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ABSTRACT
We give an overview of the higher-order model checking project

at the University of Tokyo. We provide references to the results

obtained in the past 10 years, and explain what the project is now

heading for.
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We summarize the higher-order model checking project at the

University of Tokyo.
1 Higher-order model checking refers to two

kinds of higher-order extensions of ordinary finite-state model

checking [13]. One is HORS model checking, which is obtained by

extending models (i.e., systems to be verified) to higher-order ones

called higher-order recursion schemes (HORS) [15, 33]. It aims to

check whether the (possibly infinite) tree generated by a given

HORS satisfies a given tree property. The other higher-order model

checking problem is HFL model checking [41], which is obtained

by replacing the logic for specifying properties with higher-order

modal fixpoint logic (HFL). HFL is a higher-order extension of the

modal µ-calculus, and HFL model checking aims to check whether a

given finite state system satisfies the property described by a given

HFL formula.

Our project started about 10 years ago, following two key papers

presented at POPL and PPDP in 2009 [16, 17] (see also [19], a revised

version of the two papers). In the POPL paper [17], we have shown

that program verification problems for higher-order functional

1
In this abstract, we focus on the results of our group in Tokyo. A number of other

research groups have contributed to the field of higher-order model checking, not to

mention the groups in Bordeaux, Oxford, Paris, and Warsaw.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PPDP ’19, October 7–9, 2019, Porto, Portugal
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7249-7/19/10. . . $15.00

https://doi.org/10.1145/3354166.3354167

programs can naturally be reduced to HORS model checking. In the

PPDP paper [16], we have proposed the first practical HORS model

checking algorithm, and constructed a HORS model checker TRecS,

which runs reasonably fast for many inputs despite the k-EXPTIME

completeness of the HORS model checking problem (where k is

the highest type-theoretic order of the functions used in HORS). In

prior to our work, Ong [33] has proved the decidability of HORS

model checking in 2006. The algorithm described in his proof could

not be used in practice, as it always suffers from the k-EXPTIME

bottleneck. The combination of the results above [16, 17] suggested

that a fully automated verification tool for functional programs

can be constructed on top a HORS model checker, which led us to

launch the project.

The project consisted of both theoretical and practical studies.

On the practical side, we have constructed a fully automated verifi-

cation tool MoCHi for a subset of OCaml [4, 25, 27, 28, 30, 36, 42].

MoCHi is based on a combination of the two results above with

a technique of predicate abstraction inspired by earlier studies on

software model checkers for C language [6, 7]. The development of

MoCHi called for more efficient HORS model checking algorithms,

which led us to develop various HORS model checking algorithms

and tools [12, 18, 37, 39, 40]. Our state-of-the-art model checker

HorSat2 [21] scales to HORS consisting of thousands of rewriting

rules (though, of course, depending on the kinds of inputs). We

have also studied an application of HORS model checking to data

compression, where HORS is used as a compressed from of tree

data [23, 38]. By using HORS model checking algorithms (and their

extensions), one can manipulate the compressed data without de-

compression; this can be considered a higher-order extension of

grammar-based data compression [35].

On the theoretical side, we have studied type-based character-

izations of HORS model checking [17, 24]. All the HORS model

checkers developed so far [10, 18, 29, 32, 34, 37] are based on the

type-based characterizations, with the only exception of [11], which

is based on collapsible pushdown automata. As a foundation for

HORS model checking, we have also studied properties of higher-

order grammars, such as pumping lemmas [1, 2, 20]. One of our

current theoretical interests on HORS model checking is in finding

theoretical justifications for why HORS model checking works in

practice, despite the extremely high worst-case complexity. To this

end, we have launched a sub-project to study the average-case com-

plexity [9] of HORS model checking. As a first step in the project,

we have studied the average-case length of β-reduction sequences

of simply-typed λ-terms [3].

Since 2017, we have gradually been shifting our focus to the other

notion of higher-order model checking: HFL model checking [5, 41].

HFL model checking has been introduced by Viswanathan and
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Viswanathan [41] in 2004, but somehow it has been drawing less at-

tentions than HORS model checking. We have shown that there are

mutual translations between HORS and HFL model checking [22],

and that various program verification problems can be reduced to

HFL model checking, even more naturally than to HORS model

checking [26, 43]. We are now working to rebuild the whole verifi-

cation infrastructure of MoCHi based on HFL model checking, as (i)

it provides a more uniform approach to verification of infinite-data

programs, and (ii) it naturally extends other popular approaches

to automated program verification, such as CHC-based program

verification [8, 14]. The first result in such direction is found in [31],

albeit for first-order programs.
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