
10 Years of the Higher-Order Model Checking Project (Extended
Abstract)
Naoki Kobayashi

koba@is.s.u-tokyo.ac.jp

The University of Tokyo

Tokyo, Japan

ABSTRACT
We give an overview of the higher-order model checking project

at the University of Tokyo. We provide references to the results

obtained in the past 10 years, and explain what the project is now

heading for.

CCS CONCEPTS
• Theory of computation→ Logic and verification.

KEYWORDS
higher-order model checking, program verification

ACM Reference Format:
Naoki Kobayashi. 2019. 10 Years of the Higher-Order Model Checking

Project (Extended Abstract). In Principles and Practice of Programming Lan-
guages 2019 (PPDP ’19), October 7–9, 2019, Porto, Portugal. ACM, New York,

NY, USA, 2 pages. https://doi.org/10.1145/3354166.3354167

We summarize the higher-order model checking project at the

University of Tokyo.
1 Higher-order model checking refers to two

kinds of higher-order extensions of ordinary finite-state model

checking [13]. One is HORS model checking, which is obtained by

extending models (i.e., systems to be verified) to higher-order ones

called higher-order recursion schemes (HORS) [15, 33]. It aims to

check whether the (possibly infinite) tree generated by a given

HORS satisfies a given tree property. The other higher-order model

checking problem is HFL model checking [41], which is obtained

by replacing the logic for specifying properties with higher-order

modal fixpoint logic (HFL). HFL is a higher-order extension of the

modal µ-calculus, and HFL model checking aims to check whether a

given finite state system satisfies the property described by a given

HFL formula.

Our project started about 10 years ago, following two key papers

presented at POPL and PPDP in 2009 [16, 17] (see also [19], a revised

version of the two papers). In the POPL paper [17], we have shown

that program verification problems for higher-order functional

1
In this abstract, we focus on the results of our group in Tokyo. A number of other

research groups have contributed to the field of higher-order model checking, not to

mention the groups in Bordeaux, Oxford, Paris, and Warsaw.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PPDP ’19, October 7–9, 2019, Porto, Portugal
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7249-7/19/10. . . $15.00

https://doi.org/10.1145/3354166.3354167

programs can naturally be reduced to HORS model checking. In the

PPDP paper [16], we have proposed the first practical HORS model

checking algorithm, and constructed a HORS model checker TRecS,

which runs reasonably fast for many inputs despite the k-EXPTIME

completeness of the HORS model checking problem (where k is

the highest type-theoretic order of the functions used in HORS). In

prior to our work, Ong [33] has proved the decidability of HORS

model checking in 2006. The algorithm described in his proof could

not be used in practice, as it always suffers from the k-EXPTIME

bottleneck. The combination of the results above [16, 17] suggested

that a fully automated verification tool for functional programs

can be constructed on top a HORS model checker, which led us to

launch the project.

The project consisted of both theoretical and practical studies.

On the practical side, we have constructed a fully automated verifi-

cation tool MoCHi for a subset of OCaml [4, 25, 27, 28, 30, 36, 42].

MoCHi is based on a combination of the two results above with

a technique of predicate abstraction inspired by earlier studies on

software model checkers for C language [6, 7]. The development of

MoCHi called for more efficient HORS model checking algorithms,

which led us to develop various HORS model checking algorithms

and tools [12, 18, 37, 39, 40]. Our state-of-the-art model checker

HorSat2 [21] scales to HORS consisting of thousands of rewriting

rules (though, of course, depending on the kinds of inputs). We

have also studied an application of HORS model checking to data

compression, where HORS is used as a compressed from of tree

data [23, 38]. By using HORS model checking algorithms (and their

extensions), one can manipulate the compressed data without de-

compression; this can be considered a higher-order extension of

grammar-based data compression [35].

On the theoretical side, we have studied type-based character-

izations of HORS model checking [17, 24]. All the HORS model

checkers developed so far [10, 18, 29, 32, 34, 37] are based on the

type-based characterizations, with the only exception of [11], which

is based on collapsible pushdown automata. As a foundation for

HORS model checking, we have also studied properties of higher-

order grammars, such as pumping lemmas [1, 2, 20]. One of our

current theoretical interests on HORS model checking is in finding

theoretical justifications for why HORS model checking works in

practice, despite the extremely high worst-case complexity. To this

end, we have launched a sub-project to study the average-case com-

plexity [9] of HORS model checking. As a first step in the project,

we have studied the average-case length of β-reduction sequences

of simply-typed λ-terms [3].

Since 2017, we have gradually been shifting our focus to the other

notion of higher-order model checking: HFL model checking [5, 41].

HFL model checking has been introduced by Viswanathan and

https://doi.org/10.1145/3354166.3354167
https://doi.org/10.1145/3354166.3354167

PPDP ’19, October 7–9, 2019, Porto, Portugal N. Kobayashi

Viswanathan [41] in 2004, but somehow it has been drawing less at-

tentions than HORS model checking. We have shown that there are

mutual translations between HORS and HFL model checking [22],

and that various program verification problems can be reduced to

HFL model checking, even more naturally than to HORS model

checking [26, 43]. We are now working to rebuild the whole verifi-

cation infrastructure of MoCHi based on HFL model checking, as (i)

it provides a more uniform approach to verification of infinite-data

programs, and (ii) it naturally extends other popular approaches

to automated program verification, such as CHC-based program

verification [8, 14]. The first result in such direction is found in [31],

albeit for first-order programs.

ACKNOWLEDGMENTS
Thisworkwas supported by JSPS KAKENHIGrant Number JP23220001

and JP15H05706. The author thanks collaborators on this project,

especially, Kazuyuki Asada, Atsushi Igarashi, Luke Ong, Ryosuke

Sato, Ayumi Shinohara, Takeshi Tsukada, and Hiroshi Unno.

REFERENCES
[1] Kazuyuki Asada and Naoki Kobayashi. 2017. Pumping Lemma for Higher-order

Languages. In Proceedings of ICALP 2017 (LIPIcs), Vol. 80. 97:1–97:14.
[2] Kazuyuki Asada and Naoki Kobayashi. 2018. Lambda-Definable Order-3 Tree

Functions areWell-Quasi-Ordered. In Proceedings of FSTTCS 2018 (LIPIcs), Vol. 122.
14:1–14:15.

[3] Kazuyuki Asada, Naoki Kobayashi, Ryoma Sin’ya, and Takeshi Tsukada. 2019.

Almost Every Simply Typed Lambda-Term Has a Long Beta-Reduction Sequence.

Logical Methods in Computer Science Volume 15, Issue 1 (Feb. 2019).

[4] Kazuyuki Asada, Ryosuke Sato, and Naoki Kobayashi. 2017. Verifying relational

properties of functional programs by first-order refinement. Sci. Comput. Program.
137 (2017), 2–62.

[5] Roland Axelsson, Martin Lange, and Rafal Somla. 2007. The Complexity of Model

Checking Higher-Order Fixpoint Logic. Logical Methods in Computer Science 3, 2
(2007).

[6] Thomas Ball and Sriram K. Rajamani. 2002. The SLAMProject: Debugging System

Software via Static Analysis. In Proceedings of POPL. ACM, 1–3.

[7] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. 2007.

The software model checker Blast. International Journal on Software Tools for
Technology Transfer 9, 5-6 (2007), 505–525.

[8] Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey Rybalchenko.

2015. Horn Clause Solvers for Program Verification. In Fields of Logic and Com-
putation II - Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday
(Lecture Notes in Computer Science), Vol. 9300. Springer, 24–51.

[9] Andrej Bogdanov and Luca Trevisan. 2006. Average-case Complexity. Found.
Trends Theor. Comput. Sci. 2, 1 (Oct. 2006), 1–106.

[10] Christopher H. Broadbent, Arnaud Carayol, Matthew Hague, and Olivier Serre.

2012. A Saturation Method for Collapsible Pushdown Systems. In Proceedings of
ICALP 2012 (LNCS), Vol. 7392. Springer, 165–176.

[11] Christopher H. Broadbent, Arnaud Carayol, Matthew Hague, and Olivier Serre.

2013. C-SHORe: a collapsible approach to higher-order verification. In Proceedings
of ICFP’13. ACM, 13–24.

[12] Christopher H. Broadbent and Naoki Kobayashi. 2013. Saturation-Based Model

Checking of Higher-Order Recursion Schemes. In Proceedings of CSL 2013 (LIPIcs),
Vol. 23. 129–148.

[13] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. 1999. Model Checking.
The MIT Press.

[14] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Ry-

balchenko. 2012. Synthesizing software verifiers from proof rules. In Proceedings
of PLDI ’12. 405–416.

[15] Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. 2002. Higher-Order

Pushdown Trees Are Easy. In FoSSaCS 2002 (LNCS), Vol. 2303. Springer, 205–222.
[16] Naoki Kobayashi. 2009. Model-Checking Higher-Order Functions. In Proceedings

of PPDP 2009. ACM, 25–36.

[17] Naoki Kobayashi. 2009. Types and Higher-Order Recursion Schemes for Verifica-

tion of Higher-Order Programs. In Proceedings of POPL 2009. ACM, 416–428.

[18] Naoki Kobayashi. 2011. A Practical Linear Time Algorithm for Trivial Automata

Model Checking of Higher-Order Recursion Schemes. In Proceedings of FoSSaCS
2011 (LNCS), Vol. 6604. Springer, 260–274.

[19] Naoki Kobayashi. 2013. Model Checking Higher-Order Programs. J. ACM 60, 3

(2013).

[20] Naoki Kobayashi. 2013. Pumping by Typing. In 28th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013.
IEEE Computer Society, 398–407.

[21] Naoki Kobayashi. 2018. HorSat2: A Saturation-Based Higher-Order Model

Checker for HORS. https://github.com/hopv/horsat2.

[22] Naoki Kobayashi, Étienne Lozes, and Florian Bruse. 2017. On the relationship

between higher-order recursion schemes and higher-order fixpoint logic. In

Proceedings of POPL 2017. 246–259.
[23] Naoki Kobayashi, Kazutaka Matsuda, Ayumi Shinohara, and Kazuya Yaguchi.

2013. Functional Programs as Compressed Data. Higher-Order and Symbolic
Computation (2013).

[24] Naoki Kobayashi and C.-H. Luke Ong. 2009. A type system equivalent to the

modal mu-calculus model checking of higher-order recursion schemes. In Pro-
ceedings of LICS 2009. IEEE Computer Society Press, 179–188.

[25] Naoki Kobayashi, Ryosuke Sato, and Hiroshi Unno. 2011. Predicate Abstraction

and CEGAR for Higher-Order Model Checking. ACM, 222–233.

[26] Naoki Kobayashi, Takeshi Tsukada, and Keiichi Watanabe. 2018. Higher-Order

Program Verification via HFL Model Checking. In Proceedings of ESOP 2018
(Lecture Notes in Computer Science), Vol. 10801. Springer, 711–738.

[27] Takuya Kuwahara, Ryosuke Sato, Hiroshi Unno, and Naoki Kobayashi. 2015.

Predicate Abstraction and CEGAR for Disproving Termination of Higher-Order

Functional Programs. In Proceedings of CAV 2015 (Lecture Notes in Computer
Science), Vol. 9207. Springer, 287–303.

[28] Takuya Kuwahara, Tachio Terauchi, Hiroshi Unno, and Naoki Kobayashi. 2014.

Automatic Termination Verification for Higher-Order Functional Programs. In

Proceedings of ESOP 2014 (Lecture Notes in Computer Science), Vol. 8410. Springer,
392–411.

[29] M. M. Lester, R. P. Neatherway, C.-H. Luke Ong, and S. J. Ramsay. 2011. Model

checking liveness properties of higher-order functional programs. In Proceedings
of ML Workshop 2011.

[30] Akihiro Murase, Tachio Terauchi, Naoki Kobayashi, Ryosuke Sato, and Hiroshi

Unno. 2016. Temporal Verification of Higher-Order Functional Programs. In

Proceedings of POPL 2016. 57–68.
[31] Atsushi Igarashi Naoki Kobayashi, Takeshi Nishikawa and Hiroshi Unno. 2019.

Temporal Verification of Programs via First-Order Fixpoint Logic. In Proceedings
of SAS 2019.

[32] Robin P. Neatherway, Steven James Ramsay, and C.-H. Luke Ong. 2012. A

traversal-based algorithm for higher-order model checking. In Proceedings of
ICFP ’12. 353–364.

[33] C.-H. Luke Ong. 2006. On Model-Checking Trees Generated by Higher-Order

Recursion Schemes. In LICS 2006. IEEE Computer Society Press, 81–90.

[34] Steven Ramsay, Robin Neatherway, and C.-H. Luke Ong. 2014. An Abstraction

Refinement Approach to Higher-Order Model Checking. In Proceedings of POPL
2014. ACM, 61–72.

[35] Wojciech Rytter. 2004. Grammar Compression, LZ-Encodings, and String Algo-

rithms with Implicit Input. In ICALP’04 (LNCS), Vol. 3142. Springer, 15–27.
[36] Ryosuke Sato, Hiroshi Unno, and Naoki Kobayashi. 2013. Towards a scalable

software model checker for higher-order programs. In Proceedings of PEPM 2013.
ACM, 53–62.

[37] Ryota Suzuki, Koichi Fujima, Naoki Kobayashi, and Takeshi Tsukada. 2017. Streett

Automata Model Checking of Higher-Order Recursion Schemes. In Proceedings
of FSCD 2017 (LIPIcs), Vol. 84. 32:1–32:18.

[38] Kotaro Takeda, Naoki Kobayashi, Kazuya Yaguchi, and Ayumi Shinohara. 2016.

Compact bit encoding schemes for simply-typed lambda-terms. In Proceedings of
ICFP 2016. 146–157.

[39] Taku Terao and Naoki Kobayashi. 2014. A ZDD-Based Efficient Higher-Order

Model Checking Algorithm. In Proceedings of APLAS 2014 (Lecture Notes in
Computer Science), Vol. 8858. Springer, 354–371.

[40] Taku Terao, Takeshi Tsukada, and Naoki Kobayashi. 2016. Higher-Order Model

Checking in Direct Style. In Proceedings of APLAS 2016 (Lecture Notes in Computer
Science), Vol. 10017. 295–313.

[41] M. Viswanathan and R. Viswanathan. 2004. A Higher Order Modal Fixed Point

Logic. In CONCUR (Lecture Notes in Computer Science), Vol. 3170. Springer, 512–
528.

[42] Keiichi Watanabe, Ryosuke Sato, Takeshi Tsukada, and Naoki Kobayashi. 2016.

Automatically disproving fair termination of higher-order functional programs.

In Proceedings of ICFP 2016. ACM, 243–255.

[43] KeiichiWatanabe, Takeshi Tsukada, Hiroki Oshikawa, and Naoki Kobayashi. 2019.

Reduction from branching-time property verification of higher-order programs

to HFL validity checking. In Proceedings of PEPM 2019. 22–34.

https://github.com/hopv/horsat2

	Abstract
	Acknowledgments
	References

