terminal. Furthermore, each
non-terminal is associated with a type, and each rule must respect types. For
the example above, S and F have type o (which is the type of trees) and o→ o.

A HORS describes a (possibly infinite) tree, obtained from S by repeatedly
applying the rewriting rules. For the example in Figure 1, S can be rewritten as
follows.

S −→ open(F (close end)) −→ open(br (read(close end)) (F (F (close end)))) −→
open(br(read(close end)) (br(read(F (close end)))(F (F (F (close end)))))) −→ · · ·

Thus, we obtain the infinite tree shown in the middle of Figure 1 as the limit of
infinite rewriting.

Higher-order model checking [11] is the following problem:

Input: HORS G and a tree automaton A
Output: Whether the tree generated by G is accepted by A.

A tree automaton A may be an alternating parity tree automaton in gen-
eral [11], but like many other higher-order model checkers, HorSat2 supports
only trivial tree automata [1] (topdown tree automata with a trivial acceptance



%BEGING /* HORS */

S -> open (F (close end)).

F k -> br (read k) (F (F k)).

%ENDG

%BEGINA /* Automaton */

q0 open -> q1.

q1 br -> q1 q1.

q1 read -> q1.

q1 close -> q2.

q2 end -> .

%ENDA

open

br

read

close

end

br

read

br

read

close

end

br

· · · · · ·

br

· · · · · ·

Fig. 1. A sample input for HorSat2 (left) and the tree generated by HORS (right)

condition). The part enclosed by %BEGINA and %ENDA on the lefthand side of
Figure 1 shows an example of a trivial tree automaton in the input format
of HorSat2. Each line defines a rewriting rule of the form: q a → q1 · · · qk,
which should be read “upon reading a node labeled by a at state q, read its
i-th child with qi. A (possibly infinite) tree is accepted by an automaton A just
if the run of A does not get stuck. The automaton given in Figure 1 accepts
a tree if every finite path is labeled by an element of the regular expression
open ·(read|br)∗ ·close ·end (with br ignored) and every infinite path is labeled
by a prefix of open·(read|br)ω. For the pair of HORS and tree automaton given in
Figure 1, the answer to the higher-order model checking problem is “Yes”. When
the answer is “No”, HorSat2 also outputs a counterexample, which is either
a path (when the automaton is deterministic) or a finite subtree (when the au-
tomaton is alternating) that violates the property described by A. For example,
if an automaton A′ describes the property “At most one read can occur above
close”, then the tree in Figure 1 is not accepted by A′, and HorSat2 outputs
“(open,1)(br,2)(br,1)(read,1)(br,1)(read,1)(close,0)” as a counterex-
ample. It represents the path obtained from the tree on the righthand side of
Figure 1 by taking the second branch at the first br node, and taking the first
branch at all the other nodes, in which read occurs twice above close. More
details on the input/output format of HORS are described in the distribution of
HorSat2.

Higher-order model checking is k-EXPTIME complete for order-k HORS,
even when restricted to trivial tree automata [8]. However, when certain param-
eters are fixed, it is polynomial (linear, when restricted to trivial tree automata)
time in the size of HORS [6, 7]. Higher-order model checking may be consid-
ered a generalization of conventional model checking, where the order-0 case
corresponds to finite state model checking, and the order-1 case corresponds to
pushdown model checking,



Many verification problems for functional programs can be naturally reduced
to higher-order model checking. For example, consider the following program [6]:

f x = if * then read x else (f x; f x)

main() = let y = open "foo" in (f y; close y)

The first line defines a recursive function f , which takes a file pointer x as an
argument, and non-deterministically reads x, or recursively calls f twice. The
second line defines a main function, which opens file “foo”, calls f , and then
closes the file. To check whether the file ”foo” is used correctly as a read-only
file, it suffices to transform the program above to a HORS that generates a tree
expressing how the file is accessed by the program, and then use higher-order
model checking to check that the tree represents valid usage of the file. Actually,
the example of HORS given in Figure 1 is such a HORS. The tree constructors
br, open, close, read, and end represent a non-deterministic branch, an open
operation, a close operation, a read operation, and termination respectively. The
rules for F and S correspond to the definitions of functions f and main respec-
tively, obtained essentially by the CPS (continuation-passing-style) transforma-
tion [6]. The argument k of F corresponds to a continuation parameter, which
describes how the file is accessed after a call to f returns. To check that the file
”foo” is used as a read-only file, it suffices to check that every (finite) path of
the tree generated by the HORS above is labeled by open · read∗ · close · end
(with br ignored). The automaton in Figure 1 describes that property.

The main advantages of using higher-order model checking (instead of con-
ventional model checking) are: (i) HORS is much more expressive than finite
state or pushdown systems; we can model complex control structures, such as
higher-order recursion and exceptions accurately, and (ii) HORS is a high-level
description close to a source program; as demonstrated by the example above,
program verification can be easily reduced to higher-order model checking by
using conventional program transformation techniques for functional programs,
such as CPS transformation and λ-lifting.

3 Algorithm and Implementation

HorSat2 uses a saturation-based algorithm [4]. We briefly review the idea of
the algorithm, and describe the new optimizations applied in HorSat2. The
following description is admittedly cryptic; those who wish to understand the
technical background may wish to consult [4]. The higher-order model check-
ing problem can actually be reduced to the reachability problem of checking
whether the start symbol S may be reduced to an element of the set Error of
error terms (i.e., terms that represent invalid trees). Thus, it suffices to check
whether S ∈ Pre∗(Error) holds, where Pre(U) = {t | t −→ t′ ∈ U} and
Pre∗(U) = ∪nPren(U). The set Pre∗(Error) is infinite in general, but can
be finitely described by using types; one can design a type system such that
TermsΓ = {t | Γ ` t : q0} coincides with Pre∗(Error) for some type en-
vironment Γ . Furthermore, such Γ can be effectively computed as the least



fixedpoint (i.e,
⋃
n Fn(∅)) of a function F on type environments, which satisfies:

Pre(TermsΓ ) ⊆ TermsF(Γ ) ⊆ Pre∗(Error)) [4].
Although the set

⋃
n Fn(∅) (which describes Pre∗(Error)) is finite, it is often

too huge to compute. Thus, HorSat [4] applies an optimization based on flow
analysis. Let Reach be any overapproximation of the set of reachable terms {t |
S −→∗ t}. Then, as S ∈ Pre∗(Error) if and only if S ∈ Pre∗(Error) ∩Reach,
one can relax the condition on F to: Pre(TermsΓ ) ∩Reach ⊆ TermsF(Γ ) ⊆
Pre∗(Error). The least fixedpoint Γω of F then satisfies Pre∗(Error)∩Reach ⊆
TermsΓω ⊆ Pre∗(Error); hence S ∈ Pre∗(Error) if and only if S ∈ TermsΓω .
The design of such a function F is not unique. In HorSat [4], the following
function is used.

F(Γ ) = Γ ∪ {F : σ1 → · · · → σk → q |
F x1 · · · xk → t ∈ G, ti ∈ Flow(xi), σi ∈ TypesΓ (ti),
Γ, x1 : σ1, . . . , xk : σk ` t : q}

where Flow(xi) = {si | C[F s1 · · · sk] ∈ Reach for some context C} (i.e., it
is an overapproximation of the set of terms to which xi may be bound), and
TypesΓ (ti) is an overapproximation of the set of types of ti under Γ . The set
Flow(xi) has been computed by using 0CFA [14].

The major changes in HorSat2 are as follows.

1. 0CFA has been replaced by a more accurate flow analysis, which is the same
as the flow analysis used in Preface [13], except that we do not use type-based
abstraction at all.

2. HorSat2 takes into account co-relations between the arguments of each
non-terminal. In HorSat, if both F t1,1 t1,2 and F t1,1 t1,2 belong to Reach
and σi,j ∈ TypesΓ (ti,j), then all the types of the form σ1,i → σ1,j → q
(for i, j ∈ {1, 2}) were considered as candidates of the types of F (in other
words, F t1,1 t2,2 and F t1,2 t2,1 are also considered to belong to Reach),
resulting in a blow-up of the number of types. In HorSat2, only types of
the form σ1,i → σ1,i → q for i ∈ {1, 2} are considered. To achieve this effect,
the conditions ti ∈ Flow(xi) ∧ σi ∈ TypesΓ (ti) above have been replaced
by F t1 · · · tk ∈ Reach ∧ (σ1, . . . , σk) ∈ TypesΓ (t1, . . . , tk) (and Reach is
computed by a more precise analysis, as mentioned above).

3. For each F t1 · · · tk ∈ Reach, the set TypesΓ (t1, . . . , tk) of types of (t1, . . . , tk)
above is incrementally updated, as Γ increases.

4. Instead of adding F : σ1 → · · · → σk → q for every (σ1, . . . , σk) such that
Γ, x1 : σ1, . . . , xk : σk ` t : q, we pick, for each F t1 · · · tk ∈ Reach, just one
tuple (σ1, . . . , σk) ∈ TypesΓ (t1, . . . , tk) such that Γ, x1 :σ1, . . . , xk :σk ` t : q,
and add F : σ1 → · · · → σk → q to F(Γ ). To ensure the soundness of this
optimization, HorSat2 computes the exact set of types of (t1, . . . , tk) for
TypesΓ (t1, . . . , tk); in HorSat, TypesΓ (t) was an overapproximation of the
set of types in t.

The second change above may blow up the size of TypesΓ (t1, . . . , tk) when the
arity k is large; thus HorSat2 also provides an option to ignore the co-relations
between arguments.



We have also applied a number of optimizations such as the replacement of
list data structures with arrays and hashes in various places. The overall effect of
those changes and optimizations was significant, as reported in the next section.

4 Experiments

We have compared HorSat2 with other recent model checkers, using the bench-
marks of HorSatZDD [15]. The experiments were carried out on a machine with
CPU Intel Xeon E5620 @ 2.40GHz and 4GB memory. For the space restriction,
we show only abbreviated results. The following table shows the result for the
Gk,m and tn benchmarks [13].1

HorSat2 HorSat Preface HorSatZDD
G2,m 200,000 250 10,000 20,000

Gk,10000 7 - 2 4
tn 7,000 2,700 130 4,000

The table shows the maximum parameter that can be handled by each model
checker within one minute. (For example, 200, 000 in the row G2,m means that
G2,200000 could be processed in less than one minute.)

The table below shows the total time for checking all the inputs (30 in total)
in the second benchmark set (the upper-half of Table 1 in [15]).

HorSat2 HorSat Preface HorSatZDD
4.7 sec. 101.4 sec. 40.2 sec. 1318.6 sec.

Finally, we show the result for a new benchmark. The first four inputs have
been borrowed from the experiments on fair termination verification of higher-
order programs [10], and the latter two from verification of higher-order multi-
threaded programs [17]. Times are in seconds, and the time-out was set to 300
seconds. The column “HorSat2 -m” shows the result for the optional mode to
disable the optimization to keep track of the co-relations between arguments.
For the first four inputs, the optional mode of HorSat2 is most effective; this
is because the arities of non-terminal symbols are large in these inputs. For the
latter two inputs, only HorSat2 could terminate; this is because the size of the
automaton is huge, and the optimizations in HorSat2 effectively suppressed
the blow-up of the size of the type environment Γ .

1 Gk,m is an order-k HORS of size O(m), which generates a finite tree of size expk(m),
where exp0(x) = x and expk+1(x) = 2expk(x). Thus, when viewed as a state tran-
sition system, the number of states is expk(m).



HorSat2 HorSat2 -m HorSat Preface HorSatZDD
intro 3.9 0.1 1.1 time-out 8.5

intro-e 1.7 0.3 6.3 261.7 10.6
file 15.5 1.1 10.1 time-out 19.7

file-e 19.7 1.0 22.4 time-out 32.7
preach 21.9 time-out time-out time-out time-out

preach-e 17.0 time-out time-out time-out time-out

References

1. Aehlig, K.: A finite semantics of simply-typed lambda terms for infinite runs of
automata. Logical Methods in Computer Science 3(3) (2007)

2. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and static driver verifier:
Technology transfer of formal methods inside microsoft. In: Integrated Formal
Methods 2004. LNCS, vol. 2999, pp. 1–20. Springer (2004)

3. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast. International Journal on Software Tools for Technology Transfer 9(5-6),
505–525 (2007)

4. Broadbent, C.H., Kobayashi, N.: Saturation-based model checking of higher-order
recursion schemes. In: Proceedings of CSL 2013. LIPIcs, vol. 23, pp. 129–148 (2013)

5. Kobayashi, N.: A practical linear time algorithm for trivial automata model check-
ing of higher-order recursion schemes. In: Proceedings of FoSSaCS 2011. LNCS,
vol. 6604, pp. 260–274. Springer (2011)

6. Kobayashi, N.: Model checking higher-order programs. Journal of the ACM 60(3)
(2013)

7. Kobayashi, N., Ong, C.H.L.: A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In: Proceedings of LICS 2009.
pp. 179–188. IEEE Computer Society Press (2009)

8. Kobayashi, N., Ong, C.H.L.: Complexity of model checking recursion schemes for
fragments of the modal mu-calculus. Logical Methods in Computer Science 7(4)
(2011)

9. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Proc. of PLDI. pp. 222–233. ACM Press (2011)

10. Murase, A., Terauchi, T., Kobayashi, N., Sato, R., Unno, H.: Temporal verification
of higher-order functional programs. In: Proceedings of POPL 2016 (2016), to
appear

11. Ong, C.H.L.: On model-checking trees generated by higher-order recursion
schemes. In: LICS 2006. pp. 81–90. IEEE Computer Society Press (2006)

12. Ong, C.H.L., Ramsay, S.: Verifying higher-order programs with pattern-matching
algebraic data types. In: Proc. of POPL. pp. 587–598. ACM Press (2011)

13. Ramsay, S., Neatherway, R., Ong, C.H.L.: An abstraction refinement approach to
higher-order model checking. In: Proceedings of POPL 2014 (2014)

14. Shivers, O.: Control-Flow Analysis of Higher-Order Languages. Ph.D. thesis,
Carnegie-Mellon University (May 1991)

15. Terao, T., Kobayashi, N.: A zdd-based efficient higher-order model checking algo-
rithm. In: Proceedings of APLAS 2014. Lecture Notes in Computer Science, vol.
8858, pp. 354–371. Springer (2014)



16. Tobita, Y., Tsukada, T., Kobayashi, N.: Exact flow analysis by higher-order model
checking. In: Proceedings of FLOPS 2012. LNCS, vol. 7294, pp. 275–289. Springer
(2012)

17. Yasukata, K., Kobayashi, N., Matsuda, K.: Pairwise reachability analysis for higher
order concurrent programs by higher-order model checking. In: Proceedings of
CONCUR 2014. Lecture Notes in Computer Science, vol. 8704, pp. 312–326.
Springer (2014)


