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This Talk
 An Overview of Our Project on Automated Program Verification 

Based on Higher-Order Fixpoint Logic (HFL)
– HFL [Viswanathan&Viswanathan 04] as a higher-order extension 

of the modal µ-calculus
– HFL(Z) (HFL with integers) as an extension of Constrained Horn Clauses 

(CHC, a.k.a. CLP) with higher-order predicates and fixpoint alternation
– Natural reduction from higher-order program verification 

to HFL(Z) model checking [K+ ESOP18][Watanabe+ PEPM19]
• More uniform approach than our previous approach based on HORS model checking

[K, POPL09][K+ POPL10][K+ PLDI11][K, JACM13]...

– Automated techniques for HFL(Z) model checking 
based on CHC solving [K+ SAS19][Hosoi+ APLAS19][K+ TACAS19][Katsura+ APLAS20] ...

– Machine learning techniques for CHC solving [Champion+ TACAS18] ...



Outline
 Introduction to HFL and HFL(Z)

– What is higher-order fixpoint logic?

– HFL model checking as a higher-order extension of finite state model 
checking

– HFL(Z) as an extension of Constrained Horn Clauses (CHC)

Reductions from program verification to HFL(Z) model checking

Solving HFL(Z) model checking using types, CHC solving, and 
higher-order model checking

Machine learning techniques for CHC solving
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Higher-Order Modal Fixpoint Logic (HFL) 
[Viswanathan&Viswanathan 04]

Higher-order extension of the modal µ-calculus
ϕ ::= true

ϕ1 ∧ ϕ2

ϕ1 ∨ ϕ2

[a]ϕ   ϕ  must hold after a
<a>ϕ                    ϕ may hold after a
X               variable
µX.ϕ least fixpoint  (the least X such that X=ϕ )
νX.ϕ greatest fixpoint (the greatest X such that X=ϕ )

e.g. µX. <b>true ∨ <a>X    
“b” may occur after a finite number of “a” transitions

(i.e., there exists a transition sequence in which “b” occurs after a finite 
number of “a” transitions)



Higher-Order Modal Fixpoint Logic (HFL) 
[Viswanathan&Viswanathan 04]

Higher-order extension of the modal µ-calculus
ϕ ::= true

ϕ1 ∧ ϕ2
ϕ1 ∨ ϕ2
[a]ϕ   ϕ  must hold after a
<a>ϕ                    ϕ may hold after a
X               predicate variable
µXκ.ϕ least fixpoint (the least X such that X=ϕ )
νXκ.ϕ greatest fixpoint (the greatest X such that X=ϕ )
λXκ.ϕ                  (higher-order) predicate
ϕ1 ϕ2 application

κ ::=  the type of propositions
κ1→κ2



Selected Typing Rules for HFL

Γ, X:κ ┝ X:κ 

Γ, X:κ1 ┝ ϕ:κ2
−−−−−−−−−−−−−−−−−−

Γ┝ λX.ϕ: κ1 → κ2

Γ┝ ϕ: κ1 → κ2 Γ┝ ψ: κ1
−−−−−−−−−−−−−−−−−−−−−−−−

Γ┝ ϕ ψ: κ2

Γ, X:κ ┝ ϕ:κ 
−−−−−−−−−−−−−−−−−−

Γ┝ µX.ϕ: κ

Γ ┝ true:  Γ ┝ ϕ: 
−−−−−−−−−−−−−−−−−−

Γ┝ [a]ϕ: 
Γ┝ ϕ:  Γ┝ ψ: 

−−−−−−−−−−−−−−−−−−−−−−−−
Γ┝ ϕ∧ψ: 



Example
(νF→.λX. X ∧ [a](F ([b]X)) <c>

= (λX. X ∧ [a](νF...) ([b]X)) <c>
= <c> ∧ [a]((νF→.λX. X ∧ [a](F ([b]X)) ([b]<c>))
= <c> ∧ [a]((λX. X ∧ [a](νF...) ([b]X)) ([b]<c>))
= <c> ∧ [a]( [b]<c> ∧ [a](νF...) ([b][b]<c>))
= <c> ∧ [a][b]<c> ∧ [a]2[b]2 <c> ∧ ...

After any transitions of the form anbn,  <c> holds



HFL Model Checking 
[Viswanathan&Viswanathan 2004]

e.g.  L |= ϕ for:
L: 

Given
L: (finite-state) labeled transition system
ϕ:  HFL formula,

does L satisfy ϕ?

ϕ: (νF→.λX. X ∧ [a](F ([b]X)) <c>
An alternative notation:

F <c> where
F X =ν X∧ [a](F ([b]X))

a a

cb
b



HFL Model Checking 
[Viswanathan&Viswanathan 2004]

Given
L: (finite-state) labeled transition system
ϕ:  HFL formula,
does L satisfy ϕ?

- k-EXPTIME complete for order-k HFL [Axelsson+ 07]
but a practical algorithm exists [Hosoi+ 19]
(order() = 0,   order(κ1 →... → κn → ) = 1+max(order(κ1 ), ..., order(κn)) )

- Polynomial time translation exists 
between HFL model checking and HORS model checking [K+ POPL17]

The other kind of higher-order 
model checking [Ong 06]



HFL(Z): An extension of HFL with integers
ϕ ::= true  | ϕ1 ∧ ϕ2  | ϕ1 ∨ ϕ2 | [a]ϕ | <a>ϕ

| X   |  µXκ.ϕ | νXκ.ϕ |  λXτ. ϕ | ϕ1 ϕ2

| ϕ e | e1=e2 

e ::=  n | X | e1 + e2

κ ::= o | τ →κ
τ ::= κ | int 

Example:
(µE.λx. x=0 ∨ E(x-2))n
≡ (λx. x=0 ∨(µE.λx. ...)(x-2))n
≡ n=0 ∨(µE.λx. x=0 ∨ E(x-2))(n-2)
≡ n=0 ∨ n-2=0 ∨ ...
≡ “n is an even non-negative integer”

pure HFL

(νX.λx. P(x) ∧ X(x+1))0
≡ (λx. P(x) ∧ (νX.λx. ...)(x+1))0
≡ P(0) ∧ (νX.λx. P(x) ∧ X(x+1)) 1
≡ P(0) ∧ P(1) ∧ ...
≡ ∀x≥0. P(x)



HFL(Z) Model/Validity Checking 

HFL(Z) Validity Checking:
Given
ϕ:  a closed HFL(Z) formula without modalities ([a], <a>),

is ϕ valid?
(or, does the trivial model satisfy ϕ ?)

HFL(Z) Model Checking:
Given
L: (finite-state) labeled transition system
ϕ:  a closed HFL(Z) formula,

does L satisfy ϕ?
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CHC satisfiability 
as (ν-only) HFL(Z) validity checking

Is
P(x) ⇐ ϕ(x)
false ⇐ P(e)

satisfiable?

Is
false ⇐ (µP.λx.ϕ(x))(e)

valid?

Is
(ν�P.λx.�ϕ(x))(e)

valid?
(�ϕ(x): de Morgan dual of ϕ(x) )

the least P such 
that P(x) ⇐ ϕ(x)

Example
Fact(n, r) ⇐ n=0, r=1
Fact(n, r) ⇐ n≠0, Fact(n-1, s), r=s×n

r≥n ⇐ Fact(n, r)

r≥n ⇐
( µFact.λ(n,r). (n=0∧r=1)

∨ ∃s. (n≠0 ∧ r=s×n ∧ Fact(n-1,s)))(n, r)

r≥n∨( νFact.λ(n,r). (n≠0∨r≠1)
∧ ∀s. (n=0 ∨ r ≠ s×n ∨ Fact(n-1,s)))(n, r)

cf. 
let rec fact(n) = 

if n=0 then r=1 else fact(n-1)×n
let main n = assert(fact(n)≥n) 



CHC satisfiability 
as (ν-only) HFL(Z) validity checking

Is
P(x) ⇐ ϕ(x)
false ⇐ P(e)

satisfiable?

Is
false ⇐ (µP.λx.ϕ(x))(e)

valid?

Is
(ν�P.λx.�ϕ(x))(e)

valid?
(�ϕ(x): de Morgan dual of ϕ(x) )

the least P such 
that P(x) ⇐ ϕ(x)?

Example
Fact(n, r) ⇐ n=0, r=1
Fact(n, r) ⇐ n≠0, Fact(n-1, s), r=s×n

r≥n ⇐ Fact(n, r)

r≥n ⇐
( µFact.λ(n,r). (n=0∧r=1)

∨ ∃s. (n≠0 ∧ r=s×n ∧ Fact(n-1,s)))(n, r)

r≥n∨( νFact.λ(n,r). (n≠0∨r≠1)
∧ ∀s. (n=0 ∨ r ≠ s×n ∨ Fact(n-1,s)))(n, r)

HFL(Z) =  CHC
+ higher-order predicates 
+ fixpoint alternation           

HoCHC
[Burn+18]
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Models Spec
HO program 
verification HO programs safety,

termination, ...

Finite state 
model checking finite state systems

modal 
µ-calculus 
formula

HFL 
model checking

[Viswanathan&
Viswanathan 04]

finite state systems HFL
formula

Higher-Order Program Verification 
vs HFL Model Checking

??
??

e.g.
F <c> where
F X =ν X∧ [a](F ([b]X))

“c is enabled after 
any transitions of the 
form anbn”



Models Spec
HO program 
verification

HO programs safety,
termination, ...

Finite state 
model checking finite state systems

modal 
µ-calculus 
formula

HFL 
model checking

[Viswanathan&
Viswanathan 04]

finite state systems HFL
formula

Higher-Order Program Verification 
vs HFL Model Checking

“The program’s 
behavior is correct”



From Program Verification 
to HFL Model Checking: Example

let y = open “foo”
in

read(y); close(y)

Is the file “foo”
accessed according 

to read* close?

HFL formula that says
“the behavior of the program
is correct”
<read><close><end>true

LTS:

s0 s1
close

read end



From Program Verification 
to HFL Model Checking: Example

let y = open “foo”
in

read(y); close(y)

Is the file “foo”
accessed according 

to read* close?

HFL formula that says
“the behavior of the program
is correct”
<read><close><end>true

Does LTS:

satisfy the formula S?
s0 s1

close
read end



From Program Verification 
to HFL Model Checking: Example

let y = open “foo”
in

if * then
(read(y); close(y))

else close(y)

Is the file “foo”
accessed according 

to read* close?

HFL formula that says
“the behavior of the program
is correct”
<read><close><end>true
∧
<close><end>true

Does LTS:

satisfy the formula S?

s0 s1
close

read end



From Program Verification 
to HFL Model Checking: Example

let f x = 
if * then close(x) 
else (read(x); f x)
in
let y = open “foo”
in

f (y)
Is the file “foo”

accessed according 
to read* close?

Does LTS:

satisfy the formula S?

s0 s1
close

read end

HFL formula that says
“the behavior of the program
is correct”



From Program Verification 
to HFL Model Checking: Example

let f x k = 
if * then close x k 
else read x (f x k)
in
let y = open “foo”
in

f y ()

Is the file “foo”
accessed according 

to read* close?

HFL formula that says
“the behavior of the program
is correct”
F x k =ν <close>k

∧ (<read>(F x k))
S =ν F true (<end>true)

Does LTS:

satisfy the formula S?

s0 s1
close

read end



From Program Verification 
to HFL(Z) Model Checking

let f n x k = 
if n≤0 then close x k 
else 
read x (f (n-1) x k)

in
let y = open “foo”
in  f m y ()

Is the file “foo”
accessed according 

to read* close?

F n x k =µ
(n≤0 ⇒<close>k)

∧ (¬n≤0 ⇒
<read>(F (n-1) x k))

S =µ F m true (<end>true)

Does LTS:

satisfy the formula S?

s0 s1
close

read end



From Program Verification 
to HFL(Z) Model Checking

let f n x k = 
if n≤0 then close x k 
else 
read x (f (n-1) x k)

in
let y = open “foo”
in  f m y ()

Is the file “foo”
accessed according 

to read* close?

F n x k =µ
(n≤0 ⇒<close>k)

∧ (¬n≤0 ⇒
<read>(F (n-1) x k))

S =µ F m true (<end>true)

Does LTS:

satisfy the formula S?

s0 s1
close

read end

This approach provides a sound and complete logical 
characterization of:
- reachability problem 
- termination problem
- linear/branching-time temporal properties
for higher-order functional programs
[K+ ESOP 2018] [Watanabe+, PEPM 2019]



From Termination Verification
to HFL(Z) Model Checking

let f x y = 
if x≤ y then ()
else
if * then f (x-1) y
else f x (y+1)

in f m n

(Must-)termination:
∀m, n. F m n  where:
F x y =µ

(x≤y ⇒ true)∧
(x>y ⇒ F (x-1) y ∧ F  x (y+1))

May-not-termination:
∃m, n. F m n  where:
F x y =ν

(x≤y ∧ false)∨
(x>y ∧ (F (x-1) y ∨ F  x (y+1)))

May-termination:
∃m, n. F m n  where:
F x y =µ

(x≤y ∧ true)∨
(x>y ∧ (F (x-1) y ∨ F  x (y+1)))



Outline
 Introduction to HFL and HFL(Z)

Reductions from program verification to HFL(Z) model checking

HFL(Z) validity checking using types, CHC solving, and higher-
order model checking
– Overview

– From HFL(Z) to νHFL(Z)
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– Fold/unfold transformation
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HFL(Z) Validity Checking
A closed HFL(Z) formula (without modalities)

A closed νHFL(Z) formula

Remove µ, ∃ ([K+, SAS19] for first-order fragment)
(cf. Reduction from termination to safety verification)

Predicate
abstraction
[Iwayama+, 20]

Refinement types
[Burn+ 18] [Katsura+, 20]

A pure νHFL
formula (w/o integers)

Yes/No/Unknown

Higher-order
model checking
[K09]
[Hosoi+, 19]
...

Constrained Horn 
Clauses (CHC)

Yes/No/Unknown

CHC Solving

precise but slow imprecise but fast
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From HFL(Z) to ν-only HFL(Z)
(higher-order case: ongoing,   first-order case: [K+, SAS19],

inspired by termination verification [Fedyukovich+, CAV18])
 Approximate µ by finite unfolding

µX.F(X)  ≥ Fn(⊥) (approximate)

=  (νX’.λz. z>0∧ F(X’ (z-1)) ) n (representation by ν)

= ∀u≥n. (νX’.λz. z>0∧ F(X’ (z-1)) ) u (trick to help solvers)

Example:
∀i. (µX.λy. y≤0 ∨ X(y-1)) i



From HFL(Z) to ν-only HFL(Z)
(higher-order case: ongoing,   first-order case: [K+, SAS19],

inspired by termination verification [Fedyukovich+, CAV18])
 Approximate µ by finite unfolding

µX.F(X)  ≥ Fn(⊥) (approximate)

=  (νX’.λz. z>0∧ F(X’ (z-1)) ) n (representation by ν)

= ∀u≥n. (νX’.λz. z>0∧ F(X’ (z-1)) ) u (trick to help solvers)

Example:
∀i. (µX.λy. y≤0 ∨ X(y-1)) i

= i≤0 ∨ (µX.λy. ...)(i-1) 
= i≤0 ∨ i-1≤0 ∨ (µX.λy. ...)(i-2)
= i≤0 ∨ i≤1 ∨ i≤2 ∨ ...



From HFL(Z) to ν-only HFL(Z)
(higher-order case: ongoing,   first-order case: [K+, SAS19],

inspired by termination verification [Fedyukovich+, CAV18])
 Approximate µ by finite unfolding

µX.F(X)  ≥ Fn(⊥) (approximate)

=  (νX’.λz. z>0∧ F(X’ (z-1)) ) n (representation by ν)

= ∀u≥n. (νX’.λz. z>0∧ F(X’ (z-1)) ) u (trick to help solvers)

Example:
∀i. (µX.λy. y≤0 ∨ X(y-1)) i
≥ ∀i. ∀u≥max(i+1,1). (νX’.λ(z, y). z>0 ∧ (y≤0 ∨ X’(z-1, y-1))) (u, i)
= ∀i. ∀u≥max(i+1,1). ((µX’.λ(z, y). z≤ 0 ∨ (y>0 ∧ X’(z-1, y-1))) (u, i) ⇒ false)
Valid by the satisfiability of the CHC (let X’(z,y)≡ z ≤ 0 ∨ z ≤ y) :

{X’(z,y) ⇐ z≤ 0,  X’(z,y) ⇐ y>0 ∧ X’(z-1, y-1),  false ⇐ u≥i+1 ∧ u≥1 ∧ X’(u,i) }



Mu2CHC [K+ SAS19]
 Reduce

– µ-calculus properties (which subsume CTL/LTL/CTL*) of while-programs
– LTL properties of first-order recursive programs
to CHC solving via first-order HFL(Z) formulas

Experimental results on CTL verification benchmark (Cook&Koskinen [13])
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Refinement Types for νHFL(Z)
[Katsura+ 20] (cf. refinement types for HoCHC [Burn+18])

τ ::= [ψ]    (types for propositions that hold whenever ψ holds) 
| x:int → τ  (dependent types for integer predicates)
|  τ1 → τ2    (non-dependent types for higher-order predicates)

ψ ::=  a formula of linear integer arithmetic
Examples:
λx.x≥0 :  (x:int → [x>0])    

the type of integer predicates that are true (at least) for positive integers

λpint→.p 1 :  (x:int → [x>0]) → [true]
the type of (higher-order) predicates on integer predicates 
that are true (at least) for integer predicates p such that p x holds for any x>0



Refinement Type System for νHFL(Z)

Γ, x:τ┝ x:τ 

Γ, x:τ1 ┝ ϕ:τ2
−−−−−−−−−−−−−−−−−−
Γ┝ λx.ϕ: x:τ1 → τ2

Γ┝ ϕ: x:int→τ
−−−−−−−−−−−−−−−−−−−−−−−−

Γ┝ ϕ e: [e/x]τ

Γ, X:τ ┝ ϕ:τ 
−−−−−−−−−−−−−−−−−−

Γ┝ νX.ϕ: τ

Γ ┝ e1≥ e2: [e1≥ e2]

Γ┝ ϕ1: [ψ1] Γ┝ ϕ2: [ψ2]
−−−−−−−−−−−−−−−−−−−−−−−−

Γ┝ ϕ1∧ ϕ2 : [ψ1∧ψ2 ]

Γ┝ ϕ1: τ2 → τ Γ┝ ϕ2 : τ2
−−−−−−−−−−−−−−−−−−−−−−−−

Γ┝ ϕ1 ϕ2 : τ

Γ┝ ϕ: τ’ Γ┝ τ’ <: τ
−−−−−−−−−−−−−−−−−−

Γ┝ ϕ: τ

Soundness (but not completeness)
If |− ϕ:[true] then |=  ϕ



Refinement Type Inference
(see [Katsura+ 20] for details)

 A standard template-based type inference algorithm yields:
– CHC, for νHFL(Z) formulas obtained from (un)reachability verification problems

=> Standard CHC solvers such as Z3 Spacer and HoIce can be used

– Extended CHC (with disjunctions in heads):
H1 ∨ ... ∨ Hk ⇐ B1 ∧ ... ∧ Bn   

for general νHFL(Z) formulas 

=> Extended CHC solvers such as PCSat [Unno+ 20] are required
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Fold/Unfold Transformations for CHC
[De Angelis+ 18]

Even(n) ⇐ n=0 ∨ Even(n-2).
false ⇐ Even(n) ∧ Even(n+1).
is SAT, but the witness requires a mod constraint:  Even(n) ≡ n mod 2=0.
Can we prove SAT without using the mod constraint?

Prepare a new predicate  E2(n) := Even(n) ∧ Even(n+1).
E2(n) ⇐ Even(n) ∧ Even(n+1)

⇐ Even(n) ∧ (n+1=0 ∨ Even(n-1)) (unfold)
⇐ (n+1=0 ∧ Even(n)) ∨ (Even(n-1) ∧ Even(n))
⇐ (n+1=0 ∧ Even(n)) ∨ E2(n-1) (fold)

Even(n) ⇐ n=0 ∨ Even(n-2).
E2(n) ⇐ (n+1=0 ∧ Even(n)) ∨ E2(n-1)
false ⇐ E2(n)
has a trivial model: Even(n) ≡ n≥0, E2(n) ≡ false 



Fold/Unfold Transformations for HFL(Z)?

Even(n) ⇐ n=0 ∨ Even(n-2).
false ⇐ Even(n) ∧ Even(n+1).

E2(n), where
E2(n) =ν (Even(n) ∨ n+1 ≠0) ∧ E2(n-1)
Even(n) =ν n≠0 ∧ Even(n-2).

Even(n) ∨ Even(n+1) where
Even(n) =ν n≠0 ∧ Even(n-2).

CHC

Corresponding HFL(Z) formula

Even(n) ∨ Even(n+1)
= Even(n) ∨ (n+1≠0 ∧ Even(n-1))            (unfold)
= (Even(n) ∨ n+1 ≠0) ∧ (Even(n-1) ∨ Even(n)) 

Q: Is fold/unfold transformation   
applicable to arbitrary alternations of 
µ and ν?

A:  Yes, but with a certain sanity condition.

See [K+, TACAS 20] for first-order HFL(Z).
See also [Kori+, CSL 21] on cyclic proofs 
for HFL.



Outline
 Introduction to HFL and HFL(Z)

Reductions from program verification to HFL(Z) model checking

HFL(Z) validity checking using types, CHC solving, and higher-
order model checking

Machine learning techniques for CHC solving

– ICE learning for CHC

– Neural networks for qualifier discovery



HoIce: ICE-Learning-Based CHC Solver 
[Champion+ TACAS18]

 An extension of the ICE-learning framework [Garg+ CAV14]

 A reasonably good performance
 Tend to generate simple models

(=> suitable for refinement type
inference, with applications also in 
higher-order model checking [Sato+ 19])

Teacher
(call SMT to check 
candidate models)

Learner
(qualifier discovery 

+ Boolean function synthesis)

candidate model
(e.g.  Even(x) ≡ x>0 )

learning data
(e.g. {Even(0), Even(1) ⇒ Even(3), ...} )

Even(n) ⇐ n=0 ∨ Even(n-2).
false ⇐ Even(n) ∧ Even(n+1).

(Result of CHC-Comp19, LIA-Nonlin category)
From https://chc-comp.github.io/2019/chc-comp19.pdf ) 

https://chc-comp.github.io/2019/chc-comp19.pdf


HoIce: ICE-Learning-Based CHC Solver 
[Champion+ TACAS18]

 An extension of the ICE-learning framework [Garg+ CAV14]

 A reasonably good performance
 Tend to generate simple models

(=> suitable for refinement type
inference, with applications also in 
higher-order model checking [Sato+ 19])

 Applicable to extended CHCs
(with disjunctions in heads)

Teacher
(call SMT to check 
candidate models)

Learner
(qualifier discovery 

+ Boolean function synthesis)

candidate model
(e.g.  Even(x) ≡ x>0 )

learning data
(e.g.  {Even(0), Even(1) ⇒ Even(3), ...} )

Even(n) ⇐ n=0 ∨ Even(n-2).
false ⇐ Even(n) ∧ Even(n+1).

(Result of CHC-Comp19, LIA-Nonlin category)
From https://chc-comp.github.io/2019/chc-comp19.pdf ) 

https://chc-comp.github.io/2019/chc-comp19.pdf


Neural Networks for Qualifier Discovery
(Ongoing work)

Teacher
(call SMT to check 
candidate models)

candidate model
(e.g.  Even(x) ≡ x mod 2 )

learning data
(e.g.  {Even(0), Even(1) ⇒ Even(3), ...} )

Can be difficult to discover

Learner
(qualifier discovery 

+ Boolean function synthesis)



Neural Networks for Qualifier Discovery
(Ongoing work)

Teacher
(call SMT to check 
candidate models)

Learner
Neural network (NN):

+ formula extraction from NN  

candidate model
(e.g.  Even(x) ≡ x mod 2 )

learning data
(e.g.  {Even(0), Even(1) ⇒ Even(3), ...} )

Can be difficult to discover

... ...

...



Conclusion
 Automated program verification project based on HFL(Z)

– HFL(Z) may be viewed as an extension of CHC 
with higher-order predicates and fixpoint alternation

– Provide a uniform verification framework for temporal properties
(safety, termination, liveness, ...) of higher-order functional programs

– Many of the existing techniques for CHC solving and program 
verification can be lifted to those for HFL(Z) validity checking
(e.g. fold/unfold transformation)

– CHC solvers are important building blocks for HFL(Z) validity checking

• Sometimes we need more than pure CHC solving (e.g. disjunctions in heads, for 
refinement-type-based approach to HFL(Z) validity checking)

• Any improvement of CHC solvers would be appreciated!
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