
An Overview of
the HFL Model Checking Project

(at UTokyo)

Naoki Kobayashi
The University of Tokyo

In collaboration with: Kazuyuki Asada, Florian Bruze, Adrien Champion, Grigory Fedyukobich, Aarti Guputa,
Atushi Igarashi, Etienne Lozes, Takeshi Nishikawa, Ryosuke Sato, Takeshi Tsukada, Hiroshi Unno,
and (ex-)students at UTokyo

This Talk
 An Overview of Our Project on Automated Program Verification

Based on Higher-Order Fixpoint Logic (HFL)
– HFL [Viswanathan&Viswanathan 04] as a higher-order extension

of the modal µ-calculus
– HFL(Z) (HFL with integers) as an extension of Constrained Horn Clauses

(CHC, a.k.a. CLP) with higher-order predicates and fixpoint alternation
– Natural reduction from higher-order program verification

to HFL(Z) model checking [K+ ESOP18][Watanabe+ PEPM19]
• More uniform approach than our previous approach based on HORS model checking

[K, POPL09][K+ POPL10][K+ PLDI11][K, JACM13]...

– Automated techniques for HFL(Z) model checking
based on CHC solving [K+ SAS19][Hosoi+ APLAS19][K+ TACAS19][Katsura+ APLAS20] ...

– Machine learning techniques for CHC solving [Champion+ TACAS18] ...

Outline
 Introduction to HFL and HFL(Z)

– What is higher-order fixpoint logic?

– HFL model checking as a higher-order extension of finite state model
checking

– HFL(Z) as an extension of Constrained Horn Clauses (CHC)

Reductions from program verification to HFL(Z) model checking

Solving HFL(Z) model checking using types, CHC solving, and
higher-order model checking

Machine learning techniques for CHC solving

Outline
 Introduction to HFL and HFL(Z)

– What is higher-order fixpoint logic?

– HFL model checking as a higher-order extension of finite state model
checking

– HFL(Z) as an extension of Constrained Horn Clauses (CHC)

Reductions from program verification to HFL(Z) model checking

Solving HFL(Z) model checking using types, CHC solving, and
higher-order model checking

Machine learning techniques for CHC solving

Higher-Order Modal Fixpoint Logic (HFL)
[Viswanathan&Viswanathan 04]

Higher-order extension of the modal µ-calculus
ϕ ::= true

ϕ1 ∧ ϕ2

ϕ1 ∨ ϕ2

[a]ϕ ϕ must hold after a
<a>ϕ ϕ may hold after a
X variable
µX.ϕ least fixpoint (the least X such that X=ϕ)
νX.ϕ greatest fixpoint (the greatest X such that X=ϕ)

e.g. µX. true ∨ <a>X
“b” may occur after a finite number of “a” transitions

(i.e., there exists a transition sequence in which “b” occurs after a finite
number of “a” transitions)

Higher-Order Modal Fixpoint Logic (HFL)
[Viswanathan&Viswanathan 04]

Higher-order extension of the modal µ-calculus
ϕ ::= true

ϕ1 ∧ ϕ2
ϕ1 ∨ ϕ2
[a]ϕ ϕ must hold after a
<a>ϕ ϕ may hold after a
X predicate variable
µXκ.ϕ least fixpoint (the least X such that X=ϕ)
νXκ.ϕ greatest fixpoint (the greatest X such that X=ϕ)
λXκ.ϕ (higher-order) predicate
ϕ1 ϕ2 application

κ ::=  the type of propositions
κ1→κ2

Selected Typing Rules for HFL

Γ, X:κ ┝ X:κ

Γ, X:κ1 ┝ ϕ:κ2
−−−−−−−−−−−−−−−−−−

Γ┝ λX.ϕ: κ1 → κ2

Γ┝ ϕ: κ1 → κ2 Γ┝ ψ: κ1
−−−−−−−−−−−−−−−−−−−−−−−−

Γ┝ ϕ ψ: κ2

Γ, X:κ ┝ ϕ:κ
−−−−−−−−−−−−−−−−−−

Γ┝ µX.ϕ: κ

Γ ┝ true:  Γ ┝ ϕ: 
−−−−−−−−−−−−−−−−−−

Γ┝ [a]ϕ: 
Γ┝ ϕ:  Γ┝ ψ: 

−−−−−−−−−−−−−−−−−−−−−−−−
Γ┝ ϕ∧ψ: 

Example
(νF→.λX. X ∧ [a](F ([b]X)) <c>

= (λX. X ∧ [a](νF...) ([b]X)) <c>
= <c> ∧ [a]((νF→.λX. X ∧ [a](F ([b]X)) ([b]<c>))
= <c> ∧ [a]((λX. X ∧ [a](νF...) ([b]X)) ([b]<c>))
= <c> ∧ [a]([b]<c> ∧ [a](νF...) ([b][b]<c>))
= <c> ∧ [a][b]<c> ∧ [a]2[b]2 <c> ∧ ...

After any transitions of the form anbn, <c> holds

HFL Model Checking
[Viswanathan&Viswanathan 2004]

e.g. L |= ϕ for:
L:

Given
L: (finite-state) labeled transition system
ϕ: HFL formula,

does L satisfy ϕ?

ϕ: (νF→.λX. X ∧ [a](F ([b]X)) <c>
An alternative notation:

F <c> where
F X =ν X∧ [a](F ([b]X))

a a

cb
b

HFL Model Checking
[Viswanathan&Viswanathan 2004]

Given
L: (finite-state) labeled transition system
ϕ: HFL formula,
does L satisfy ϕ?

- k-EXPTIME complete for order-k HFL [Axelsson+ 07]
but a practical algorithm exists [Hosoi+ 19]
(order() = 0, order(κ1 →... → κn → ) = 1+max(order(κ1), ..., order(κn)))

- Polynomial time translation exists
between HFL model checking and HORS model checking [K+ POPL17]

The other kind of higher-order
model checking [Ong 06]

HFL(Z): An extension of HFL with integers
ϕ ::= true | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [a]ϕ | <a>ϕ

| X | µXκ.ϕ | νXκ.ϕ | λXτ. ϕ | ϕ1 ϕ2

| ϕ e | e1=e2

e ::= n | X | e1 + e2

κ ::= o | τ →κ
τ ::= κ | int

Example:
(µE.λx. x=0 ∨ E(x-2))n
≡ (λx. x=0 ∨(µE.λx. ...)(x-2))n
≡ n=0 ∨(µE.λx. x=0 ∨ E(x-2))(n-2)
≡ n=0 ∨ n-2=0 ∨ ...
≡ “n is an even non-negative integer”

pure HFL

(νX.λx. P(x) ∧ X(x+1))0
≡ (λx. P(x) ∧ (νX.λx. ...)(x+1))0
≡ P(0) ∧ (νX.λx. P(x) ∧ X(x+1)) 1
≡ P(0) ∧ P(1) ∧ ...
≡ ∀x≥0. P(x)

HFL(Z) Model/Validity Checking

HFL(Z) Validity Checking:
Given
ϕ: a closed HFL(Z) formula without modalities ([a], <a>),

is ϕ valid?
(or, does the trivial model satisfy ϕ ?)

HFL(Z) Model Checking:
Given
L: (finite-state) labeled transition system
ϕ: a closed HFL(Z) formula,

does L satisfy ϕ?

Outline
 Introduction to HFL and HFL(Z)

– What is higher-order fixpoint logic?

– HFL model checking as a higher-order extension of finite state model
checking

– HFL(Z) as an extension of Constrained Horn Clauses (CHC)

Reductions from program verification to HFL(Z) model checking

Solving HFL(Z) model checking using types, CHC solving, and
higher-order model checking

Machine learning techniques for CHC solving

CHC satisfiability
as (ν-only) HFL(Z) validity checking

Is
P(x) ⇐ ϕ(x)
false ⇐ P(e)

satisfiable?

Is
false ⇐ (µP.λx.ϕ(x))(e)

valid?

Is
(ν�P.λx.�ϕ(x))(e)

valid?
(�ϕ(x): de Morgan dual of ϕ(x))

the least P such
that P(x) ⇐ ϕ(x)

Example
Fact(n, r) ⇐ n=0, r=1
Fact(n, r) ⇐ n≠0, Fact(n-1, s), r=s×n

r≥n ⇐ Fact(n, r)

r≥n ⇐
(µFact.λ(n,r). (n=0∧r=1)

∨ ∃s. (n≠0 ∧ r=s×n ∧ Fact(n-1,s)))(n, r)

r≥n∨(νFact.λ(n,r). (n≠0∨r≠1)
∧ ∀s. (n=0 ∨ r ≠ s×n ∨ Fact(n-1,s)))(n, r)

cf.
let rec fact(n) =

if n=0 then r=1 else fact(n-1)×n
let main n = assert(fact(n)≥n)

CHC satisfiability
as (ν-only) HFL(Z) validity checking

Is
P(x) ⇐ ϕ(x)
false ⇐ P(e)

satisfiable?

Is
false ⇐ (µP.λx.ϕ(x))(e)

valid?

Is
(ν�P.λx.�ϕ(x))(e)

valid?
(�ϕ(x): de Morgan dual of ϕ(x))

the least P such
that P(x) ⇐ ϕ(x)?

Example
Fact(n, r) ⇐ n=0, r=1
Fact(n, r) ⇐ n≠0, Fact(n-1, s), r=s×n

r≥n ⇐ Fact(n, r)

r≥n ⇐
(µFact.λ(n,r). (n=0∧r=1)

∨ ∃s. (n≠0 ∧ r=s×n ∧ Fact(n-1,s)))(n, r)

r≥n∨(νFact.λ(n,r). (n≠0∨r≠1)
∧ ∀s. (n=0 ∨ r ≠ s×n ∨ Fact(n-1,s)))(n, r)

HFL(Z) = CHC
+ higher-order predicates
+ fixpoint alternation

HoCHC
[Burn+18]

Outline
 Introduction to HFL and HFL(Z)

– What is higher-order fixpoint logic?

– HFL model checking as a higher-order extension of finite state model
checking

– HFL(Z) as an extension of Constrained Horn Clauses (CHC)

Reductions from program verification to HFL(Z) model checking

Solving HFL(Z) model checking using types, CHC solving, and
higher-order model checking

Machine learning techniques for CHC solving

Models Spec
HO program
verification HO programs safety,

termination, ...

Finite state
model checking finite state systems

modal
µ-calculus
formula

HFL
model checking

[Viswanathan&
Viswanathan 04]

finite state systems HFL
formula

Higher-Order Program Verification
vs HFL Model Checking

??
??

e.g.
F <c> where
F X =ν X∧ [a](F ([b]X))

“c is enabled after
any transitions of the
form anbn”

Models Spec
HO program
verification

HO programs safety,
termination, ...

Finite state
model checking finite state systems

modal
µ-calculus
formula

HFL
model checking

[Viswanathan&
Viswanathan 04]

finite state systems HFL
formula

Higher-Order Program Verification
vs HFL Model Checking

“The program’s
behavior is correct”

From Program Verification
to HFL Model Checking: Example

let y = open “foo”
in

read(y); close(y)

Is the file “foo”
accessed according

to read* close?

HFL formula that says
“the behavior of the program
is correct”
<read><close><end>true

LTS:

s0 s1
close

read end

From Program Verification
to HFL Model Checking: Example

let y = open “foo”
in

read(y); close(y)

Is the file “foo”
accessed according

to read* close?

HFL formula that says
“the behavior of the program
is correct”
<read><close><end>true

Does LTS:

satisfy the formula S?
s0 s1

close
read end

From Program Verification
to HFL Model Checking: Example

let y = open “foo”
in

if * then
(read(y); close(y))

else close(y)

Is the file “foo”
accessed according

to read* close?

HFL formula that says
“the behavior of the program
is correct”
<read><close><end>true
∧
<close><end>true

Does LTS:

satisfy the formula S?

s0 s1
close

read end

From Program Verification
to HFL Model Checking: Example

let f x =
if * then close(x)
else (read(x); f x)
in
let y = open “foo”
in

f (y)
Is the file “foo”

accessed according
to read* close?

Does LTS:

satisfy the formula S?

s0 s1
close

read end

HFL formula that says
“the behavior of the program
is correct”

From Program Verification
to HFL Model Checking: Example

let f x k =
if * then close x k
else read x (f x k)
in
let y = open “foo”
in

f y ()

Is the file “foo”
accessed according

to read* close?

HFL formula that says
“the behavior of the program
is correct”
F x k =ν <close>k

∧ (<read>(F x k))
S =ν F true (<end>true)

Does LTS:

satisfy the formula S?

s0 s1
close

read end

From Program Verification
to HFL(Z) Model Checking

let f n x k =
if n≤0 then close x k
else
read x (f (n-1) x k)

in
let y = open “foo”
in f m y ()

Is the file “foo”
accessed according

to read* close?

F n x k =µ
(n≤0 ⇒<close>k)

∧ (¬n≤0 ⇒
<read>(F (n-1) x k))

S =µ F m true (<end>true)

Does LTS:

satisfy the formula S?

s0 s1
close

read end

From Program Verification
to HFL(Z) Model Checking

let f n x k =
if n≤0 then close x k
else
read x (f (n-1) x k)

in
let y = open “foo”
in f m y ()

Is the file “foo”
accessed according

to read* close?

F n x k =µ
(n≤0 ⇒<close>k)

∧ (¬n≤0 ⇒
<read>(F (n-1) x k))

S =µ F m true (<end>true)

Does LTS:

satisfy the formula S?

s0 s1
close

read end

This approach provides a sound and complete logical
characterization of:
- reachability problem
- termination problem
- linear/branching-time temporal properties
for higher-order functional programs
[K+ ESOP 2018] [Watanabe+, PEPM 2019]

From Termination Verification
to HFL(Z) Model Checking

let f x y =
if x≤ y then ()
else
if * then f (x-1) y
else f x (y+1)

in f m n

(Must-)termination:
∀m, n. F m n where:
F x y =µ

(x≤y ⇒ true)∧
(x>y ⇒ F (x-1) y ∧ F x (y+1))

May-not-termination:
∃m, n. F m n where:
F x y =ν

(x≤y ∧ false)∨
(x>y ∧ (F (x-1) y ∨ F x (y+1)))

May-termination:
∃m, n. F m n where:
F x y =µ

(x≤y ∧ true)∨
(x>y ∧ (F (x-1) y ∨ F x (y+1)))

Outline
 Introduction to HFL and HFL(Z)

Reductions from program verification to HFL(Z) model checking

HFL(Z) validity checking using types, CHC solving, and higher-
order model checking
– Overview

– From HFL(Z) to νHFL(Z)

– Two approaches to νHFL(Z) validity checking

– Fold/unfold transformation

Machine learning techniques for CHC solving

HFL(Z) Validity Checking
A closed HFL(Z) formula (without modalities)

A closed νHFL(Z) formula

Remove µ, ∃ ([K+, SAS19] for first-order fragment)
(cf. Reduction from termination to safety verification)

Predicate
abstraction
[Iwayama+, 20]

Refinement types
[Burn+ 18] [Katsura+, 20]

A pure νHFL
formula (w/o integers)

Yes/No/Unknown

Higher-order
model checking
[K09]
[Hosoi+, 19]
...

Constrained Horn
Clauses (CHC)

Yes/No/Unknown

CHC Solving

precise but slow imprecise but fast

Outline
 Introduction to HFL and HFL(Z)

Reductions from program verification to HFL(Z) model checking

HFL(Z) validity checking using types, CHC solving, and higher-
order model checking
– Overview

– From HFL(Z) to νHFL(Z)

– Two approaches to νHFL(Z) validity checking

– Fold/unfold transformation

Machine learning techniques for CHC solving

HFL(Z) formula

νHFL(Z) formula
Predicate
abstraction

νHFL formula
Higher-order
model checking

CHC

Yes/No/Unknown

CHC Solving

Refinement types

Remove µ, ∃

From HFL(Z) to ν-only HFL(Z)
(higher-order case: ongoing, first-order case: [K+, SAS19],

inspired by termination verification [Fedyukovich+, CAV18])
 Approximate µ by finite unfolding

µX.F(X) ≥ Fn(⊥) (approximate)

= (νX’.λz. z>0∧ F(X’ (z-1))) n (representation by ν)

= ∀u≥n. (νX’.λz. z>0∧ F(X’ (z-1))) u (trick to help solvers)

Example:
∀i. (µX.λy. y≤0 ∨ X(y-1)) i

From HFL(Z) to ν-only HFL(Z)
(higher-order case: ongoing, first-order case: [K+, SAS19],

inspired by termination verification [Fedyukovich+, CAV18])
 Approximate µ by finite unfolding

µX.F(X) ≥ Fn(⊥) (approximate)

= (νX’.λz. z>0∧ F(X’ (z-1))) n (representation by ν)

= ∀u≥n. (νX’.λz. z>0∧ F(X’ (z-1))) u (trick to help solvers)

Example:
∀i. (µX.λy. y≤0 ∨ X(y-1)) i

= i≤0 ∨ (µX.λy. ...)(i-1)
= i≤0 ∨ i-1≤0 ∨ (µX.λy. ...)(i-2)
= i≤0 ∨ i≤1 ∨ i≤2 ∨ ...

From HFL(Z) to ν-only HFL(Z)
(higher-order case: ongoing, first-order case: [K+, SAS19],

inspired by termination verification [Fedyukovich+, CAV18])
 Approximate µ by finite unfolding

µX.F(X) ≥ Fn(⊥) (approximate)

= (νX’.λz. z>0∧ F(X’ (z-1))) n (representation by ν)

= ∀u≥n. (νX’.λz. z>0∧ F(X’ (z-1))) u (trick to help solvers)

Example:
∀i. (µX.λy. y≤0 ∨ X(y-1)) i
≥ ∀i. ∀u≥max(i+1,1). (νX’.λ(z, y). z>0 ∧ (y≤0 ∨ X’(z-1, y-1))) (u, i)
= ∀i. ∀u≥max(i+1,1). ((µX’.λ(z, y). z≤ 0 ∨ (y>0 ∧ X’(z-1, y-1))) (u, i) ⇒ false)
Valid by the satisfiability of the CHC (let X’(z,y)≡ z ≤ 0 ∨ z ≤ y) :

{X’(z,y) ⇐ z≤ 0, X’(z,y) ⇐ y>0 ∧ X’(z-1, y-1), false ⇐ u≥i+1 ∧ u≥1 ∧ X’(u,i) }

Mu2CHC [K+ SAS19]
 Reduce

– µ-calculus properties (which subsume CTL/LTL/CTL*) of while-programs
– LTL properties of first-order recursive programs
to CHC solving via first-order HFL(Z) formulas

Experimental results on CTL verification benchmark (Cook&Koskinen [13])

Outline
 Introduction to HFL and HFL(Z)

Reductions from program verification to HFL(Z) model checking

HFL(Z) validity checking using types, CHC solving, and higher-
order model checking
– Overview

– From HFL(Z) to νHFL(Z)

– From νHFL(Z) to (extended) CHC

– Fold/unfold transformation

Machine learning techniques for CHC solving

HFL(Z) formula

νHFL(Z) formula
Predicate
abstraction

νHFL formula
Higher-order
model checking

CHC

Yes/No/Unknown

CHC Solving

Refinement types

Remove µ, ∃

Refinement Types for νHFL(Z)
[Katsura+ 20] (cf. refinement types for HoCHC [Burn+18])

τ ::= [ψ] (types for propositions that hold whenever ψ holds)
| x:int → τ (dependent types for integer predicates)
| τ1 → τ2 (non-dependent types for higher-order predicates)

ψ ::= a formula of linear integer arithmetic
Examples:
λx.x≥0 : (x:int → [x>0])

the type of integer predicates that are true (at least) for positive integers

λpint→.p 1 : (x:int → [x>0]) → [true]
the type of (higher-order) predicates on integer predicates
that are true (at least) for integer predicates p such that p x holds for any x>0

Refinement Type System for νHFL(Z)

Γ, x:τ┝ x:τ

Γ, x:τ1 ┝ ϕ:τ2
−−−−−−−−−−−−−−−−−−
Γ┝ λx.ϕ: x:τ1 → τ2

Γ┝ ϕ: x:int→τ
−−−−−−−−−−−−−−−−−−−−−−−−

Γ┝ ϕ e: [e/x]τ

Γ, X:τ ┝ ϕ:τ
−−−−−−−−−−−−−−−−−−

Γ┝ νX.ϕ: τ

Γ ┝ e1≥ e2: [e1≥ e2]

Γ┝ ϕ1: [ψ1] Γ┝ ϕ2: [ψ2]
−−−−−−−−−−−−−−−−−−−−−−−−

Γ┝ ϕ1∧ ϕ2 : [ψ1∧ψ2]

Γ┝ ϕ1: τ2 → τ Γ┝ ϕ2 : τ2
−−−−−−−−−−−−−−−−−−−−−−−−

Γ┝ ϕ1 ϕ2 : τ

Γ┝ ϕ: τ’ Γ┝ τ’ <: τ
−−−−−−−−−−−−−−−−−−

Γ┝ ϕ: τ

Soundness (but not completeness)
If |− ϕ:[true] then |= ϕ

Refinement Type Inference
(see [Katsura+ 20] for details)

 A standard template-based type inference algorithm yields:
– CHC, for νHFL(Z) formulas obtained from (un)reachability verification problems

=> Standard CHC solvers such as Z3 Spacer and HoIce can be used

– Extended CHC (with disjunctions in heads):
H1 ∨ ... ∨ Hk ⇐ B1 ∧ ... ∧ Bn

for general νHFL(Z) formulas

=> Extended CHC solvers such as PCSat [Unno+ 20] are required

Outline
 Introduction to HFL and HFL(Z)

Reductions from program verification to HFL(Z) model checking

HFL(Z) validity checking using types, CHC solving, and higher-
order model checking
– Overview

– From HFL(Z) to νHFL(Z)

– From νHFL(Z) to (extended) CHC

– Fold/unfold transformation

Machine learning techniques for CHC solving

HFL(Z) formula

νHFL(Z) formula
Predicate
abstraction

νHFL formula
Higher-order
model checking

CHC

Yes/No/Unknown

CHC Solving

Refinement types

Remove µ, ∃

Fold/Unfold Transformations for CHC
[De Angelis+ 18]

Even(n) ⇐ n=0 ∨ Even(n-2).
false ⇐ Even(n) ∧ Even(n+1).
is SAT, but the witness requires a mod constraint: Even(n) ≡ n mod 2=0.
Can we prove SAT without using the mod constraint?

Prepare a new predicate E2(n) := Even(n) ∧ Even(n+1).
E2(n) ⇐ Even(n) ∧ Even(n+1)

⇐ Even(n) ∧ (n+1=0 ∨ Even(n-1)) (unfold)
⇐ (n+1=0 ∧ Even(n)) ∨ (Even(n-1) ∧ Even(n))
⇐ (n+1=0 ∧ Even(n)) ∨ E2(n-1) (fold)

Even(n) ⇐ n=0 ∨ Even(n-2).
E2(n) ⇐ (n+1=0 ∧ Even(n)) ∨ E2(n-1)
false ⇐ E2(n)
has a trivial model: Even(n) ≡ n≥0, E2(n) ≡ false

Fold/Unfold Transformations for HFL(Z)?

Even(n) ⇐ n=0 ∨ Even(n-2).
false ⇐ Even(n) ∧ Even(n+1).

E2(n), where
E2(n) =ν (Even(n) ∨ n+1 ≠0) ∧ E2(n-1)
Even(n) =ν n≠0 ∧ Even(n-2).

Even(n) ∨ Even(n+1) where
Even(n) =ν n≠0 ∧ Even(n-2).

CHC

Corresponding HFL(Z) formula

Even(n) ∨ Even(n+1)
= Even(n) ∨ (n+1≠0 ∧ Even(n-1)) (unfold)
= (Even(n) ∨ n+1 ≠0) ∧ (Even(n-1) ∨ Even(n))

Q: Is fold/unfold transformation
applicable to arbitrary alternations of
µ and ν?

A: Yes, but with a certain sanity condition.

See [K+, TACAS 20] for first-order HFL(Z).
See also [Kori+, CSL 21] on cyclic proofs
for HFL.

Outline
 Introduction to HFL and HFL(Z)

Reductions from program verification to HFL(Z) model checking

HFL(Z) validity checking using types, CHC solving, and higher-
order model checking

Machine learning techniques for CHC solving

– ICE learning for CHC

– Neural networks for qualifier discovery

HoIce: ICE-Learning-Based CHC Solver
[Champion+ TACAS18]

 An extension of the ICE-learning framework [Garg+ CAV14]

 A reasonably good performance
 Tend to generate simple models

(=> suitable for refinement type
inference, with applications also in
higher-order model checking [Sato+ 19])

Teacher
(call SMT to check
candidate models)

Learner
(qualifier discovery

+ Boolean function synthesis)

candidate model
(e.g. Even(x) ≡ x>0)

learning data
(e.g. {Even(0), Even(1) ⇒ Even(3), ...})

Even(n) ⇐ n=0 ∨ Even(n-2).
false ⇐ Even(n) ∧ Even(n+1).

(Result of CHC-Comp19, LIA-Nonlin category)
From https://chc-comp.github.io/2019/chc-comp19.pdf)

https://chc-comp.github.io/2019/chc-comp19.pdf

HoIce: ICE-Learning-Based CHC Solver
[Champion+ TACAS18]

 An extension of the ICE-learning framework [Garg+ CAV14]

 A reasonably good performance
 Tend to generate simple models

(=> suitable for refinement type
inference, with applications also in
higher-order model checking [Sato+ 19])

 Applicable to extended CHCs
(with disjunctions in heads)

Teacher
(call SMT to check
candidate models)

Learner
(qualifier discovery

+ Boolean function synthesis)

candidate model
(e.g. Even(x) ≡ x>0)

learning data
(e.g. {Even(0), Even(1) ⇒ Even(3), ...})

Even(n) ⇐ n=0 ∨ Even(n-2).
false ⇐ Even(n) ∧ Even(n+1).

(Result of CHC-Comp19, LIA-Nonlin category)
From https://chc-comp.github.io/2019/chc-comp19.pdf)

https://chc-comp.github.io/2019/chc-comp19.pdf

Neural Networks for Qualifier Discovery
(Ongoing work)

Teacher
(call SMT to check
candidate models)

candidate model
(e.g. Even(x) ≡ x mod 2)

learning data
(e.g. {Even(0), Even(1) ⇒ Even(3), ...})

Can be difficult to discover

Learner
(qualifier discovery

+ Boolean function synthesis)

Neural Networks for Qualifier Discovery
(Ongoing work)

Teacher
(call SMT to check
candidate models)

Learner
Neural network (NN):

+ formula extraction from NN

candidate model
(e.g. Even(x) ≡ x mod 2)

learning data
(e.g. {Even(0), Even(1) ⇒ Even(3), ...})

Can be difficult to discover

... ...

...

Conclusion
 Automated program verification project based on HFL(Z)

– HFL(Z) may be viewed as an extension of CHC
with higher-order predicates and fixpoint alternation

– Provide a uniform verification framework for temporal properties
(safety, termination, liveness, ...) of higher-order functional programs

– Many of the existing techniques for CHC solving and program
verification can be lifted to those for HFL(Z) validity checking
(e.g. fold/unfold transformation)

– CHC solvers are important building blocks for HFL(Z) validity checking

• Sometimes we need more than pure CHC solving (e.g. disjunctions in heads, for
refinement-type-based approach to HFL(Z) validity checking)

• Any improvement of CHC solvers would be appreciated!

References
 Relationship between HORS/HFL model checking

– K, Lozes, Bruze, “On the relationship between higher-order recursion schemes
and higher-order fixpoint logic”, POPL 17

 (pure) HFL model checking algorithm
– Hosoi, K, Tsukada, “A Type-Based HFL Model Checking Algorithm”, APLAS 19

 From program verification to HFL(Z) model/validity checking
– K, Tsukada, Watanabe, “Higher-Order Program Verification via HFL Model

Checking”, ESOP 18
– Watanabe, Tsukada, K, “Reduction from branching-time property verification

of higher-order programs to HFL validity checking”, PEPM 19

 From (first-order) HFL(Z) to ν-only HFL(Z)
– K, Nishikawa, Igarashi, Unno, “Temporal Verification of Programs via

First-Order Fixpoint Logic”, SAS 19

References
 Solving ν-only HFL(Z) validity checking

– Iwayama, K, Suzuki, Tsukada, “Predicate Abstraction and CEGAR for νHFLZ
Validity Checking”, SAS 20

– Katsura, Iwayama, K, Tsukada, “A New Refinement Type System for
Automated νHFLZ Validity Checking”, APLAS 20

 Fold/unfold transformation for (first-order) HFL(Z)
– K, Fedyukovich, Gupta, “Fold/Unfold Transformations for Fixpoint Logic”,

TACAS 20
– (related) Kori, Tsukada, K, “A Cyclic Proof System for HFLN”, CSL 21

Machine learning techniques for CHC solving
– Champion, Chiba, K, Sato, “ICE-Based Refinement Type Discovery for

Higher-Order Functional Programs”, TACAS 18

	An Overview of �the HFL Model Checking Project� (at UTokyo)
	This Talk
	Outline
	Outline
	Higher-Order Modal Fixpoint Logic (HFL) [Viswanathan&Viswanathan 04]
	Higher-Order Modal Fixpoint Logic (HFL) [Viswanathan&Viswanathan 04]
	Selected Typing Rules for HFL
	Example
	HFL Model Checking �[Viswanathan&Viswanathan 2004]
	HFL Model Checking �[Viswanathan&Viswanathan 2004]
	HFL(Z): An extension of HFL with integers
	HFL(Z) Model/Validity Checking
	Outline
	CHC satisfiability �as (n-only) HFL(Z) validity checking
	CHC satisfiability �as (n-only) HFL(Z) validity checking
	Outline
	スライド番号 24
	スライド番号 25
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL(Z) Model Checking
	From Program Verification �to HFL(Z) Model Checking
	From Termination Verification�to HFL(Z) Model Checking
	Outline
	HFL(Z) Validity Checking
	Outline
	From HFL(Z) to n-only HFL(Z)�(higher-order case: ongoing, first-order case: [K+, SAS19],�inspired by termination verification [Fedyukovich+, CAV18])
	From HFL(Z) to n-only HFL(Z)�(higher-order case: ongoing, first-order case: [K+, SAS19],�inspired by termination verification [Fedyukovich+, CAV18])
	From HFL(Z) to n-only HFL(Z)�(higher-order case: ongoing, first-order case: [K+, SAS19],�inspired by termination verification [Fedyukovich+, CAV18])
	Mu2CHC [K+ SAS19]
	Outline
	Refinement Types for nHFL(Z)�[Katsura+ 20] (cf. refinement types for HoCHC [Burn+18])
	Refinement Type System for nHFL(Z)
	Refinement Type Inference�(see [Katsura+ 20] for details)
	Outline
	Fold/Unfold Transformations for CHC�[De Angelis+ 18]
	Fold/Unfold Transformations for HFL(Z)?
	Outline
	HoIce: ICE-Learning-Based CHC Solver �[Champion+ TACAS18]
	HoIce: ICE-Learning-Based CHC Solver �[Champion+ TACAS18]
	Neural Networks for Qualifier Discovery�(Ongoing work)
	Neural Networks for Qualifier Discovery�(Ongoing work)
	Conclusion
	References
	References

