
IPSJ Transactions on Programming Vol.0 No.0 1–8 (??? 2007)

Regular Paper

Refinement Type Checking
via Assertion Checking

Ryosuke Sato1,a) Kazuyuki Asada1,b) Naoki Kobayashi1,c)

Received: xx xx, xxxx, Accepted: xx xx, xxxx

Abstract: A refinement type can be used to express a detailed specification of a higher-order functional
program. Given a refinement type as a specification of a program, we can verify that the program satisfies
the specification by checking that the program has the refinement type. Refinement type checking/inference
has been extensively studied and a number of refinement type checkers have been implemented. Most of
the existing refinement type checkers, however, need type annotations, which is a heavy burden on users.
To overcome this problem, we reduce a refinement type checking problem to an assertion checking problem,
which asks whether the assertions in a program never fail; and then we use an existing assertion checker
to solve it. This reduction enables us to construct a fully automated refinement type checker by using a
state-of-the-art fully automated assertion checker. We also prove the soundness and the completeness of the
reduction, and report on implementation and preliminary experiments.

1. Introduction

A refinement type [3], [11] can be used to express a de-

tailed specification of a higher-order functional program.

Given a refinement type as a specification of a program,

we can verify that the program satisfies the specification by

checking that the program has the refinement type. Re-

finement type checking/inference has been extensively stud-

ied [2], [6], [8], [9], [11], [12] and a number of refinement type

checkers have been implemented. Most of the existing re-

finement type checkers [2], [6], [11], [12], however, force users

to provide invariant annotations, which is a heavy burden.

For example, consider the following program:

let rec fsum f n =

if n <= 0 then 0

else f n + fsum f (n-1)

let double n = n + n

let main n = fsum double n

Using a refinement type checker, one can verify that the

function main has type (x : int)→ {r : int | r ≥ x},

|= main : (x : int)→ {r : int | r ≥ x},

i.e., that for any integer x, if main x evaluates to r, then

r ≥ x holds. (Note that refinement types in the current

paper specify partial correctness, not total correctness.) To

verify the program above, one has to provide the following

type annotations.

1 Graduate School of Information Science and Technology, The
University of Tokyo

a) ryosuke@kb.is.s.u-tokyo.ac.jp
b) asada@kb.is.s.u-tokyo.ac.jp
c) koba@is.s.u-tokyo.ac.jp

fsum : ((x : int)→{r : int | r ≥ x})→

(y : int)→{s : int | s ≥ y}

double : (x : int)→{r : int | r ≥ x}

The meaning of the second annotation is the same as that

for main above, and the first annotation means that, for

any value f that has type (x : int)→ {r : int | r ≥ x}, if

fsum f evaluates to g, then g is a value of type (y : int)→
{s : int | s ≥ y}. Providing such type annotations is a heavy

burden on users.

To overcome this problem, we reduce a refinement type

checking problem to an assertion checking problem, which

asks whether the assertions in a program never fail; then we

can use an existing automated assertion checker to solve it.

For example, the refinement type checking problem

?

|= main : (x : int)→{r : int | r ≥ x}

can be reduced to the assertion checking problem that the

assertion in the following program never fails.

let rec fsum f n = ... in

...

let n = rand int in

let r = main n in assert(r ≥ n)

Here, rand int generates a random integer. While the origi-

nal problem asks whether mainn returns a value no less than

n for any integer n, the reduced problem asks it by using a

random integer and an assertion expression.

Although the reduction for the above program is straight-

forward, it is not obvious for the case of higher-order func-

tions. For example, consider the following problem:

© 2007 Information Processing Society of Japan 1

IPSJ Transactions on Programming Vol.0 No.0 1–8 (??? 2007)

?

|= fsum : ({x : int | x > 0}→ {r : int | r ≥ x})→

(y : int)→{s : int | s ≥ y}.
(1)

Following the random number generator approach above,

one may be tempted to prepare a term gen() that

non-deterministically generates every function of type

{x : int | x > 0} → {r : int | r ≥ x}. Unfortunately, how-

ever, there is no such term gen(), because the set of values

of type {x : int | x > 0}→{r : int | r ≥ x} is not recursively

enumerable.

Instead of defining such a generator, we prepare a

“universal” term t′ that simulates all the terms of type

{x : int | x > 0} → {r : int | r ≥ x}, in the sense that for

any t′′ of type {x : int | x > 0}→ {s : int | s ≥ x} and any

n > 0, t′′ n −→∗ m implies t′ n −→∗ m, and t′′ n −→∗ fail

implies t′ n −→∗ fail. Using t′, we can reduce the prob-

lem (1) to the following problem:

?

|= fsum t′ : (y : int)→{s : int | s ≥ y}. (2)

The term t′ above can be expressed as follows, by using

non-determinism.

λx. if x > 0 then

let r = rand int in assume (r ≥ x); r

else if ∗ then rand int else fail

Here, ∗ is a non-deterministic Boolean, and assume (b) re-

turns the unit value if b = true and diverges otherwise.

Given an integer x, the term first checks whether x > 0. If

x > 0 holds, then it is expected to return a value no less

than x; thus, it generates a random integer r, and returns

it only if r ≥ x. If x > 0 does not hold, then nothing is

specified by the type; thus, it returns an arbitrary integer or

fails. In general, a term α(τ) that simulates all the values

of type τ can be constructed by induction on the structure

of τ .

Using the term t′ above, we can reduce the problem (2) to

the assertion checking problem for the following program.

let rec fsum f n = ...

let g x =

if x > 0 then

let r = rand int in assume(r ≥ x); r

else if * then rand int else fail

let n = rand int in assert(fsum g n ≥ n)

The reduction sketched above enables us to construct a

fully automated refinement type checker by using a state-

of-the-art fully automated assertion checker. In fact, the

above assertion checking problems can be solved by MoCHi,

a software model checker for higher-order functional pro-

grams [5], [7], [10] without any annotations.

We formalize the idea sketched above and prove the cor-

rectness (i.e., the soundness and the completeness) of the

reduction for call-by-value PCF extended with a random

number generator. We also report on an implementation of

our approach as an extension of MoCHi. Note that the avail-

ability of non-determinism (provided by the random number

generator) is a crucial assumption for our method. Although

our method is applicable to a deterministic source language

as long as the target language admits non-determinism, the

completeness of the reduction would be lost. For example,

in a deterministic language, the type judgment:

|= λf.(f 0 = f 0) : (int→ int)→{r : bool | r = true}

should be semantically valid. Our method reduces it to the

assertion checking problem for:

assert((λf.(f 0 = f 0)) α(int→ int)),

where α(int → int) is a non-deterministic function

λx.rand int. The program may fail, since λx.rand int

may return an arbitrary number upon each call; thus we fail

to show that the type judgment above holds.

A possible remedy to the problem above for dealing with

determinism would be to embed the assumption on deter-

minism explicitly in the refinement type specification. For

the example above, the resulting type would be:

{f : int→ int | ∀x.f(x) = f(x)}→ {r : bool | r = true} .

It now contains dependency on functions, but this depen-

dency can sometimes be removed by using the technique of

our previous work [1]. Please note that existing first-order

refinement type checkers [6], [8], [9], [11] do not take into

account the determinism either, so that they fail to prove

the type judgment above.

The rest of the article is organized as follows. Section 2

introduces the source language and the verification problem.

Section 3 presents the reduction from refinement type check-

ing problems to assertion checking problems, and Section 4

proves the correctness of the reduction. Section 5 reports

on experiments and Section 6 discusses related work. We

conclude the paper in Section 7.

2. Language

This section formalizes the source language and the veri-

fication problem. This language is the target of our verifi-

cation method and is the source and target language of the

transformation for the reduction explained in the introduc-

tion.

The language is a simply-typed, call-by-value, higher-

order functional language with recursion. The syntax of

terms is given by:

t (terms) ::= x | n | op(t1, . . . , tn) | rand int

| fix(f, λx. t) | t1 t2 | fail

| if t then t1 else t2

We use meta-variables x, y, z, r, s, f, g, h, . . . for variables.

We have only integers as base values, which are denoted

by the meta-variable n. The meta-variable op ranges over

primitive operations on integers and a term op(t1, . . . , tn)

is the application of op to t1, . . . , tn. We express Booleans

by integers, and write true for 1, and false for 0. The

© 2007 Information Processing Society of Japan 2

IPSJ Transactions on Programming Vol.0 No.0 1–8 (??? 2007)

v (value) ::= n | fix(f, λx. t)

a (answer) ::= v | fail

E (eval. ctx.) ::= [] | op(v1, . . . , vn, E, t1, . . . , tm)

| E t | v E | if E then t1 else t2

E[op(n1, . . . , nk)] −→ E[[[op]](n1, . . . , nk)]

E[rand int] −→ E[n]

E[fail] −→ fail

E[if true then t1 else t2] −→ E[t1]

E[if v then t1 else t2] −→ E[t2] (v 6= true)

E[fix(f, λx. t) v] −→ E[t[fix(f, λx. t)/f][v/x]]

Fig. 1 Operational semantics of the source language

term rand int is a non-deterministic integer. We write ∗
for a non-deterministic Boolean, which can be expressed by

rand int = 0, and t1 2 t2 for if ∗ then t1 else t2. A

term fix(f, λx. t) denotes the recursive function defined by

f = λx. t. When f does not occur in t, we write λx. t

for fix(f, λx. t). A term t1 t2 is the application of t1 to t2.

We write let x = t in t′ for (λx. t′) t, and write also t; t′

for it when x does not occur in t′. The special term fail

aborts the execution. It is typically used to express asser-

tions; assert(t)—which asserts that t should evaluate to

true—is expressed by if t then true else fail.

Bound and free variables are defined in a standard man-

ner, and we identify α-equivalent terms. We call a closed

term a program.

A small-step semantics is given in Figure 1. In the figure,

[[op]] is a given integer function for each op. We write −→∗

for the reflexive and transitive closure of −→; and write

t � t′ if t −→∗ a implies t′ −→∗ a for any a.

We express a specification of a program by using a refine-

ment type. The syntax of refinement types is given by the

following rules.

τ (types) ::= {x : int | P} | (x : τ1)→ τ2

P (predicates) ::= n | x | op(P1, . . . , Pn)

A type (x : τ1)→ τ2 is a dependent product type, where x

may occur in τ2. Intuitively, a refinement type {x : int | P}
represents the set of integers x that satisfy the refinement

predicate P . For example, {x : int | x > 0} describes posi-

tive integers. The type (x : int)→{r : int | r > x} describes

functions that take an integer x and return an integer r

greater than x. The syntax of types is subject to the usual

scope rule; in (x : τ1)→τ2, the scope of x is τ2. Furthermore,

we require that every refinement predicate is well-typed and

has type int (recall that Booelans are expressed by integers),

and that all the variables occurring in a predicate are integer

variables. We often write just int for {x : int | true}, and

τ1→ τ2 for (x : τ1)→ τ2 if x does not occur in τ2.

A type τ is simple if all the predicates in τ are true. For

a type τ , we define the simple type ST(τ) of τ as follows:

(Predicate) |=p ⊆ {P : closed}

• |=p P
def⇐⇒ P � true

(Value) |=v ⊆ {v : closed} × {τ : closed}

• |=v v : {x : int | P} def⇐⇒
v = n for some integer n and |=p P [v/x]

• |=v v : (x1 : τ1)→ τ2
def⇐⇒

for all v1, |=v v1 : τ1 implies |= v v1 : τ2[v1/x1]

(Term) |= ⊆ {t : closed} × {τ : closed}

• |= t : τ
def⇐⇒|=v a : τ for all a s.t. t −→∗ a

Fig. 2 Semantics of types

ST({x : int | P}) = int

ST((x : τ1)→ τ2) = ST(τ1)→ ST(τ2).

We use a meta-variable σ for simple types. For a simple

type σ, we define the size of σ as follows:

size(int) = 1

size(τ1→ τ2) = 1 + size(τ1) + size(τ2)

The semantics of types is defined in Figure 2 using logical

relations. Here, note that the evaluation is nondeterminis-

tic, and that the statement |=v a : τ implies that a is a

value (i.e., a must not be fail). Since |= v : τ if and only if

|=v v : τ , we often write |= v : τ for |=v v : τ .

For a program t and a type τ , the type checking problem
?

|= t : τ asks whether |= t : τ holds. An assertion checking

problem is a special case, where τ = int; note that |= t : int

holds if and only if t does not fail.

Our goal is to develop an automated verification method

for type checking problems. As explained in Section 1, our

approach is to reduce the (semantic) type checking problem
?

|= t : τ to the assertion checking problem
?

|= t′ : int by syn-

thesizing t′ from t and τ . Then, we can solve the reduced

problem by using an existing automated assertion checker

such as MoCHi [5], [7], [10].

3. Reduction from Refinement Type

Checking to Assertion Checking

Given a program t and a refinement type τ , our goal

is to check whether t has type τ by reducing it to an as-

sertion checking problem. If τ is an integer type of the

form {x : int | P}, then we can easily reduce the problem

to the assertion checking problem of the program let r =

t in assert(P [r/x]). If τ is a function type (x : τ1)→τ2, we,

roughly speaking, reduce the problem
?

|= t : (x : τ1)→ τ2

to the problem
?

|= t t′ : τ2[t′/x] for a “universal” term

t′ = α(τ1) that simulates all the terms of type τ1. By us-

ing the synthesizer α(−) of universal terms, we reduce the

refinement type checking problem

?

|= t : (x1 : τ1)→ · · · → (xn : τn)→{r : int | P}

to the assertion checking problem

?

|= let x1 = α(τ1) in . . . let xn = α(τn) in

let r = t x1 . . . xn in assert(P) : int.

© 2007 Information Processing Society of Japan 3

IPSJ Transactions on Programming Vol.0 No.0 1–8 (??? 2007)

α({x : int | P}) = let x = rand int in

assume (P); x

α((x : τ1)→ τ2) = λx. if ∗ ∨ β(x : τ1) then α(τ2)

else αS(ST(τ2))

β(v : {x : int | P}) = P [v/x]

β(v : (x : τ1)→ τ2) = let x = α(τ1) in

let r = v x in β(r : τ2)

αS(int) = fail 2 rand int

αS(σ1→ σ2) = fail 2 λx. αS(σ2)

Fig. 3 Synthesis of universal terms

We now define the synthesizer α(−) : Types → Terms

in Figure 3, where Types and Terms are the sets of types

and terms respectively. Here, assume (t) is syntactic sugar

for if t then true else fix(f, λx. f x) (), and t ∨ t′ is

that for if t then true else t′. In Figure 3, two auxil-

iary functions β(− : −) : Values × Types → Terms and

αS(−) : SimpleTypes → Terms are defined, where Values

and SimpleTypes are the sets of values and simple types re-

spectively. Roughly speaking, α(τ) simulates all the values

of type τ , and αS(σ) simulates all the answers of simple

type σ. An integer term β(v : τ) is a Boolean expression

that represents “v has type τ”; precisely, |= v : τ holds if

and only if |=p β(v : τ) holds, i.e., a = true for all a s.t.

β(v : τ) −→∗ a (which follows from Lemmas 9 and 10 in

Section 4).

We now explain α(−) in more detail. For type τ =

{x : int | P}, α(τ) first generates a random integer value x,

and checks whether x satisfies P or not. If x satisfies P , then

α(τ) returns x, and if not, α(τ) diverges. Next, consider the

case for τ = (x : τ1)→ τ2. If the argument x of α(τ) has

type τ1, then β(x : τ1) always either diverges or evaluates to

true; thus the body of α(τ) non-deterministically diverges

or is reduced to α(τ2). If |= x : τ1 does not hold, then

β(x : τ1) −→∗ false or β(x : τ1) −→∗ fail. Thus, the body

of α(τ) can be reduced to fail or αS(ST(τ2)), depending on

the actual value of the argument x. (It can also be reduced

to α(τ2) non-deterministically, but that does not matter.)

In either case, fail or αS(ST(τ2)) serves as a universal term

that simulates all the terms of the simple type ST(τ2), with

respect to the simulation relation defined in Section 4.

For example, consider the type

τ = ((x : int)→{r : int | r ≥ x})→ {s : int | s ≥ 0} .

Let τ1 = (x : int) → {r : int | r ≥ x} and τ2 =

{s : int | s ≥ 0}, then

α(τ) = α(τ1→ τ2)

= λx. if ∗ ∨ β(x : τ1) then α(τ2) else αS(int)

= λx. if ∗ ∨ β(x : τ1) then

let s = rand int in assume (s ≥ 0); s

else fail 2 rand int

where

β(x : τ1) = let x′ = α(int) in

let r = xx′ in β(r : {r : int | r ≥ x})

= let x′ = rand int in let r = xx′ in r ≥ x.

The following theorem describes the correctness of the re-

duction.

Theorem 1. Let t be a closed term of type ST(τ1)→· · ·→
ST(τn)→ int. Then the following holds:

|= t : (x1 : τ1)→ · · · → (xn : τn)→{r : int | P}

⇐⇒

|= let r0 = t in

let x1 = α(τ1) in let r1 = r0 x1 in

...

let xn = α(τn) in let rn = rn−1 xn in

assert(P [rn/r]) : int

The theorem states that the reduction is sound and complete

in the sense that the given program has the given refinement

type if and only if the transformed program does not fail.

We prove the theorem in the next section.

4. Proof of the Correctness of the Re-

duction

In this section, we prove the correctness of the reduction

(Theorem 1). We first briefly sketch the proof of the follow-

ing main lemma.

Lemma 2. |= v1 : (x : τ1)→ τ2 if and only if |= v1 v2 :

τ2[v2/x] for any v2 such that α(τ1) −→∗ v2.

The lemma intuitively states that, to check that v has func-

tion type τ1 → τ2, it is sufficient (and necessary) to check

that v (α(τ1)) has type τ2. The “only-if” direction is trivial

from the definition of (|=) and (1) of Lemma 9 below. To

show the “if” direction, we first show that α(τ) simulates

all the terms of type τ , i.e., for any term t of type τ and any

context C, if C[t] −→∗ fail, then C[α(τ)] −→∗ fail. We

also show that the simulation relation preserves typability,

i.e., if t simulates t′, then |= t : τ implies |= t′ : τ . By

the two properties above, we can show that v (α(τ1)) sim-

ulates v v′ for any v′ of type τ1, and hence we have that

|= v (α(τ1)) : τ2 implies |= v v′ : τ2.

In the above sketch, we used the observational (contex-

tual) preorder to explain the notion of simulation simply,

but in the proof below, we use the following definition of

simulation.

Definition 3 (Simulation). A simulation is a family of re-

lations {Rσ}σ such that Rσ is a relation between terms of

© 2007 Information Processing Society of Japan 4

IPSJ Transactions on Programming Vol.0 No.0 1–8 (??? 2007)

simple type σ, and if t1 Rσ t2, then either t2 −→∗ fail or

the following hold:

• If t1 −→∗ n, then t2 −→∗ n.

• If σ is of the form σ1 → σ2 and t1 −→∗ fix(f, λx. t′1),

then there exists t′2 such that t2 −→∗ fix(f, λx. t′2) and

t′1[fix(f, λx. t′1)/f][v1/x] Rσ2 t′2[fix(f, λx. t′2)/f][v2/x]

for any values v1 and v2 such that v1 Rσ1 v2.

• If t1 −→∗ fail, then t2 −→∗ fail.

We define {.σ}σ as the greatest simulation. For open terms

t1 and t2, we also write t1 .σ t2 if, for some simple type

environment Γ = x1 : σ1, . . . , xn : σn,

• t1 and t2 have simple type σ under Γ, and

• t1[v1/x1, . . . , vn/xn] .σ t2[v1/x1, . . . , vn/xn] for any

v1, . . . , vn such that vi has type σi for each i.

To prove the main lemma (Lemma 2), we first show some

basic properties of the simulation relation (Lemmas 4–6).

Lemma 4. Suppose t1 .σ t2. If |= t2 : τ , then |= t1 : τ .

Proof. By induction on σ. Suppose t1 .σ t2 and |= t2 : τ .

If t1 −→∗ fail, by the assumption t1 .σ t2, we have

t2 −→∗ fail, which contradicts |= t2 : τ . We show |= v : τ

for any v such that t1 −→∗ v.

Case v = n: By the assumption t1 .σ t2, we have

t2 −→∗ n and |= n : τ , as required.

Case v = fix(f, λx. t′1): We have σ = σ1 → σ2

for some σ1 and σ2. By the assumption t1 .σ t2,

there exists t′2 such that t2 −→∗ fix(f, λx. t′2) and

t′1[fix(f, λx. t′1)/f][v1/x] .σ2 t′2[fix(f, λx. t′2)/f][v2/x] for

any values v1 and v2 such that v1 .σ1 v2. By the assump-

tion |= t2 : τ , we have |= t′2[fix(f, λx. t′2)/f][v2/x] : τ2[v2/x]

for any v2 such that |= v2 : τ1. Let τ = (x : τ1)→ τ2, and

v′ be a value such that |= v′ : τ1. Since v′ .σ1 v′, we get

|= t′2[fix(f, λx. t′2)/f][v′/x] : τ2[v′/x]

⇒ |= t′1[fix(f, λx. t′1)/f][v′/x] : τ2[v′/x]

(by I.H.)

⇒ |= v v′ : τ2[v′/x]

(since v v′ � t′1[fix(f, λx. t′1)/f][v′/x]).

Thus, we obtain |= v : τ .

Lemma 5. If v1 .σ v2, then τ [v2/x] = τ [v1/x].

Proof. If σ = int, then we have v1 = v2. Therefore,

we get τ [v2/x] = τ [v1/x]. If σ is a function type, since

a variable of a function type cannot occur in τ , we have

τ [v2/x] = τ = τ [v1/x].

Lemma 6. If t1 .σ1→σ2 t2 and t′1 .σ1 t′2, then t1 t
′
1 .σ2

t2 t
′
2.

Proof. Suppose t1 t
′
1 −→∗ v. We have t1 −→∗

fix(f, λx. t3), t′1 −→∗ v1, t3[fix(f, λx. t3)/f][v1/x] −→∗ v
for some t3 and v1. By the assumption that t′1 .σ1 t′2,

we have v1 .σ1 v2 for some v2 such that t′2 −→∗ v2.

Therefore, by the assumption that t1 .σ1→σ2 t2, we get

t3[fix(f, λx. t3)/f][v1/x] .σ2 t4[fix(f, λx. t4)/f][v2/x] for

some t4 such that t2 −→∗ fix(f, λx. t4).

Next, we show some properties of α(−) (Lemmas 7–11).

Lemma 7. If v .σ α(τ), then there exists v′ such that

α(τ) −→∗ v′ and v .σ v′.

Proof. By case analysis on τ .

Lemma 8. Suppose FV (τ) = {x} and τ [v/x] is valid type,

i.e., predicates in τ [v/x] are well-typed and have type int.

Then, α(τ)[v/x] = α(τ [v/x]), and β(v′ : τ)[v/x] = β(v′ :

τ [v/x]).

Proof. By induction on the size of ST(τ).

Lemma 9. For any type τ , the following hold.

(1) |= α(τ) : τ .

(2) If |= v : τ , then β(v : τ) � true.

Proof. By induction on the size of ST(τ).

Case τ = {x : int | P}: By the definition of α(−), we

have

α(τ) = let x = rand int in assume (P) ; x.

We show that |= assume (P [n/x]) ; n : τ for any integer n.

Since P does not include applications and rand int, there

exist a unique v such that P [n/x] � v. If v = true, since

|= P [n/x] holds, we obtain |= n : τ . If v 6= true, since

assume (P [n/x]) ⇑, we have |= assume (P [n/x]) ; n : τ .

Suppose |= n′ : τ for some integer n′. β(n′ : τ) = P [n′/x] �
true follows from the definition of |= n′ : τ .

Case τ = (x : τ1)→τ2: By the definition of α(−), we have

α(τ) = λx. if ∗ ∨ β(x : τ1) then α(τ2)

else αS(ST(τ2)).

We show that |= α(τ) v : τ2[v/x] for any v such that

|= v : τ1. We get β(v : τ1) � true by I.H. There-

fore, we have α(τ) v � α(τ2[v/x]) by Lemma 8. Since

|= α(τ2[v/x]) : τ2[v/x] by I.H., we get |= α(τ) v : τ2[v/x].

We next show that β(v : τ) � true for any v such that

|= v : τ . By the definition of β(−), we have

β(v : τ) = let x = α(τ1) in let r = v x in β(r : τ2).

Suppose α(τ1) −→∗ v′, v v′ −→∗ v′′, and

β(v : τ) −→∗ let r = v v′ in β(r : τ2)[v′/x]

−→∗ β(v′′ : τ2)[v′/x].

Since |= α(τ1) : τ1 by I.H., we have |= v′ : τ1 and

|= v′′ : τ2[v′/x]. By I.H., we get β(v′′ : τ2[v′/x]) � true,

and hence, β(v′′ : τ2)[v′/x] � true by Lemma 8.

Lemma 10. Let i be an integer and v be a value of sim-

ple type ST(τ). Suppose t .ST(τ ′) α(τ ′) for any t and τ ′

such that |= t : τ ′ and size(ST(τ ′)) < i. If 6|= v : τ and

size(ST(τ)) = i, one of the following holds:

• β(v : τ) −→∗ false, or

• β(v : τ) −→∗ fail.

© 2007 Information Processing Society of Japan 5

IPSJ Transactions on Programming Vol.0 No.0 1–8 (??? 2007)

Proof. By induction on the simple type of τ .

Case τ = {x : int | P}: We have v = n for some n. By

the assumption that 6|= v : τ , P [v/x] −→∗ false.

Case τ = (x : τ1) → τ2: We have v = fix(f, λx. t) for

some t. Since 6|= v : (x : τ1)→ τ2, there exists v′ such that

|= v′ : τ1 and 6|= v v′ : τ2[v′/x]. By the assumption and

size(ST(τ1)) < size(ST(τ)) = i, we have v′ .ST(τ1) α(τ1).

Hence, we get v v′ .ST(τ2) v α(τ1) by Lemma 6. Therefore,

by Lemma 4, we get 6|= v α(τ1) : τ2[v′/x], i.e., there exists

v1 and a such that α(τ1) −→∗ v1, v v1 −→∗ a, and 6|= a :

τ2[v′/x]. If a = fail, then we obtain β(v : τ) −→∗ fail. If

a = v2 for some v2, since

β(v : τ) −→∗ let r = v v1 in β(r : τ2[v′/x])

−→∗ β(v2 : τ2[v′/x]),

we get β(v : τ) −→∗ false or β(v : τ) −→∗ fail by I.H.

Lemma 11. The followings hold:

• If |= t : τ , then t .ST(τ) α(τ).

• If t has simple type ST(τ), then t .ST(τ) αS(ST(τ)).

Proof. By induction on the size of ST(τ).

Case ST(τ) = int and t −→∗ fail: If |= t : τ , then it

contradicts to the assumption. If t has simple type int, we

have αS(int) = fail 2 rand int −→ fail.

Case ST(τ) = int and t −→∗ n: Suppose |= t :

{x : int | P}. Since |=p P [n/x] and

α(τ) = let x = rand int in assume (P); x,

we get α(τ) −→∗ n. Therefore, we obtain t .int α(τ).

If t has simple type int, we have αS(int) = fail 2

rand int −→∗ n.

Case ST(τ) = σ1→σ2 and t −→∗ fail: Similar to the first

case.

Case ST(τ) = σ1 → σ2 and t −→∗ fix(f, λx. t′):

Suppose |= t : (x : τ1) → τ2. We show that, there

exists t1 such that α(τ) −→∗ fix(f, λx. t1) and

t′[fix(f, λx. t′)/f][v1/x] .σ2 t1[fix(f, λx. t1)/f][v2/x]

for any values v1 and v2 such that v1 .σ1 v2. Let

t1 be if ∗ ∨ β(x : τ1) then α(τ2) else α(ST(τ2)),

then α(τ) = fix(f, λx. t1). If |= v1 : τ1, then

we have |= t′[fix(f, λx. t′)/f][v1/x] : τ2[v1/x].

Since t1[fix(f, λx. t1)/f][v2/x] −→∗ α(τ2)[v2/x] =

α(τ2[v2/x]) = α(τ2[v1/x]) by Lemmas 8 and 5, we get

t′[fix(f, λx. t′)/f][v1/x] .ST(τ2) t1[fix(f, λx. t1)/f][v2/x]

by I.H. If 6|= v1 : τ1, then we have 6|= v2 : τ1

by Lemma 4, and hence, β(v2 : τ1) −→∗ false

or β(v2 : τ1) −→∗ fail by Lemma 10. Since

t1[fix(f, λx. t1)/f][v2/x] −→∗ fail, we obtain

t′[fix(f, λx. t′)/f][v1/x] .σ2 t1[fix(f, λx. t1)/f][v2/x].

Suppose t has simple type ST(τ). Let t1 be αS(σ2) and v1

and v2 be values such that v1 .σ1 v2, then αS(ST(τ)) =

λx. t1 and t1[v2/x] = αS(σ2)[v2/x] = αS(σ2). Hence, by

I.H., we get t′[fix(f, λx. t′)/f][v1/x] .σ2 αS(σ2)[v2/x].

We now show the main lemma and Theorem 1.

Proof of Lemma 2. “Only-if” direction: Obvious from (1)

of Lemma 9.

“If” direction: Suppose |= v1 v2 : τ2[v2/x] for any v2 such

that α(τ1) −→∗ v2. We show that |= v1 v
′
2 : τ2[v′2/x] for

any v′2 such that |= v′2 : τ1. We have v′2 .ST(τ1) α(τ1)

by Lemma 11, and hence, by Lemma 7, there exists v′′2 such

that α(τ1) −→∗ v′′2 and v′2 . v′′2 . By the assumption, we get

|= v1 v
′′
2 : τ2[v′′2 /x]. Therefore, we obtain |= v1 v

′
2 : τ2[v′2/x]

by Lemmas 4 and 5.

Proof of Theorem 1.

|= t : (x1 : τ1)→ · · · → (xn : τn)→{r : int | P}

⇐⇒ ∀a.t −→∗ a⇒

|= a : (x1 : τ1)→ · · · → (xn : τn)→{r : int | P}

(by the definition of (|=))

⇐⇒ ∀a.t −→∗ a⇒ ∀v1, . . . , vn.∧
i∈{1,...,n}

α(τi[vj/xj]j∈{1,...,i−1}) −→∗ vi ⇒

|= a v1 . . . vn :
{
r : int

∣∣ P [vj/xj]j∈{1,...,n}
}

(by Lemma 2)

⇐⇒ ∀a.t −→∗ a⇒ ∀v1, . . . , vn.∧
i∈{1,...,n}

α(τi[vj/xj]j∈{1,...,i−1}) −→∗ vi ⇒

∀a′.a v1 . . . vn −→∗ a′ ⇒

|= a′ :
{
r : int

∣∣ P [vj/xj]j∈{1,...,n}
}

(by the definition of (|=))

⇐⇒ ∀a.t −→∗ a⇒ ∀v1, . . . , vn.∧
i∈{1,...,n}

α(τi[vj/xj]j∈{1,...,i−1}) −→∗ vi ⇒

∀a′.a v1 . . . vn −→∗ a′ ⇒ (a′ 6= fail ∧

|= assert(P [vj/xj]j∈{1,...,n}[a
′/r]) : int)

(by the definition of the semantics)

⇐⇒ ∀a.t −→∗ a⇒ ∀v1, . . . , vn.∧
i∈{1,...,n}

α(τi[vj/xj]j∈{1,...,i−1}) −→∗ vi ⇒

|=
let r = a v1 . . . vn in

assert(P [vj/xj]j∈{1,...,n})
: int

(by the definition of the semantics)

⇐⇒ ∀v1, . . . , vn.∧
i∈{1,...,n}

α(τi[vj/xj]j∈{1,...,i−1}) −→∗ vi ⇒

|=
let r = t v1 . . . vn in

assert(P [vj/xj]j∈{1,...,n})
: int

(by the definition of the semantics)

⇐⇒ |= let r0 = t in let x1 = α(τ1) in let r1 = r0 x1 in

. . . let xn = α(τn) in let rn = rn−1 xn in

assert(P [rn/r]) : int

(by the definition of the semantics)

© 2007 Information Processing Society of Japan 6

IPSJ Transactions on Programming Vol.0 No.0 1–8 (??? 2007)

Table 1 Results of preliminary experiments

problem size time [sec]
fsum intro1 45 0.227
fsum intro2 43 0.266
sum 28 0.096
mult 38 0.271
max 52 0.185
mc91 35 0.232
ack 41 0.131
a-cppr 155 1.481
a-dotprod 74 0.742
l-zipunzip 86 0.304
l-zipmap 80 0.168
sum intro 36 0.108
copy intro 26 0.113
sum-e 28 0.099
mult-e 38 0.179
mc91-e 35 0.112
harmonic-e 75 2.872
fold right 55 0.950
forall eq pair 51 0.322
forall leq 47 0.283
iter 43 0.224
harmonic 81 0.501
fold left 55 0.941
fold fun list 81 0.269

5. Preliminary Experiments

To evaluate our method, we have implemented a refine-

ment type checker. Our type checker uses MoCHi [5], [7], [10]

as the underlying assertion checker. Most of the benchmark

programs are taken from the benchmark of MoCHi [7]. The

specification of each program is given by hand. To test the

implementation for various programs, we have extended our

method to deal with Booleans, pairs, and lists. We did not

use some programs in the benchmark of MoCHi since the

extended method cannot deal with algebraic data types, ex-

ceptions, and predicates about lengths of lists, which is just

a limitation on the current implementation. We can natu-

rally extend our method to deal with these features.

Table 1 shows the experimental results. The column

“size” shows the word counts of the program and the re-

finement type as the specification. The experiment was

conducted on Intel Core i7-3930K CPU with 12 MB cache

and 16 GB memory. The implementation can be tested

and all the programs are available at http://www-kb.is.

s.u-tokyo.ac.jp/~ryosuke/mochi_ref_assert/.

All the programs have been verified correctly and fully

automatically. Most of the program are verified within less

than a second. Most of the time for verification has been

spent by MoCHi, not the transformation given in the cur-

rent paper. The problems “fsum intro1” and “fsum intro2”

are the examples in Section 1. The other programs are

taken from the benchmark of MoCHi. The problems be-

low “fold right” are about list manipulating programs. For

example, “forall eq pair” is the problem to check that the

forall function for lists have type

({(x, y) : int× int | x = y}→ {r : bool | r})→

{(x, y) : int× int | x = y} list→{r : bool | r}.

If a programmer checks it by MoCHi alone instead of

using our method, he/she needs to write the genera-

tors for {(x, y) : int× int | x = y} → {r : bool | r} and

{(x, y) : int× int | x = y} list, which is harder than pro-

viding the refinement type of the specification above. The

problems “xxx-e” are about wrong specifications. Since

our reduction is complete and MoCHi can also check that

the given program is actually unsafe, our verifier can also

report that the given program actually does not have the

given type.

6. Related Work

There are several pieces of work on automatic or semi-

automatic inference on refinement types [4], [6], [8], [9], [12].

Unno and Kobayashi [9] and Jhala et al. [4] proposed au-

tomated refinement type inference methods based on con-

straints. Their methods first prepare templates of refine-

ment types, generate constraints, and then solve them.

Unno and Kobayashi [9] solve the constraints by using an

interpolating theorem prover, and Jhala et al. [4] reduce the

constraints to a verification problem for a first-order imper-

ative program, and then verify it by using an existing model

checker. Terauchi [8] proposed an automated refinement

type inference method based on counterexample-guided re-

finement of refinement types. All the methods above are

based on refinement type systems that are incomplete with

respect to the semantics of refinement types; thus their over-

all methods are incomplete for the semantic refinement type

checking problem. In contrast, our method reduces refine-

ment type checking to assertion checking in a sound and

complete manner; thus, our method is relatively complete

with respect to the (hypothetical) completeness of an asser-

tion checker. Even though there is actually no complete as-

sertion checker, a stronger assertion checker enables stronger

refinement type checking. For example, when using MoCHi

as an underlying assertion checker, our method can verify

that the following judgment is semantically valid [5].

|=

let f x y =

if (x() > 0)&(y() ≤ 0) then fail else 0 in

let h x y = x in

let main x = f (h x) (h x) in

main

: int→ int

None of the three methods above [4], [8], [9] can verify this

example, due to the limitation of the underlying refinement

type systems. Another advantage of our approach is that,

when a given program does not satisfy a refinement type

specification, we can generate a concrete execution sequence

in which the specification is violated. Terauchi’s method [8]

also generates a counterexample, but it is a fragment of the

program that cannot be typed in the underlying type sys-

tem, which is not necessarily a counterexample against the

© 2007 Information Processing Society of Japan 7

IPSJ Transactions on Programming Vol.0 No.0 1–8 (??? 2007)

semantic refinement type checking problem.

Rondon et al. [6], and Zhu and Jagannathan [12] also pro-

posed refinement type inference methods. Their methods

are semi-automated, in the sense that these verifiers require

users to give hints on predicates. In contrast, our verifica-

tion method is fully automated; users need not supply any

hints nor type annotations.

Dependent ML [11] is a functional language equipped with

a restricted form of dependent types. Users must provide

type annotations for all the functions.

Dependent types have been used in the context of inter-

active theorem provers. While more expressive types are

allowed in such a context (e.g., function variables may be

used in refinement predicates), users have to provide not

just type annotations but also “proofs” that a given term

has a given type.

7. Conclusion and Future Work

We have proposed a reduction from a refinement type

checking problem for functional programs to an assertion

checking problem, and proved its correctness. We have im-

plemented a prototype verifier based on the reduction and

confirmed that it works well for several programs.

There are several limitations in our method, as described

below. Relaxing them is left for future work. First, the

refinement types in this paper are restricted to first-order

ones, where refinement predicates may contain only base-

type variables. Second, we have not considered polymor-

phic types. It is an interesting issue whether and how we

can define α(τ) for a polymorphic type τ . Thirdly, as men-

tioned in Section 1, our method relies on the existence of

non-determinism.

Acknowledgment

We would like to thank anonymous referees for useful com-

ments. This work was supported by Kakenhi 23220001 and

15H05706.

References

[1] Asada, K., Sato, R. and Kobayashi, N.: Verifying Relational
Properties of Functional Programs by First-Order Refine-
ment, Proceedings of the ACM SIGPLAN 2015 Workshop
on Partial Evaluation and Program Manipulation (PEPM
2015), pp. 61–72 (2015).

[2] Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A. D.
and Maffeis, S.: Refinement types for secure implementa-
tions, ACM Transactions on Programming Languages and
Systems, Vol. 33, No. 2, pp. 1–45 (2011).

[3] Freeman, T. and Pfenning, F.: Refinement types for ML,
Proceedings of the ACM SIGPLAN 1991 Conference on
Programming Language Design and Implementation (PLDI
1991), pp. 268–277 (1991).

[4] Jhala, R., Majumdar, R. and Rybalchenko, A.: HMC: Verify-
ing functional programs using abstract interpreters, Proceed-
ings of 23rd International Conference on Computer Aided
Verification (CAV 2011), pp. 470–485 (2011).

[5] Kobayashi, N., Sato, R. and Unno, H.: Predicate abstraction
and CEGAR for higher-order model checking, Proceedings of
the 2011 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI 2011), pp. 222–233
(2011).

[6] Rondon, P. M., Kawaguchi, M. and Jhala, R.: Liquid types,
Proceedings of the 2008 ACM SIGPLAN conference on

Programming language design and implementation (PLDI
2008), pp. 159–169 (2008).

[7] Sato, R., Unno, H. and Kobayashi, N.: Towards a scalable
software model checker for higher-order programs, Proceed-
ings of the ACM SIGPLAN 2013 Workshop on Partial Eval-
uation and Program Manipulation (PEPM 2013), pp. 53–62
(2013).

[8] Terauchi, T.: Dependent Types from Counterexamples, Pro-
ceedings of the 37th annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL
2010), pp. 119–130 (2010).

[9] Unno, H. and Kobayashi, N.: Dependent type inference with
interpolants, Proceedings of the 11th ACM SIGPLAN Con-
ference on Principles and Practice of Declarative Program-
ming (PPDP 2009), pp. 277–288 (2009).

[10] Unno, H., Terauchi, T. and Kobayashi, N.: Automating rel-
atively complete verification of higher-order functional pro-
grams, Proceedings of the 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL 2013), pp. 75–86 (2013).

[11] Xi, H. and Pfenning, F.: Dependent types in practical
programming, Proceedings of the 26th ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages (POPL 1999), pp. 214–227 (1999).

[12] Zhu, H. and Jagannathan, S.: Compositional and
Lightweight Dependent Type Inference for ML, Proceedings
of the 14th Conference on Verification, Model Checking and
Abstract Interpretation (VMCAI 2013), pp. 295–314 (2013).

Ryosuke Sato was born in 1985, and

received his B.S. (in 2008), M.S. (in

2010), and D.S. degrees (in 2013) from

Tohoku University. He is a post-

doctoral researcher in the University

of Tokyo. He is interested in program

verification based on formal methods.

He is a member of the ACM.

Kazuyuki Asada was born in 1981,

and received his B.S. (in 2004), M.S.

(in 2006), and D.S. degrees (in 2009)

from Kyoto University. He is a post-

doctoral researcher in the University of

Tokyo. He is interested in semantics of

programming languages and logic.

Naoki Kobayashi was born in 1968.

He received his B.S., M.S., and D.S.

degrees from University of Tokyo in

1991, 1993 and 1996, respectively. He

is a professor in Department of Com-

puter Science, Graduate School of In-

formation Science and Technology, the

University of Tokyo. His current ma-

jor research interests are in principles of programming lan-

guages. In particular, he is interested in type systems and

program verification.

© 2007 Information Processing Society of Japan 8

