An Overview of
the HFL Model Checking Project
(at UTokyo)

Naoki Kobayashi
The University of Tokyo

In collaboration with: Kazuyuki Asada, Florian Bruze, Adrien Champion, Grigory Fedyukobich, Aarti Guputa,
Atushi Igarashi, Etienne Lozes, Takeshi Nishikawa, Ryosuke Sato, Takeshi Tsukada, Hiroshi Unno,
and (ex-)students at UTokyo

This Talk

4 An Overview of Our Project on Automated Program Verification
Based on Higher-Order Fixpoint Logic (HFL)

— HFL [viswanathan&Viswanathan 04] @s a higher-order extension
of the modal p-calculus

— HFL(Z) (HFL with integers) as an extension of Constrained Horn Clauses
(CHC, a.k.a. CLP) with higher-order predicates and fixpoint alternation

— Natural reduction from higher-order program verification
to HFL(Z) model checking [k+ EsoP18][Watanabe+ PEPM19]

e More uniform approach than our previous approach based on HORS model checking
[K, POPLO9][K+ POPL10][K+ PLDI11][K, JACM13]...

— Automated techniques for HFL(Z) model checking
based on CHC solving [K+ SAS19][Hosoi+ APLAS19][K+ TACAS19][Katsura+ APLAS20] ...

— Machine learning techniques for CHC solving [champion+ TACAS18] ...

Outline
¢ Introduction to HFL and HFL(Z)

— What is higher-order fixpoint logic?

— HFL model checking as a higher-order extension of finite state model
checking

— HFL(Z) as an extension of Constrained Horn Clauses (CHC)
¢ Reductions from program verification to HFL(Z) model checking

¢ Solving HFL(Z) model checking using types, CHC solving, and
higher-order model checking

¢ Machine learning techniques for CHC solving

Outline
¢ Introduction to HFL and HFL(Z)

— What is higher-order fixpoint logic?

— HFL model checking as a higher-order extension of finite state model
checking

— HFL(Z) as an extension of Constrained Horn Clauses (CHC)
¢ Reductions from program verification to HFL(Z) model checking

¢ Solving HFL(Z) model checking using types, CHC solving, and
higher-order model checking

¢ Machine learning techniques for CHC solving

Higher-Order Modal Fixpoint Logic (HFL)

[Viswanathan&Viswanathan 04]

¢ Higher-order extension of the modal p-calculus

¢ ::= true
P1 NP2
P11V P2
[aloe ¢ must hold after a
<a>Q ¢ may hold after a
X variable
puX. o least fixpoint (the least X such that X=¢)
vX.p greatest fixpoint (the greatest X such that X=¢)

e.g. uX. true v <a>X
“b” may occur after a finite number of “a” transitions

(i.e., there exists a transition sequence in which “b” occurs after a finite
number of “a” transitions)

Higher-Order Modal Fixpoint Logic (HFL)

[Viswanathan&Viswanathan 04]

¢ Higher-order extension of the modal p-calculus

¢ ::= true
P1 A P2
P11V QP2
[alo ¢ must hold after a
<a>Q ¢ may hold after a
X predicate variable
uX“. o least fixpoint (the least X such that X=¢)
vX€.p greatest fixpoint (the greatest X such that X=¢)
AXE. @ (higher-order) predicate
¢ P2 application

K ::= @ the type of propositions

Selected Typing Rules for HFL

[Ftrue: ® ‘ I Fo: ®
T |- [alp: ®
FTFo:® Tly:e
[Foay: ®
Y [LXx; Foix,
r,X:x FXx ‘ [FAX.0i15 > &,
F'Feixy >k, T Fyix [, X:x Foeix

T'Fo yik, I FpX.9:x

Example
(VF*->*.AX. X A [a](F ([b]X)) <c>

= (AX. X A [a](VF...) ([b]X)) <c>

= <c> A [a)((vF*>*.AX. X A [al(F ([bIX)) ([bl<c>))
<c> A [a]((AX. X A [a](vF...) ([bIX)) ([b1<c>))
<c> A [a]([bl<c> A [a](VF...) ([bI[bl<c>))

<c> A [a][b]l<c> A [a)?[b]? <c> A ...

After any transitions of the form a"b", <c> holds

HFL Model Checking

[Viswanathan&Viswanathan 2004]

(Given
L: (finite-state) labeled transition system
@: HFL formula,

\ does L satisfy @?
e.g. L|=¢ for: o: (VF®*>*.AX. X A [a](F ([b]X)) <c>
L: }76>a An alternative notation:
b F <c> where

b~ ¢ F X =, XA [a](F ([b]X))

HFL Model Checking

[Viswanathan&Viswanathan 2004]

(Given

L: (finite-state) labeled transition system
¢: HFL formula,

\does L satisfy ¢?

- k-EXPTIME complete for order-k HFL [Axelsson+ 07]
but a practical algorithm exists [Hosoi+ 19]
(order(®) =0, order(ik; —... > K, > ®) = 1+max(order(xy), ..., order(i,)))

- Polynomial time translation exists
between HFL model checking and HORS model_checking [K+ POPL17]

The other kind of higher-order
model checking [Ong 06]

HFL(Z): An extension of HFL with integers

¢ u=true | oA 0z | 01V, | [ale | <a>p } pure HFL
| X | ux%o | vX<.0 | X0 | 0; ¢;
| pe | e=e,
ex=n|X|e+e,
K o | 1ok
T = K |int
Example:

(vX. X, P(x) A X(x+1))0

(Ax. P(X) A (VXAX. ...)(x+1))0
P(0) A (VX.AX. P(X) A X(x+1)) 1
P(O) A P(1) A ...

vx=>0. P(x)

(pE AX. x=0 v E(x-2))n

= (AXx. x=0 v(uE.Ax. ...)(x-2))n

n=0 v(uE.Ax. x=0 v E(x-2))(n-2)
n=0v n-2=0v ...

“n is an even non-negative integer”

HFL(Z) Model/Validity Checking

/HFL(Z) Model Checking:

Given

L: (finite-state) labeled transition system
¢@: a closed HFL(Z) formula,

Qloes L satisfy ¢?

-

HFL(Z) Validity Checking:

Given

@: a closed HFL(Z) formula without modalities ([a], <a>),
is ¢ valid?

or, does the trivial model satisfy ¢ ?)

N

AN

Outline
¢ Introduction to HFL and HFL(Z)

— What is higher-order fixpoint logic?

— HFL model checking as a higher-order extension of finite state model
checking

— HFL(Z) as an extension of Constrained Horn Clauses (CHC)
¢ Reductions from program verification to HFL(Z) model checking

¢ Solving HFL(Z) model checking using types, CHC solving, and
higher-order model checking

¢ Machine learning techniques for CHC solving

4)

IS
P(x) <= ¢(x)
false <= P(e)
satisfiable?

_ J

Example

CHC satisfiability
as (v-only) HFL(Z) validity checking

the least P such

-
IS

false <= (UPAx.0(x))(e)

valid?
I\

L that P(x) <= o(x)

(s A

(VP.Ax.0(x))(e)
valid?
l \(ﬁ(x)z de Morgan dual of ¢(x))/

let rec fact(n) =

if n=0 then r=1 else fact(n-1)xn

let main n = assert(fact(n)=n)

4)
Fact(n, r) < n=0, r=1
Fact(n, r) <= n#0, Fact(n-1, s), r=sxn

g r>n < Fact(n, r) y
cf.

[

rzn <
(uFact.A(n,r). (n=0Ar=1)

\

v 3s. (n#0 A r=sxn A Fact(n-1,s)))(n, r)j

¢

[

_

r>nv(vFact.A(n,r). (n0vr=1)

\

A Vs. (n=0 v r #sxn v Fact(n-1,s)))(n, r)
J

CHC satisfiability

as (v-only) HFL(Z) validity checking

the least P such

L that P(x) < o(x)?

(s

(VP.AX.3(x))(e)
J‘—’ valid?

\(ﬁ(x)z de Morgan dual of ¢(x))/

[
r=>n <

(uFact.A(n,r). (n=0Ar=1)

(s N
P(x) <= o(x) . ~
)
false < P(e) fafls?e < (uP.Ax.(x))(e)
satisfiable? Ellek
\ - -
Example
(Fact(n, r) <= n=0, r=1 A
Fact(n, r) < n#0, Fact(n-1, s), r=sxn
g r>n < Fact(n, r))
+ higher-order predicates| [Burn+18]

+ fixpoint alternation

v 3s. (n#0 A r=sxn A Fact(n-1,s)))(n, r)j

\

¢

[

r>nv(vFact.A(n,r). (n0vr=1)

A Vs. (n=0 v r #sxn v Fact(n-1,s)))(n, r)

_

\

J

Outline
¢ Introduction to HFL and HFL(Z)

— What is higher-order fixpoint logic?

— HFL model checking as a higher-order extension of finite state model
checking

— HFL(Z) as an extension of Constrained Horn Clauses (CHC)
¢ Reductions from program verification to HFL(Z) model checking

¢ Solving HFL(Z) model checking using types, CHC solving, and
higher-order model checking

¢ Machine learning techniques for CHC solving

Higher-Order Program Verification
vs HFL Model Checking

Models Spec
HO program HO programs s.afet-y,
verification termination, ...
Finite state . l modal
. finite state systems u-calculus
model checking
formula
HFL ??
: o HFL
model checking | finite state systems
formula

[Viswanathan&
Viswanathan 04]

??

e.g.
F <c> where

F X =, XA [a](F ([b]X))
“c is enabled after

any transitions of the
form a"b"”

Higher-Order Program Verification
vs HFL Model Checking

Models Spec
HO program HO programs safety,
verification l termination, ...
. modal
Finite state .
. finite state system u-calculus
model checking
formula
HFL
. o HFL
model checking | finite state systems
[Viswanathan& /{ormula
Viswanathan 04]

(
“The program’s
L behavior is correct”

From Program Verification

to HFL Model Checking: Example

let Y = open “f00”
in
read(y); close(y)

>

-
Is the file “foo”

accessed according
to read* close?

\§

E’

HFL formula that says

“the behavior of the program
is correct”

<read><close><end>true

/LTS: \
read -nd
e

_ %

From Program Verification
to HFL Model Checking: Example

let Y = open “f00”
in
read(y); close(y)

HFL formula that says

is correct”

Is the file “foo”
accessed according
to read* close?

=» “the behavior of the program

<read><close><end>true

/Does LTS:

read nd
’ | ®

satisfy the formula S?

_

\

%

From Program Verification

to HFL Model Checking: Example
HFL formula that says

= “ ” “the behavior of the program
let y = open “foo Ly \ prog
in IS correct
if * then <read><close><end>true
(read(y); close(y)) N
else close(y) <close><end>true
/Does LTS: \

read
) close
Is the file “foo” @ e

accessed according |—p
to read* close? satisfy the formula S?
y,

_ J

From Program Verification
to HFL Model Checking: Example

let f x =
if * then close(x)
else (read(x); f x)
in
let y = open “foo”
in

f(y)

Is the file “foo0”
accessed according
to read* close?

>

HFL formula that says

“the behavior of the program

is correct”

/Does LTS:

read
A end
@ close Q.

satisfy the formula S?

_

\

%

From Program Verification
to HFL Model Checking: Example

let f x k =
if * then close x k
else read x (f x k)
in
let y = open “foo”
in

fy()

>

~)
Is the file “foo”

accessed according
to read* close?

.

HFL formula that says
“the behavior of the program
is correct”

F x k =, <close>k
A (<read>(F x k))
S =, F true (<end>true)

/Does LTS: \

read
M nd
@ close e.

satisfy the formula S?

_ %

From Program Verification
to HFL(Z) Model Checking

letfnxk=

if n<0 then close x k

else

read x (f (n-1) x k)

in

let y = open “foo”

in fmy()

Is the file “foo0”
accessed according
to read* close?

f—

Fnxk=,
(n<0 =<close>k)

A (—n<0 =

<read>(F (n-1) x k))

S =,Fmtrue (<end>true)

/Does LTS:

< read d
close
$ U S1

satisfy the formula S?

_

\

/

From Program Verification
to HFL(Z) Model Checking

letfnx k= Fnxk=

[
ﬁ\is approach provides a sound and complete logical

accessed according satisfy the formula S?
to read* close?
L %

characterization of:

- reachability problem

- termination problem

- linear/branching-time temporal properties
for higher-order functional programs

[K+ ESOP 2018] [Watanabe+, PEPM 2019]

y

From Termination Verification
to HFL(Z) Model Checking

letfxy= (Must-)termination:
if x<'y then () Vm, n. Fm n where:
else = Fxy=,
if * then f (x-1) y (x<y = true)a
else f x (y+1) (x>y = F (x-1) y A F x (y+1))
infmn
‘ Na

May-not-termination:
dm, n. Fm n where:
Fxy=,
(x<y A false)v
(x>y A (F (x-1) y vV F x (y+1)))

May-termination:
dm, n. Fm n where:
ny:u
(x<y A true)v
(x>y A (F(x-1) y v F x (y+1)))

Outline
¢ Introduction to HFL and HFL(Z)

¢ Reductions from program verification to HFL(Z) model checking

¢ HFL(Z) validity checking using types, CHC solving, and higher-
order model checking
— Overview
— From HFL(Z) to VHFL(Z)
— Two approaches to vVHFL(Z) validity checking

— Fold/unfold transformation

¢ Machine learning techniques for CHC solving

HFL(Z) Validity Checking

A closed HFL(Z) formula (without modalities)

Remove p, 3 ([K+, SAS19] for first-order fragment)
(cf. Reduction from termination to safety verification)

A closed vHFL(Z) formula

Predicate '
abstraction Refinement types
[lwayama+, 20] [Burn+ 18] [Katsura+, 20]

- ™
{ A pure VHFL] Constrained Horn

formula (w/o integers) Clauses (CHC)
_ _ J
Higher-order
model checking :
KOO CHC Solving
[Hosoi+, 19]

Yes/No/Unknown Yes/No/Unknown
precise but slow imprecise but fast

Outline
¢ Introduction to HFL and HFL(Z)

¢ Reductions from program verification to HFL(Z) model checking

¢ HFL(Z) validity checking using types, CHC solving, and higher-

order model checking

— Overview

— From HFL(Z) to VHFL(2)

— Two approaches to vVHFL(Z) validity checking

— Fold/unfold transformation

¢ Machine learning techniques for CHC solving

HFL(Z) formula

Remove L,

VHFL(Z) formula

Predicate
abstraction

Refinement types

vHFL formula

CHC

Higher-order
model checking

l CHC Solving

Yes/No/Unknown

From HFL(Z) to v-only HFL(Z)

(higher-order case: ongoing, first-order case: [K+, SAS19],
inspired by termination verification [Fedyukovich+, CAV18])
¢ Approximate p by finite unfolding

uX.F(X) = F(1) (approximate)

= (vX'.Az. z>0A F(X’ (z-1))) n (representation by v)

= VYu=n. (VX'.Az. z20A F(X’ (z-1))) u (trick to help solvers)
Example:
Vi. (UX.Ay. y<0 v X(y-1)) i

From HFL(Z) to v-only HFL(Z)

(higher-order case: ongoing, first-order case: [K+, SAS19],
inspired by termination verification [Fedyukovich+, CAV18])
¢ Approximate p by finite unfolding
uX.F(X) = F(1) (approximate)
= (vX'.Az. z>0A F(X’ (z-1))) n (representation by v)
= VYu=n. (VX'.Az. z20A F(X’ (z-1))) u (trick to help solvers)
Example:
Vi. (uUX.Ay. y<O v X(y-1)) i
=i<0 v (uX.Ay. ...)(i-1)
=i<0 v i-1<0 v (uX.Ay. ...)(i-2)
=iK0Viflvif2v...

From HFL(Z) to v-only HFL(Z)

(higher-order case: ongoing, first-order case: [K+, SAS19],
inspired by termination verification [Fedyukovich+, CAV18])
¢ Approximate p by finite unfolding
uX.F(X) = F(1) (approximate)
= (vX'.Az. z>0A F(X’ (z-1))) n (representation by v)
= VYu2n. (VX'.Az. z20A F(X’ (z-1))) u (trick to help solvers)
Example:
Vi. (UX.Ay. y<0 v X(y-1)) i
> Vi. Vu=max(i+1,1). (vX'.A(z, y). 2>0 A (y<0 v X’(z-1, y-1))) (u, i)
= Vi. Vu=max(i+1,1). ((uX'.A(z, y). z<0 v (y>0 A X'(z-1, y-1))) (u, i) = false)
Valid by the satisfiability of the CHC (let X’(z,y)=z2<0v z<y):
{X’'(z,y) <= zL0, X'(z,y) = y>0 A X’(z-1, y-1), false < u>i+1 A u=1 A X’(u,i) }

Mu2CHC [k+ sAs19]

¢ Reduce

— p-calculus properties (which subsume CTL/LTL/CTL*) of while-programs

— LTL properties of first-order recursive programs

to CHC solving via first-order HFL(Z) formulas

ﬁ(perimental results on CTL verification benchmark (Cook&Koskinen [13])
I S Y
AT

1. AG(p=AFq)

2. AG(p=AFq) 9.1
3. AG(p=EFq) 9.5
4. AG(p=EFq) 1.5
5. AG(p=AFq) 2.1
6. AG(p=AFq) 1.8
7. AG(p=EFq) 3.7
8. AG(p=EFq) 1.5
9. AG(p=AFq) 38.9

\ 10. AG(p=AFq) 148.0

0.40
0.10
0.23
0.65
0.49
0.15
4.91
5.55
0.65

28.20

12.5
3.5
18.1
105.7
6.5
1.2
8.7
5.6
1930.9
1680.7

0.41
0.32
1.57
0.82
3.91
2.91
0.33
4.25
3.27
29.53

-

Outline
¢ Introduction to HFL and HFL(Z)

¢ Reductions from program verification to HFL(Z) model checking

¢ HFL(Z) validity checking using types, CHC solving, and higher-
order model checking

— Overview HFL(Z) formula
Remove L,
— From HFL(Z) to VHFL(Z) . VHFL(Z) formula
aPIgesSrI:i:ieon / \ Refinement types
— From VHFL(Z) to (extended) CHC) e

Higher-order CHC Solving
model checking

— Fold/unfold transformation

. . . . Yes/No/Unknown
¢ Machine learning techniques for CHC solving

Refinement Types for vHFL(Z)
[Katsura+ 20] (cf. refinement types for HOCHC [Burn+18])

T = ®[y] (types for propositions that hold whenever y holds)
| x:int &> 1 (dependent types for integer predicates)
| T, > 1, (non-dependent types for higher-order predicates)
y ::= aformula of linear integer arithmetic
Examples:
AX.x=0 : (x:int > o[x>0])

the type of integer predicates that are true (at least) for positive integers
Ap"t2e.p1: (x:iint > ®[x>0]) = ®[true]

the type of (higher-order) predicates on integer predicates
that are true (at least) for integer predicates p such that p x holds for any x>0

Refipement Type System for \’H FL(Z)

Soundness (but not completeness)
If |— @:@[true] then |= ¢
N

‘ I' Fe>e, ®e>e,] ‘ T, x:t Fx:1 ‘
T ko Oyl T Fo,: Oyl T, x:i1; Foit,
T Fono,: OluAy,] T FAX.@: Xity > 1,
I Fo: xtintor F'Foiit,>1 ThFo,:r,
I'oe:[e/x]t Thopgpin
Fko:7 Tlkt<n1 [,X:t ot

T'lFe:n I FvX.p:it

Refinement Type Inference
(see [Katsura+ 20] for details)

¢ A standard template-based type inference algorithm yields:

— CHC, for VHFL(Z) formulas obtained from (un)reachability verification problems
=> Standard CHC solvers such as Z3 Spacer and Holce can be used

— Extended CHC (with disjunctions in heads):
H,v..vH <B,A...AB,

for general vHFL(Z) formulas

=> Extended CHC solvers such as PCSat [Unno+ 20] are required

Outline
¢ Introduction to HFL and HFL(Z)

¢ Reductions from program verification to HFL(Z) model checking

¢ HFL(Z) validity checking using types, CHC solving, and higher-
order model checking

— Overview C HFL(Z)lformula

Remove L,

— From HFL(Z) to VHFL(Z) e VHFL(Z) formula
redicate .
— From VH FL(Z) to (extended) CHC abstraction / \ Refinement types

vHFL formula CHC
. igher-ord i
— Fold/unfold transformation r'*n'g e COhrece;mgl l CHC Solving

. . . . Yes/No/Unknown
¢ Machine learning techniques for CHC solving

Fold/Unfold Transformations for CHC
[De Angelis+ 18]

/Even(n) < n=0 v Even(n-2). A
false <= Even(n) A Even(n+1).

is SAT, but the witness requires a mod constraint: Even(n) =n mod 2=0.

\Can we prove SAT without using the mod constraint? Y

Prepare a new predicate E2(n) := Even(n) A Even(n+1).
E2(n) <= Even(n) A Even(n+1)

< Even(n) A (n+1=0 v Even(n-1)) (unfold)
< (n+1=0 A Even(n)) v (Even(n-1) A Even(n))
< (n+1=0 A Even(n)) v E2(n-1) (fold)

~N

Even(n) < n=0 v Even(n-2).
E2(n) < (n+1=0 A Even(n)) v E2(n-1)
false <= E2(n)

has a trivial model: Even(n) =n>0, E2(n) = false

_

Fold/Unfold Transformations for HFL(Z)?

CHC
{Even(n) < n=0 v Even(n-2). }
false <= Even(n) A Even(n+1).
Corresponding HFL(Z) formula
{Even(n) v Even(n+1) where }

Even(n) =, n#0 A Even(n-2).

Even(n) v Even(n+1)

= Even(n) v (n+1#0 A Even(n-1)) (unfold)

= (Even(n) v n+1 #0) A (Even(n-1) v Even(n))

(EZ(n), where
E2(n) =, (Even(n) v n+1#0) A E2(n-1)
\Even(n) =, n#0 A Even(n-2).

~

J

6: Is fold/unfold transformation
applicable to arbitrary alternations of
uand v?

A: Yes, but with a certain sanity condition.

Q)r HFL.

~

See [K+, TACAS 20] for first-order HFL(Z).
See also [Kori+, CSL 21] on cyclic proofs

/

Outline
¢ Introduction to HFL and HFL(Z)

¢ Reductions from program verification to HFL(Z) model checking

¢ HFL(Z) validity checking using types, CHC solving, and higher-
order model checking

¢ Machine learning techniques for CHC solving
— ICE learning for CHC

— Neural networks for qualifier discovery

Holce: ICE-Learning-Based CHC Solver
[Champion+ TACAS18]
¢ An extension of the ICE-learning framework [Garg+ cAV14]

learning data
(e.g. {Even(0), Even(1) = Even(3), ...})

N
Teacher /\ Learner
(call SMT to check (qualifier discovery
Svanifil) & 0 v Eve(Rz) candidate models) \/ + Boolean function synthesis)
false < Even(n) A Even(n+1). J

candidate model
(e.g. Even(x)=x>0)

4 A reasonably good performance

Solver Score H#SAT HUNSAT Avgtime
4 Tend to generate simple models
o o Eldarica 234 131 103 15.93
(=> suitable for refinement type | | |
. Ultimate Unihorn Automizer 177 96 81 36.94
inference, with applications also in o e i — = -
higher-order model checking [Sato+ 19]) PCsat 123 81 a2 24.69
Ultimate Tree Automizer 73 29 44 4,85

(Result of CHC-Comp19, LIA-Nonlin category)

From) * 283 instances total

https://chc-comp.github.io/2019/chc-comp19.pdf

Holce: ICE-Learning-Based CHC Solver
[Champion+ TACAS18]
¢ An extension of the ICE-learning framework [Garg+ cAV14]

learning data
(e.g. {Even(0), Even(1) = Even(3), ...})

N
Teacher /\ Learner

(call SMT to check (qualifier discovery
Even(n) < n=0 vEven(n-2). | candidate models) \/ + Boolean function synthesis)
false < Even(n) A Even(n+1). J

candidate model
(e.g. Even(x)=x>0)
4 A reasonably good performance

Solver Score H#SAT HUNSAT Avgtime
4 Tend to generate simple models
o o Eldarica 234 131 103 15.93
(=> surtable for rEflnement type Ultimate Unihorn Automizer 177 96 81 36.94
inference, with applications also in o e |- ot -
higher-order model checking [Sato+ 19]) PCsat 123 81 a2 24.69
. Ultimate Tree Automizer 73 29 44 4,85
‘ Appllcable to eXtended CHCS (Result of CHC-Comp19, LIA-Nonlin category)

From) * 283 instances total

(with disjunctions in heads)

https://chc-comp.github.io/2019/chc-comp19.pdf

Neural Networks for Qualifier Discovery
(Ongoing work)

learning data
(e.g. {Even(0), Even(1) = Even(3), ...})

4)
Teacher /\ Learner
(call SMT to check (qualifier discovery
kcandidate models))\/ + Boolean function synthesis)

candidate model
(e.g. Even(x)=xmod 2)

Can be difficult to discover

Neural Networks for Qualifier Discovery
(Ongoing work)

-

Teacher

(call SMT to check
candidate models)

~

learning data

(e.g. {Even(0), Even(1) = Even(3), ...})

N

/\/

candidate model
(e.g. Even(x)=xmod 2)

Can be difficult to discover

-

Learner

Neural network (NN):

kformula extraction from NN

Conclusion
¢ Automated program verification project based on HFL(Z)

— HFL(Z) may be viewed as an extension of CHC
with higher-order predicates and fixpoint alternation

— Provide a uniform verification framework for temporal properties
(safety, termination, liveness, ...) of higher-order functional programs

— Many of the existing techniques for CHC solving and program
verification can be lifted to those for HFL(Z) validity checking
(e.g. fold/unfold transformation)

— CHC solvers are important building blocks for HFL(Z) validity checking

e Sometimes we need more than pure CHC solving (e.g. disjunctions in heads, for
refinement-type-based approach to HFL(Z) validity checking)

e Any improvement of CHC solvers would be appreciated!

References

4 Relationship between HORS/HFL model checking

— K, Lozes, Bruze, “On the relationship between higher-order recursion schemes
and higher-order fixpoint logic”, POPL 17

¢ (pure) HFL model checking algorithm
— Hosoi, K, Tsukada, “A Type-Based HFL Model Checking Algorithm”, APLAS 19

¢ From program verification to HFL(Z) model/validity checking

— K, Tsukada, Watanabe, “Higher-Order Program Verification via HFL Model
Checking”, ESOP 18

— Watanabe, Tsukada, K, “Reduction from branching-time property verification
of higher-order programs to HFL validity checking”, PEPM 19

¢ From (first-order) HFL(Z) to v-only HFL(Z)

— K, Nishikawa, Igarashi, Unno, “Temporal Verification of Programs via
First-Order Fixpoint Logic”, SAS 19

References

¢ Solving v-only HFL(Z) validity checking

— lwayama, K, Suzuki, Tsukada, “Predicate Abstraction and CEGAR for vHFL,
Validity Checking”, SAS 20

— Katsura, lwayama, K, Tsukada, “A New Refinement Type System for
Automated VvHFL, Validity Checking”, APLAS 20

4 Fold/unfold transformation for (first-order) HFL(Z)

— K, Fedyukovich, Gupta, “Fold/Unfold Transformations for Fixpoint Logic”,
TACAS 20

— (related) Kori, Tsukada, K, “A Cyclic Proof System for HFL,”, CSL 21
¢ Machine learning techniques for CHC solving

— Champion, Chiba, K, Sato, “ICE-Based Refinement Type Discovery for
Higher-Order Functional Programs”, TACAS 18

	An Overview of �the HFL Model Checking Project� (at UTokyo)
	This Talk
	Outline
	Outline
	Higher-Order Modal Fixpoint Logic (HFL) [Viswanathan&Viswanathan 04]
	Higher-Order Modal Fixpoint Logic (HFL) [Viswanathan&Viswanathan 04]
	Selected Typing Rules for HFL
	Example
	HFL Model Checking �[Viswanathan&Viswanathan 2004]
	HFL Model Checking �[Viswanathan&Viswanathan 2004]
	HFL(Z): An extension of HFL with integers
	HFL(Z) Model/Validity Checking
	Outline
	CHC satisfiability �as (n-only) HFL(Z) validity checking
	CHC satisfiability �as (n-only) HFL(Z) validity checking
	Outline
	スライド番号 24
	スライド番号 25
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL Model Checking: Example
	From Program Verification �to HFL(Z) Model Checking
	From Program Verification �to HFL(Z) Model Checking
	From Termination Verification�to HFL(Z) Model Checking
	Outline
	HFL(Z) Validity Checking
	Outline
	From HFL(Z) to n-only HFL(Z)�(higher-order case: ongoing, first-order case: [K+, SAS19],�inspired by termination verification [Fedyukovich+, CAV18])
	From HFL(Z) to n-only HFL(Z)�(higher-order case: ongoing, first-order case: [K+, SAS19],�inspired by termination verification [Fedyukovich+, CAV18])
	From HFL(Z) to n-only HFL(Z)�(higher-order case: ongoing, first-order case: [K+, SAS19],�inspired by termination verification [Fedyukovich+, CAV18])
	Mu2CHC [K+ SAS19]
	Outline
	Refinement Types for nHFL(Z)�[Katsura+ 20] (cf. refinement types for HoCHC [Burn+18])
	Refinement Type System for nHFL(Z)
	Refinement Type Inference�(see [Katsura+ 20] for details)
	Outline
	Fold/Unfold Transformations for CHC�[De Angelis+ 18]
	Fold/Unfold Transformations for HFL(Z)?
	Outline
	HoIce: ICE-Learning-Based CHC Solver �[Champion+ TACAS18]
	HoIce: ICE-Learning-Based CHC Solver �[Champion+ TACAS18]
	Neural Networks for Qualifier Discovery�(Ongoing work)
	Neural Networks for Qualifier Discovery�(Ongoing work)
	Conclusion
	References
	References

