
Temporal Verification of Higher-Order Functional Programs

Akihiro Murase ∗

Nagoya University, Japan

murase@sqlab.jp

Tachio Terauchi

JAIST, Japan

terauchi@jaist.ac.jp

Naoki Kobayashi

University of Tokyo, Japan

koba@is.s.u-tokyo.ac.jp

Ryosuke Sato

University of Tokyo, Japan

ryosuke@kb.is.s.u-tokyo.ac.jp

Hiroshi Unno

University of Tsukuba, Japan

uhiro@cs.tsukuba.ac.jp

Abstract

We present an automated approach to verifying arbitrary omega-
regular properties of higher-order functional programs. Previous
automated methods proposed for this class of programs could only
handle safety properties or termination, and our approach is the first
to be able to verify arbitrary omega-regular liveness properties.

Our approach is automata-theoretic, and extends our recent
work on binary-reachability-based approach to automated termina-
tion verification of higher-order functional programs to fair termi-
nation published in ESOP 2014. In that work, we have shown that
checking disjunctive well-foundedness of (the transitive closure
of) the “calling relation” is sound and complete for termination.
The extension to fair termination is tricky, however, because the
straightforward extension that checks disjunctive well-foundedness
of the fair calling relation turns out to be unsound, as we shall show
in the paper. Roughly, our solution is to check fairness on the tran-
sition relation instead of the calling relation, and propagate the in-
formation to determine when it is necessary and sufficient to check
for disjunctive well-foundedness on the calling relation. We prove
that our approach is sound and complete. We have implemented a
prototype of our approach, and confirmed that it is able to automat-
ically verify liveness properties of some non-trivial higher-order
programs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Formal methods, Model
checking; F.3.1 [Logics and Meaning of Programs]: Specifying
and Verifying and Reasoning about Programs—Assertions, Invari-
ants, Mechanical verfication; F.3.2 [Logics and Meaning of Pro-
grams]: Semantics of Programming Languages—Program analy-
sis; F.4.1 [Mathematical Logic and Formal Languages]: Mathe-
matical Logic—Temporal logic
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1. Introduction

Recent years have witnessed a significant progress in techniques
for automatically verifying higher-order functional (or, procedural)
programs. Besides the purely theoretical interests, the progress is
motivated in part by the desire to verify real world programs that
contain higher-order functions (e.g., programs written in functional
languages such as OCaml [13, 17, 27, 32–34] and Haskell [36, 37]),
and also in part by the observation that higher-order functions
can be used to (often concisely) model advanced programming
language features, such as recursive data structures, exceptions, and
continuations, thus turning the verifiers for higher-order functional
programs into verifiers for programs containing such features [28].

For the case the data is finite and the program is well-typed,
Ong and others [9, 16, 21–23] have presented algorithms for veri-
fying arbitrary modal-µ temporal properties of higher-order func-
tional programs. However, for the infinite data case, the current
state-of-the-art methods are limited to either only safety proper-
ties [13, 17, 27, 32–34, 36, 37] or termination [10, 15, 20, 29].
This is in stark contrast to imperative programs which have appro-
priated effective automated techniques for verifying an expressive
range of temporal properties [2–5]. To rectify the situation, this pa-
per presents the first approach to automatically verifying arbitrary
ω-regular temporal properties of (possibly untyped) infinite data
higher-order functional programs. (Recall that an ω-regular prop-
erty is a set of infinite words recognized by a Büchi automaton, and
includes any property expressible by linear temporal logic.) Next,
we give an informal overview of our approach.

1.1 Informal Overview

Our approach follows the automata-theoretic framework [35], and
reduces the temporal property verification to verifying that the
program has no infinite fair execution traces (i.e., fair termination).
To verify fair termination for higher-order functional programs, we
build on our recent work [20] on (plain) termination verification
for higher-order functional programs. Next, we briefly overview the
main ideas of [20]. We abbreviate a sequence w1, . . . , wk to w̃ and
write |w̃| for the length of the sequence w̃ below.

The approach taken in [20] adopts the binary reachability anal-
ysis (BRA) method that was originally proposed by Cook et al. for
termination verification of imperative programs [6]. Recall that a
binary relation is said to be disjunctively well-founded if it is a fi-
nite union of well-founded relations. Let TransP be the transition



relation of a program P (i.e., (e, e′) ∈ TransP if and only if e
and e′ are states occurring in an execution of P such that there is

a transition from e to e′). P is terminating if and only if Trans+P
is disjunctively well-founded [26] (we write R+ for the transitive
closure of the binary relation R), and [6] presents an automatic
method, the BRA approach, which checks the latter by an iterative
reduction to plain reachability verification problems.

As remarked in previous literature on BRA [6, 20], advantages
of the BRA approach over the other approaches to termination
verification are that termination arguments can be flexibly adjusted
for each program, and that precise flow information can be taken
into account in the plain reachability verification phase. The latter
advantage is particularly important since the termination property
often depends on safety properties.

Whereas BRA for imperative programs checks disjunctive well-
foundedness of the transitive closure of the transition relation, the
key idea in [20] is to check that of the calling relation. More
formally, a calling relation CallP is the set of pairs (f w̃, g ṽ)
where f w̃ and g ṽ are total applications that occur in an execution

of P such that the call g ṽ is made from f w̃.1 A key result proved

in [20] is that P is terminating if and only if Call+P is disjunctively
well-founded. (We underscore that the calling relation is over the
actual calls that happen in the program execution, and not “static”
call sites that appear in the program text.)

In principle, checking disjunctive well-foundedness of (the tran-
sitive closure of) the transition relation is sound and complete for
termination even for higher-order functional programs (i.e., the
method proposed by [6, 26] is language agnostic because any pro-
gram can be considered a transition system). The advantage of us-
ing the calling relation instead of the transition relation is that it
avoids the need to explicitly reason about the change in the calling
context (i.e., the call stack). For example, recall the definition of the
Ackermann function:

acmn = ifm = 0 then n+ 1
else if n = 0 then ac (m− 1) 1
else ac (m− 1) (acm (n− 1))

Let P be a program that calls ac with some non-negative argu-
ments. P is terminating, and there is a simple termination argu-
ment (i.e., disjunctively well-founded relation containing the tran-
sitive closure of the calling relation) sufficient to prove termination:
D1 ∪D2 where

D1 = {(acmn, acm′ n′) | m > m′ ∧m′ ≥ 0}
D2 = {(acmn, acm′ n′) | n > n′ ∧ n′ ≥ 0}

Indeed, Call+P ⊆ D1 ∪ D2 because any (transitive) recursive call
to ac either decreases on the first argument or the second argument.
However, the transition relation of the program is quite complex, as
seen below in the transition sequence given m,n > 0.

acmn → ac (m− 1) (acm (n− 1))
→ ac (m− 1) (ac (m− 1) (acm (n− 2)))
.
..
→ ac (m− 1) (ac (m− 1) (. . . , (acm 0) . . .))
→ ac (m− 1) (ac (m− 1) (. . . , (ac (m− 1) 1) . . .))
...

Consequently, the required termination argument also becomes
more complex. In general, the complexity comes from the need to
reason about changes in the calling context (e.g., a program ter-
minates because the number of pending callers on the call stack
decreases), and hence avoiding such a reasoning by using the call-

1 We assume that the program is lambda-lifted [14] so that all function
definitions occur (mutually recursively) at the top level.

f n

f 0 f 1

f 0 f 1

f 0 .
..

Figure 1. The graph of CallPex .

ing relation instead of the transition relation is crucial to practical

verification.2

We remark that the above example is only first-order, and
that things become even more intricate when we move to higher-
order. A contribution of [20] shows that checking disjunctive well-
foundedness on the transitive closure of the calling relation is sound
and complete even in the presence of higher-order functions.

Extending to Fair Termination. In this work, we extend the ap-
proach of [20] to fair termination. Recall that an infinite sequence
π is said to be fair with respect to a Streett fairness constraint
C = {(p1, q1), (p2, q2), . . . , (pn, qn)} if for each (pi, qi) ∈ C,
either pi is true for only finitely many elements of π or qi is true
for infinitely many elements of π. P is said to be fair terminating
under C if P has no infinite execution trace that is fair with respect
to C.

We call a finite sequence ̟ fair with respect to C if for each
(pi, qi) ∈ C, either pi is false for all elements of ̟ or qi is true

for some element of ̟. For a binary relation R, let RfairC (+) =
{(̟(1),̟(|̟|)) | ̟ ∈ paths(R) ∧ ̟ is fair wrt. C} where
paths(R) = {̟ | ∀i.1 ≤ i < |̟| ⇒ (̟(i),̟(i + 1)) ∈ R}.

Intuitively, RfairC(+) is the subset of R+ that only considers the
sequences of transitions that are fair with respect to C. Using a
result in a paper by Pneuli et al. [24], Cook et al. [2] have shown

that P is fair terminating under C if and only if Trans
fairC (+)
P

(i.e., RfairC(+) with R = TransP ) is disjunctively well-founded.
The latter result is then used to obtain a BRA approach to sound
and complete automatic fair-termination verification of imperative
programs.

Knowing the result for the plain termination case shown by [20],
one may be lead to believe that the result of [2] can be applied
directly to obtain the following scheme for checking fair termina-
tion of higher-order functional programs: check disjunctive well-
foundedness of fair sequences of calling relations. That is, check

that Call
fairC(+)
P is disjunctively well-founded. However, perhaps

somewhat surprisingly, the approach turns out to be unsound.3 To
see this, consider the program Pex that starts by calling the follow-
ing function f with a positive argument:

f x = if x ≤ 0 then ()
else (f 0); (f 1)

Let C = {(true, f 0)}, that is, f is called with the argument
0 infinitely often in an execution that is fair with respect to C.
Clearly, Pex is not fair terminating under C since any execution
of Pex is non-terminating and contains infinitely many calls to

2 In fact, the set of functional programs that can be proved terminating
by disjunctive well-foundedness on the transitive closure of the calling
relation is strictly larger than the set that can be proved by that of the
transition relation, for a class of termination arguments such as linear
ranking functions [1, 38].
3 For simplicity, this section restricts state predicates to function applica-
tions. Section 2 introduces more general events that can be used to express
arbitrary ω-regular temporal properties of program states. A similar issue
applies in that setting.



f with the argument 0. Nonetheless, Call
fairC (+)
Pex

is disjunctively
well-founded. Indeed, it can be seen from Figure 1 which shows
the graph of CallPex (i.e., Pex ’s call tree [20]) that any infinite
path in CallPex is unfair with respect to C.

The solution we propose in this paper is to decide when a
transition sequence is fair by inspecting the transition relation,
and use that information to decide when we should check for
disjunctive well-foundedness of the calling relation. More formally,
let →P be the one-step transition of P and RP be the set of states
reachable from an initial state of P . Note that we have:

Trans+P = {(e, e′) | e ∈ RP ∧ e →+
P e′}

Trans
fairC(+)
P = {(e, e′) | e ∈ RP ∧ e →

fairC (+)
P e′}

Call+P = {(f w̃, g ṽ) | E[f w̃] ∈ RP ∧ f w̃ →+
P E′[g ṽ]

∧ arity(f) = |w̃| ∧ arity(g) = |ṽ|}

where E and E′ are evaluation contexts. Let the relation ⊲CP be
defined as follows.

⊲CP = {(f w̃, g ṽ) | E[f w̃] ∈ RP ∧ f w̃ →
fairC(+)
P E′[g ṽ]

∧ arity(f) = |w̃| ∧ arity(g) = |ṽ|}

That is, ⊲CP is the above characterization of Call+P but with →+
P

replaced by →
fairC(+)
P . The main result of the paper (Theorem 3.1)

shows that P is fair terminating under C if and only if ⊲CP is dis-
junctively well-founded. Thus, the verification method we propose

in this paper checks for the disjunctive well-foundedness of ⊲CP . As
with the work on plain termination which checks the disjunctive
well-foundedness of Call+P [20], an important advantage of this
approach is that it avoids the explicit reasoning about changes in
the calling context.

As an example, recall the program Pex from above. Let C =
{(true, f 0)} again. Recall that Pex is not fair terminating under C.

Indeed, ⊲CPex
is not disjunctively well-founded because there is an

infinite sequence:

f n ⊲CPex
f 1 ⊲CPex

f 1 ⊲CPex
. . .

This follows because f 1 →+
Pex

(f 0); (f 1) and (f 0); (f 1) →+
Pex

f 1, and therefore f 1 →
fairC(+)
Pex

f 1.
As a fair terminating example, consider Pex again, but this time

with respect to the fairness constraint C′ = {(f 0, false)}. That is, f
is called with 0 only finitely often in a trace fair with respect to C′.
Pex is fair terminating under C′, because any infinite execution of
Pex is unfair, i.e., it contains infinitely many f 0 calls. We can show

that ⊲C
′

Pex
is disjunctively well-founded. In fact, ⊲C

′

Pex
= ∅ because

f n 6→
fair

C′ (+)

Pex
f i and f 1 6→

fair
C′ (+)

Pex
f i for i ∈ {0, 1}.

As also done in [20], we take advantage of the fact that dis-
junctive well-foundedness of a calling relation can be checked per
function basis. That is, let f1, . . . , fn be the functions defined in

P . Then, ⊲CP is disjunctively well-founded if and only if for each

fi, RECP,C(fi) = {(w̃, ṽ) | fi w̃ ⊲CP fi ṽ} is disjunctively well-
founded.

Overall Flow of Verification. As in previous work on plain or fair
termination verification via BRA [2, 6, 20], we solve the disjunctive
well-foundedness checking problem in a counterexample-guided
manner. That is, we start with some candidate termination argu-
ment (i.e., disjunctively well-founded relation) D. Then, we check
if the candidate is an actual termination argument (i.e., whether
RECP,C(fi) ⊆ D holds) by a reduction to reachability checking,
and if not, we update the candidate via a counterexample analysis
and repeat.

Figure 2 shows the overview of the overall verification process.
Step 1 is a program transformation that reduces the candidate
termination argument checking problem soundly and completely
to reachability checking, and is a key technical contribution of

Program: P

Fairness Constraint: C
RECP,C(f) is disjunctively well-founded

Step 1: Program
Transformation

(Section 4)

⌈P ⌉f,D,C Step 2: Reachability
Checking [17, 32, 34]

Counterexample

Safe

Step 3: Termination
Argument Inference [20]Candidate D

Fail

P may not fair terminate under C

Figure 2. Overview of the verification process.

the paper. The step builds a transformed program ⌈P ⌉f,D,C that
is assertion safe if and only if RECP,C(f) ⊆ D (Theorem 4.1).
The program transformation adopts ideas from those proposed in
the previous work [2, 20]. Namely, it uses the idea from [2] to
detect when a sequence of transitions is fair, and uses the idea
from [20] to check that the calling relation over such sequences
is contained in the candidate D. Section 4 describes the formal
details of the program transformation. The reachability checking
(Step 2) is standard, and we refer to the previous work [17, 32,
34] for details. We use the approach proposed in [20] for the
candidate termination argument inference (Step 3), and we give
a brief overview of the process below. We have implemented a
prototype of our verification method, and we show that it is able
to verify non-trivial liveness properties of higher-order functional
programs.

In summary, our contributions are: (i) The first sound and com-
plete approach to verification of arbitrary ω-regular properties of
infinite data higher-order functional programs. Our approach com-
bines and extends ideas from previous work on plain termination
verification for high-order functional programs [20] and fair ter-
mination verification for imperative programs [2] in a non-trivial
way. (ii) Experiments with a prototype implementation to show the
effectiveness of our approach.

On Soundness and Completeness. As in previous work on BRA,
the soundness and completeness of our approach are relative to the
soundness and completeness of the backend reachability checking
and candidate termination argument inference. More precisely, our
approach is sound if the reachability checking is sound and only
disjunctively well-founded relations are inferred as candidate ter-
mination arguments, and it is complete if the reachability checking
is complete and the candidate termination argument inference al-
ways infers some relation given a spurious counterexample.

We note that the relative soundness and completeness are thanks
to the fact that the BRA approach reduces the problem of verifying
(plain or fair) termination to that of verifying plain reachability
without any loss of precision. As remarked before, this is important
for verification in practice as termination properties often depend
on safety properties.

Termination Argument Inference. We give a brief overview of
the termination argument inference process. A counterexample re-
turned by the reachability checker (cf. Step 2 of Figure 2) is a path
of the transformed program ⌈P ⌉f,D,C from the initial state to an
assertion error. That is, it is a finite sequence of (symbolic) execu-
tions ̟ of ⌈P ⌉f,D,C such that {(w̃, ṽ) | J̟K(w̃, ṽ)} 6⊆ D where



J̟K is the strongest post condition of ̟. (We refer to a previous
work [17] for details on how counterexamples can be generated in
a reachability checker for higher-order functional programs.)

By the soundness of the program transformation (Theorem 4.1),
this implies that

{(w̃, ṽ) | J̟K(w̃, ṽ)} ⊆ RECP,C(f) 6⊆ D

assuming that the reachability checker is sound. Then, via a
constraint-based ranking function inference method [7, 25], we
infer a disjunctively well-founded relation D′ such that {(w̃, ṽ) |
J̟K(w̃, ṽ)} ⊆ D′. If no such a relation is found,4 then we halt the
verification process by outputting “P may not fair terminate under
C”. Otherwise, we obtain D ∪D′ as the updated candidate termi-
nation argument to be given to Step 1 of Figure 2, and continue the
verification process.

As also observed in [20], higher-order functional programs
sometimes require termination arguments that are over function
values. However, the ranking function inference methods are typi-
cally restricted to first-order values (e.g., only inferring linear rank-
ing functions over integers). Hence, to handle such a case, [20] pro-
poses an approach where first-order implicit parameters are added
to the (transformed) program so that higher-order termination argu-
ments can be expressed as those over the implicit parameters. The
technique can be adopted straightforwardly to this work’s setting
to handle higher-order termination arguments.

Disproving Fair Termination. As in previous work on plain or
fair termination verification via BRA [2, 6, 20], our method is not
suited for disproving fair termination, i.e., for showing that there
is an infinite fair execution sequence. (Assuming the reachability
checker and the termination argument inference are complete), our
method is able to prove simple cases of fair non-termination, such
as

f 1 →
fairC(+)
Pex

f 1 →
fairC (+)
Pex

f 1 →
fairC(+)
Pex

· · · ,

because in this case, RECP,C(f) contains (1, 1). Our method can-
not, however, detect a non-looping non-termination, like

f 1 →
fairC(+)
Pex

f 2 →
fairC (+)
Pex

f 3 →
fairC(+)
Pex

· · · .

Given a program that contains such a non-looping infinite execu-
tion sequence, the counterexample-guided refinement loop of Fig-
ure 2 would diverge (assuming the reachability checker is sound
and complete and the termination argument inference is complete).
For disproving fair termination of higher-order programs, we can
extend the recently proposed method for disproving plain termina-
tion of higher-order programs [19]. We will discuss it in a separate
paper, since the method is quite different from and orthogonal to
the one discussed in the present paper.

Paper Organization. The rest of the paper is organized as follows.
We discuss related work next. Section 2 presents the target pro-
gramming language and relevant preliminary concepts. Sections 3
and 4 contain the formal details of the reduction from fair termina-
tion to reachability checking which is the main technical contribu-
tion of the paper. Section 3 formalizes the characterization of fair
termination for higher-order functional programs as checking dis-

junctive well-foundedness of ⊲CP (i.e., checking RECP,C(f) is dis-
junctively well-founded for every f in P ) , and Section 4 describes
the program transformation that reduces the problem of checking
if RECP,C(f) is contained in the given candidate termination argu-
ment to reachability checking. Section 5 reports on a preliminary

4 This occurs either when RECP,C(f) ∋ (ṽ, ṽ) for some ṽ, or when a

disjunctively well-founded relation D′ does exist but is not found due to
the incompleteness of the ranking function inference. In the former case,
we can actually conclude that P does not fair terminate.

e ::= v | event A | rand() | v1 op v2 | v1v2
| if v then e1 else e2 | let x = e1 in e2

v ::= c | x | 〈x v1 · · · vk〉

Figure 3. Source language: syntax

implementation and experiment results, and Section 6 concludes
the paper.

1.2 Related Work

To our knowledge, this paper is the first to propose a sound and
complete approach to automatically verifying arbitrary ω-regular
properties of infinite data higher-order functional programs. As re-
marked before, previous work on automated methods for higher-
order functional programs are limited to (typed) finite data pro-
grams [9, 16, 21–23], or termination [10, 15, 20, 29] and safety
properties [13, 17, 27, 32–34, 36, 37] for infinite data programs.

A notable exception to the above is the work by Skalka et
al. [30, 31] that proposes a type-and-effect system for verifying ar-
bitrary ω-regular properties of higher-order functional programs. In
their approach, a type-and-effect system is used as a static analy-
sis to obtain a sound finite-state abstraction of the program. Then,
a model checker (for finite state systems) is used to check the ab-
straction against the given temporal property. Because of the over-
approximation, the approach is incomplete and somewhat impre-
cise. In particular, any recursive call will be abstracted as an un-
bounded loop which makes it difficult to be used for deducing non-
trivial liveness properties.

Related to Skalka et al.’s work is the recent work by Hofmann
and Chen [11] that proposes a similar type-and-effect system. Their
work shows a close correspondence between the type-and-effect
system and automata theoretic concepts, and shows that the system
is sound and complete for ω-regular property verification of sim-
ple finite data first-order functional programs without conditional
branches. It is unclear if the system can be extended to higher-order
functions (the paper briefly sketches such an extension) or infinite
data.

In a recent work [18], Koskinen and Terauchi have proposed a
framework for verifying arbitrary ω-regular properties of infinite
data higher-order functional programs in a compositional manner.
However, their paper does not discuss automation, and moreover,
the approach requires an external “oracle” verifier to deduce non-
trivial liveness properties (the approach is sound and complete rel-
ative to the soundness and completeness of the oracles). Our work
is complementary to theirs in the sense that the verifier proposed
here can be put to use as an oracle in their framework.

2. Source Language

The sets of expressions and values, ranged over by e and v re-
spectively, are defined by the grammar shown in Figure 3. Here,
c ranges over the set of constants (including integers and the unit
value ⋆), op ranges over the set of binary operators, and x over
the set of variables. We write true and false for 1 and 0 respec-
tively. We write JopK for the semantics of the operator op. The
value 〈x v1 · · · vk〉 expresses a function closure; it occurs only
at run-time. We write [v1/x1, . . . , vi/xi]e for the capture-avoiding
parallel substitution of v1, . . . , vi for x1, . . . , xi in e.

In the formal syntax of expressions above, we restrict the po-
sitions where effectful expressions may occur. For readability, we
often write (especially in examples) if e0 then e1 else e2 for
let x = e0 in if x then e1 else e2, and f e1 · · · en for
let x1 = e1 in · · · let xn = en in f x1 · · · xn, etc. We also
write e1; e2 for let x = e1 in e2 when x does not occur in e2.



E[event A]
A
−→P E[⋆] (E-EV)

n : an integer

E[rand()]
ǫ
−→P E[n]

(E-RAND)

v1 JopK v2 = v

E[v1 op v2]
ǫ
−→P E[v]

(E-OP)

E[f ]
ǫ
−→P E[〈f〉] (E-CLOS0)

i < arity(f)

E[〈f v1 · · · vi−1〉vi]
ǫ
−→P E[〈f v1 · · · vi〉]

(E-CLOS1)

i = arity(f) f x1 · · · xi = e ∈ D

E[〈f v1 · · · vi−1〉vi]
ǫ
−→P E[[v1/x1, . . . , vi/xi]e]

(E-CALL)

n 6= 0

E[if n then e1 else e2]
ǫ
−→P E[e1]

(E-IFT)

E[if 0 then e1 else e2]
ǫ
−→P E[e2] (E-IFF)

E[let x = v in e]
ǫ
−→P E[[v/x]e] (E-LET)

Figure 4. Source language: reduction relation

A program P is a set of function definitions of the form:

f x1 · · · xk = e.

We write arity(f) for the number of formal parameters, i.e., k. We
assume that P contains the definition of the special “main” function
main that takes a unit value and (if terminates) returns a unit value.

The set of evaluation contexts, ranged over by E, is given by:

E ::= [ ] | let x = E in e.

The labeled reduction relation e
ℓ
−→P e′, where ℓ is either an

event or an empty sequence ǫ, is defined by the rules shown in
Figure 4. We often omit P and ǫ in the reduction relation.

We write
ℓ1···ℓn−−−−→

∗

P for the relational composition
ℓ1−→P · · ·

ℓn−→P .
Let σ = ℓ1ℓ2ℓ3 · · · be a possibly infinite sequence of labels. We

write e
σ
−→

∗

P if there exists a (possibly infinite) sequence of expres-
sions e1, e2, . . . such that

e
ℓ1−→P e1

ℓ2−→P e2
ℓ3−→P · · ·

with σ = ℓ1ℓ2ℓ3 · · ·.

Example 2.1 The example on the function f in Section 1 is ex-
pressed as the following program Pex :

f x = if x < 0 then ⋆ else

if x = 0 then event A else (f 0); (f 1)
main y = let x = rand() in f x

Here, we have inserted event A to capture the event that f 0 is
called. ✷

Example 2.2 Let Prep be the program consisting of the following
function definitions.

repeat g = let x = rand() in g x; repeat g
f x = if x > 0 then f(x− 1) else event A
main y = repeat f

The program repeatedly calls f with a random integer value as an
argument. Since each call of f eventually raises an event A, the
program never terminates and raises A infinitely often. ✷

A (Streett) fairness constraint C is a set of event pairs:

{(A1, B1), . . . , (An, Bn)}.

Intuitively, it describes the fairness constraint that if Ai occurs
infinitely often, Bi must also happen infinitely often.

Remark 2.1 Usually, a fairness constraint is of the form

{(p1, q1), . . . , (pn, qn)}

where pi, qi are sets of states, meaning “whenever one of the states
in pi is visited infinitely often, one of the states in qi must also be
visited infinitely often.” In our language, a single event Ap can be
used to express the property that one of the states in p is visited;
hence, a fairness constraint has been defined above as a set of pairs
of events, rather than as a set of pairs of “sets of” events.

Definition 2.1 Let C be {(A1, B1), . . . , (An, Bn)}, and σ be a
possibly infinite sequence of events. We write σ |= C when, for
every i ∈ {1, . . . , n}, if Ai occurs infinitely often in σ, so does
Bi.

Definition 2.2 Let C be {(A1, B1), . . . , (An, Bn)}. A program P
is fair terminating under C if, for every infinite reduction sequence

main ⋆
ℓ1−→P e1

ℓ2−→P e2
ℓ3−→P · · · ,

ℓ1ℓ2ℓ3 · · · |= C does not hold.

In other words, a program is fair terminating if there is no infinite
fair reduction sequence.

Vardi [35] has shown that verification of arbitrary ω-regular
temporal properties can be reduced to that of fair termination. We
give below some examples of reductions. Here we assume that
the body of every function definition starts with event Call,
so that every infinite reduction sequence contains infinitely may
occurrences of the event Call. Assume also that a special event
Never never occurs in programs.

• Let C be {(A, Never)}. Then a program P is fair terminating
under C if and only if A occurs infinitely often in any non-
terminating run of P . Indeed, if P is fair terminating, then the
fairness constraint C must be violated by any infinite run of the
program, which implies that A must occur infinitely often. To
see the converse, we consider the contraposition. Suppose that
the program is not fair terminating, i.e., there is a fair, infinite

reduction sequence main ⋆
σ
−→

∗

P . Then σ |= C, which implies
that either (i) A occurs only finitely often or (ii) both A and
Never occurs infinitely often. The latter cannot be the case by
the assumption on Never; hence A occurs only finitely often.

• Let C be {(A, Never), (Call, B)}. Then a program P is fair
terminating under C if and only if, for every infinite run of P ,
if B occurs infinitely often, so does A. To see why, notice that
C is violated just if either (A, Never) or (Call, B) is violated.
Since Never never happens and Call occurs infinitely often,
(A,Never) being violated means that A occurs infinitely often,
and (Call, B) being violated means that B occurs only finitely
often.

• Let P ′ be the program obtained from a program P by replacing
event Call with:

if flag then event CallA else event Call.

Here, flag is a state variable (which is added as an addi-
tional parameter of each function) that expresses whether
A has happened before. Then, P ′ is fair terminating under
{(CallA, Never)} if and only if A occurs eventually in every
infinite run of P .



• Let P ′ be the program obtained from a program P by replacing
the definition of the main function: mainx = e with

main x = e; loop ⋆
loop x = event Never; loop x

Then P ′ is fair terminating under {(Call, Never)} if and only
if P never terminates.

Remark 2.2 In general, given the program P and the ω-regular
temporal property φ to be verified, the automata-theoretic ap-
proach [35] builds an ω-automaton A¬φ that recognizes the com-
plement of φ, and verifies that the product program P×A¬φ has no
infinite runs. This is a fair-termination problem because the fairness
constraint from A¬φ is carried over to the product program.

Note that the use of Streett fairness constraints in our work
stipulates that A¬φ is represented by a Streett automaton. Streett
automata are preferred over Büchi automata in our setting because
a non-deterministic Büchi automaton is required to express an ω-
regular property in general which complicates our approach.

Remark 2.3 Our source language is untyped. Therefore, a program
evaluation may get stuck, and we consider a reduction sequence
that ends with a stuck expression as terminating. Our approach is
sound and complete even for untyped languages. But, our imple-
mentation currently supports only the typed subset because it uses
a higher-order program model checker for a typed language [17] as
the backend reachability checker.

3. Fair Termination Verification via (Fair) Binary

Reachability

This section reduces the verification of fair termination to that of
a binary reachability problem. Our notion of binary reachability,
which we call fair binary reachability, is an extension of the one
we proposed for plain termination verification [20]. Unlike in the
standard binary reachability for imperative programs [26], we track
only the relationship between the arguments of function calls in the
calling relation (cf. Section 1.1).

Definition 3.1 Let σ be a sequence of events, and let C =
{(A1, B1), . . . , (An, Bn)} be a fairness constraint. We write
σ |=fin C if, for every i ∈ {1, . . . , n}, either (i) Ai does not
occur in σ or (ii) Bi occurs in σ.

Definition 3.2 Let P be a program, f a function defined in P ,

and C a fairness constraint. We write f ṽ ⊲CP g w̃ if there ex-

ist σ1, σ2, E1, E2 such that: (i) main ⋆
σ1−→

∗

P E1[f w̃], (ii)

f w̃
σ2−→

+

P E2[g ṽ], (iii) σ2 |=fin C, and (iv) arity(f) = |w̃|
and arity(g) = |ṽ|. We write RECP,C(f) for the set

{(w̃, ṽ) | f w̃ ⊲CP f ṽ},

and call it a fair recursion relation.

The following is the key theorem for our verification method.

Theorem 3.1 A program P is fair terminating under C, if and
only if, RECP,C(f) is well-founded (i.e., there is no infinite chain
ṽ0 RECP,C(f) ṽ1RECP,C(f) ṽ2 RECP,C(f) ṽ3 · · ·) for every func-
tion f defined in P .

Since the relation RECP,C(f) is transitive, RECP,C(f) is well-
founded if and only if RECP,C(f) is disjunctively well-founded
(i.e., is a finite union of well-founded relations) [26]. Thus, to
show that P is fair terminating under C, it suffices to pick a

disjunctively well-founded relation Df for each function f , and
show that RECP,C(f) ⊆ Df . We call the problem of proving
RECP,C(f) ⊆ Df a fair binary reachability problem. How to solve
the fair binary reachability problem is discussed in Section 4.

Example 3.1 Recall Example 2.2. To check that Prep raises events
A infinitely often, it suffices to verify

RECP,C(f) ⊆ Df RECP,C(repeat) ⊆ Drepeat

RECP,C(main) ⊆ Dmain

for C = {(A, Never)}, Df = {(m,n) | m > n ≥ 0}, and
Drepeat = Dmain = ∅. Note that RECP,C(repeat) = ∅ because,

whenever repeat f
σ
−→

∗
E[repeat f ], σ contains A, so that

σ 6|= C. ✷

The rest of this section is devoted to the proof of Theorem 3.1,
which is divided into Theorems 3.2 and 3.3 below.

Theorem 3.2 (Soundness) If RECP,C(f) is well-founded for every
function f in P , then P is fair terminating.

Proof The proof is by contradiction. Suppose that RECP,C(f) is
well-founded for every function f in P , but P is not fair termi-
nating, i.e., there exists an infinite reduction sequence π that is fair.
Since π is an infinite sequence, there must be a function f such that
π can be decomposed to:

main
σ0−→

∗

P e1
σ1−→

∗

P e2
σ2−→

∗

P · · ·

where ei = E1[· · ·Ei[fṽi] · · · ] and fṽi
σi−→

∗

P Ei+1[fṽi+1] [20].
Let C = C1 ∪ C2, where (i) each event in {A | (A,B) ∈ C1}
occurs only finitely often, and (ii) each event in {A | (A,B) ∈ C2}
occurs infinitely often in π. Let Pi and Qi be {A | (A,B) ∈
Ci} and {B | (A,B) ∈ Ci} respectively. As π is fair, there
exists k such that, in σkσk+1 · · ·, no event in P1 occurs and every
event in Q2 occurs infinitely often. Now, let us define n1, n2, . . .
inductively by: (i) n1 = k, and (ii) ni+1 is the least j > ni such
that every event in Q2 occurs in σni

σni+1 · · ·σj−1. Then, we have
an infinite sequence:

fṽn1
⊲CP fṽn2

⊲CP fṽn3
⊲CP · · · .

This contradicts the assumption that RECP,C(f) is well-founded. ✷

Theorem 3.3 (Completeness) If P is fair terminating, then for
every function f , RECP,C(f) is well-founded.

Proof The proof is by contradiction. Suppose that RECP,C(f)
is not well-founded for some f . Then there must be an infinite
sequence

fṽ1 ⊲
C
P fṽ2 ⊲

C
P fṽ3 ⊲

C
P · · · .

By the definition of ⊲CP , there exist E1, E2, . . . where main ⋆
σ0−→

∗

P

E1[fṽ1] and fṽi
σi−→

∗

P Ei+1[fṽi+1] with σi |=fin C for every
i ≥ 1. Thus, we have an infinite reduction sequence π:

main ⋆
σ0−→

∗

P E1[fṽ1]
σ1−→

∗

P E1[E2[fṽ2]]
σ2−→

∗

P ,

where for each σi (i ≥ 1), B occurs if A occurs for every (A,B) ∈
C. Suppose that (A,B) ∈ C and A occurs infinitely often in
π. Then, there exist infinitely many i’s such that A occurs in σi.
But then B also occurs for each of such i’s. Thus, B also occurs
infinitely often. This implies that π is an infinite fair reduction
sequence, hence a contradiction. ✷



4. From Fair Binary Reachability to Reachability

This section describes a method for reducing a fair binary reacha-
bility problem to a plain reachability problem via program transfor-
mation; the latter problem can be solved by an off-the-shelf reach-
ability checker for functional programs [27, 28].

4.1 Transformation

The transformation is an extension of that by [20] proposed for a
reduction from (plain) binary reachability to reachability. To ease
the exposition, we define the following terminology. Let π be a
possibly infinite reduction sequence from main ⋆. Let us write π(i)
for the ith element of π. That is,

main ⋆ = π(1)
ℓ1−→P π(2)

ℓ2−→P · · ·

for some ℓ1, ℓ2, . . . . For total applications f w̃ and f ṽ (i.e.,
arity(f) = |w̃| = |ṽ|) occurring in π, we say that f w̃ is
an ancestor call of f ṽ in π if π(i1) = E1[f w̃] and π(i2) =
E1[E2[f ṽ]] for some i1 < i2, E1 and E2. We omit the reduction
sequence π and simply say that f w̃ is an ancestor call of f ṽ when
it is clear from the context. Note that f w̃ is an ancestor call of f ṽ
in some π if and only if (f w̃, f ṽ) ∈ Call+P (cf. Section 1.1). The
terminology is adopted from [20], and expresses the fact that f w̃
occurs as an ancestor node of f ṽ in the call tree of π.

As in [20], to check RECP,C(f) ⊆ Df , the arguments w̃ of
an ancestor call to f is passed around as an auxiliary argument of
each function, and when f is called with a new argument ṽ, we
assert that Df (w̃, ṽ) holds. A further twist is required, however.
We also need to keep information about the set σ of events that
have occurred since the ancestor call of f , and pass it around as
another auxiliary argument. When f is called with a new argument
ṽ, we assert Df (w̃, ṽ) only if σ |=fin C holds.

We first explain the transformation informally, by using the
program in Example 2.2. Let Df be {(x′, x) | x′ > x ≥ 0} and C
be {(A, Never)}. To check that RECPrep ,C(f) ⊆ Df , we transform
Prep to the following program.

repeat s w g = let x = rand() in
let (s′, ) = g s w x in repeat s′ w g

f s w x = assert(s = false ⇒ w > x ≥ 0);
let (s, w) =

if rand() then (false, x) else (s, w) in
if x > 0 then f s w (x− 1) else (true, ⋆)

main s w y = repeat s w f

Here, we have added two arguments s and w before each of the
original function argument. The argument w holds the value of
the argument of an ancestor call to f , and s is a Boolean flag
that expresses whether the event A has occurred since the ancestor
call f w. The return value of each function call is now a pair
consisting of the flag and the original value. At the beginning of
the body of function f , it is asserted that if an event A has not
occurred, w > x ≥ 0 (i.e., Df (w, x)) must hold. If the assertion
fails, the program is aborted. Otherwise, the pair (s,w) is non-
deterministically kept or updated to (false, x); in the latter case,
the relationship between the present call and a future call to f
is checked. Thanks to this non-determinism, whenever there is a

recursive call f w
σ
−→

∗

Prep
E[f v] in the original program (where

the second call is not necessarily directly called from the first one),
the transformed program asserts that w > v ≥ 0 if σ |=fin C.
Therefore, RECPrep ,C(f) ⊆ Df if and only if the assertion in
main false ⊥ ⋆ never fails. Here, assume that ⊥ is a special
value that satisfies ⊥ > n for any integer n.

There are some important subtleties to note about the transfor-
mation. First, while we maintain and pass around two types of aux-
iliary information (i.e., arguments to f and the event information),
the two are passed in different ways. Specifically, the event infor-

mation is passed through the sequential flow of the program exe-
cution. This requires each function to return the event information
as an auxiliary output so that the caller is able to use the infor-
mation in the subsequent computation. For example, in the body
of repeat , the event information returned by g sw x is bound to
s′ and fed to the subsequent recursive call repeat s′ w g. By con-
trast, the argument information is only passed from the ancestor
call to its descendants. Therefore, for example, the past arguments
to f passed in the two calls that happen in the body of repeat are
both w: g sw x and repeat s′ w g. This is done so that detecting the
fairness of a transition sequence is done by inspecting the sequen-
tial flow of the execution sequence, while checking for disjunctive
well-foundedness is done on the calling relation over such a se-
quence.

Secondly, the transformation passes the auxiliary information at
every function application site. This is needed because it is impos-
sible in general to statically decide which indirect function appli-
cation is a total application, or which is a call to the target function
(f in the example above). We note that it is possible to soundly
eliminate some of the redundancy via a static analysis, and we
use such an optimization in our implementation. However, it is in
general impossible to completely decide a priori which function
is called in what context. The strength of our approach is that the
program transformation delegates such tasks to the backend reacha-
bility checker which would reason about such difficult reachability
queries if they are needed to prove the goal.

We now formalize the transformation. The target language is
obtained by extending the source language as follows.

e ::= · · · | fail | let (x1, . . . , xk) = e1 in e2
v ::= · · · | (v1, . . . , vk) | ⊥

Here, fail aborts the program, and the special value ⊥ is used as
the initial value for the argument of an ancestor call to f . We write
assert(e) for let x = e in if x then ⋆ else fail.

The evaluation contexts and the labeled reduction relation are
extended by:

E ::= · · · | let (x1, . . . , xk) = E in e

E[let (x1, . . . , xk) = (v1, . . . , vk) in e]
ǫ
−→P E[[v1/x1, . . . , vk/xk]e]

E[fail]
ǫ
−→P fail

We remark that we have defined fail to be non-terminating. This
is done for the technical reason of simplifying the statement of
Theorem 4.1. Since the labels for reductions are not important in
the target language, we omit them below.

We define the transformation in a top-down manner. A program
P = {f1 x̃1 = e1, . . . , fn x̃n = en} is transformed to:

⌈P ⌉f,D,C =
⋃

i∈{1,...,n}

⌈fi x̃i = ei⌉f,D,C .

Here, each function definition g x1 · · · xk = e is translated to
the set ⌈g x1 · · · xk = e⌉f,D,C of function definitions, given by:

⌈g x1 · · · xk = e⌉f,D,C =

{ g s w x1 = (s, g(1) x1),

g(1) x1 s w x2 = (s, g(2) x1 x2),
· · · ,
g(k−1) x1 · · · xk−1 s w xk = e′ }

As in the transformation of Prep explained above, we add two aux-
iliary arguments s and w before each argument. As in the example,
w is the value of the argument of an ancestor call to f (which is
actually a tuple, since f may take more than one argument), and s,



⌈v⌉s,w,C = (s, ⌈v⌉V )
⌈rand()⌉s,w,C = (s, rand())
⌈event A⌉s,w,C = (s{A := true}, ⋆)
⌈v1 op v2⌉s,w,C = (s, v1 op v2)
⌈v1v2⌉s,w,C = ⌈v1⌉V s w ⌈v2⌉V
⌈if v then e1 else e2⌉s,w,C

= if v then ⌈e1⌉s,w,C else ⌈e2⌉s,w,C

⌈let x = e1 in e2⌉s,w,C

= let (s′, x) = ⌈e1⌉s,w,C in ⌈e2⌉s′,w,C

⌈c⌉V = c ⌈x⌉V = x

⌈〈f v1 · · · vk〉⌉V = 〈f (k) ⌈v1⌉V · · · ⌈vk⌉V 〉

Figure 5. The transformation of expressions and values.

called an event history, keeps information about the events that have
occurred since the call f w. If C = {(A1, B1), . . . , (An, Bn)},
then s is a nested tuple of the form:

((p1, q1), . . . , (pn, qn))

where pi (qi, resp.) is a Boolean that expresses whether Ai (Bi,
resp.) has occurred.

Since each partial application of g should return a pair consist-
ing of an event history and a closure, we have prepared auxiliary

functions g(1), . . . , g(k−1). The body e′ of g(k−1) is:

assert(fairs ⇒ D#(wk, (x1, . . . , xk)));
let (s,w) =

if rand() then (sinit, (x1, . . . , xk)) else (s, w) in
⌈e⌉s,w,C

if g = f , and ⌈e⌉s,w,C otherwise (where the transformation
⌈e⌉s,w,C for expressions is given later). Here, fairs denotes the
expression

let ((p1, q1), . . . , (pn, qn)) = s in
(p1 ⇒ q1) && · · ·&& (pn ⇒ qn),

and sinit denotes the value

((false, false), . . . , (false, false)).

D#(w, v) is an expression such that D#(w, v) evaluates to true if
(i) w = (⌈w1⌉V , . . . , ⌈wk⌉V ) and v = (⌈v1⌉V , . . . , ⌈vk⌉V ) with
((w1, . . . , wk), (v1, . . . , vk)) ∈ D or (ii) w = ⊥, and evaluates

to false otherwise.5 In the definition of e′ above, s contains
information about the sequence σ of events that have occurred since
an ancestor call to f , and fairs expresses whether σ |=fin C
holds.

The transformations of expressions and values, denoted by
⌈·⌉s,w,C and ⌈·⌉V respectively, are defined as shown in Figure 5.
Note that, after the transformation, an expression returns a pair
consisting of an updated event history and the value. On the third
line, s{A := true} is an expression for updating the event his-
tory by replacing the elements corresponding to A with true.
More precisely, if C = {(A1,1, A2,1), . . . , (A1,n, A2,n)}, then
s{A := true} is:

let ((p1,1, p2,1), . . . , (p1,n, p2,n)) = s in
((p′1,1, p

′
2,1), . . . , (p

′
1,n, p

′
2,n))

where p′i,j is true if Ai,j = A and pi,j otherwise.
In the following, we fix the fairness constraint C and omit it

in the transformation notation (e.g., we write ⌈P ⌉f,D instead of
⌈P ⌉f,D,C). The following theorems guarantee that our reduction

5 Therefore, if v contains a closure, the target language needs to have an
expressive power to inspect the contents of the closure; we can realize it by
choosing an appropriate representation of a closure.

from fair binary reachability to plain reachability is sound and
complete.

Theorem 4.1 (Correctness of the transformation)
Suppose ⌈P ⌉f,D = P ′. Then, RECP,C(f) 6⊆ D if and only if
main sinit ⊥ ⋆ −→∗

P ′ fail.

The rest of this section is devoted to the proof of the theorem
above, which is divided into the following two sub-theorems:

Theorem 4.2 (Soundness of the transformation)
Suppose ⌈P ⌉f,D = P ′ and RECP,C(f) 6⊆ D. Then, if RECP,C(f) 6⊆
D then main sinit ⊥ ⋆ −→∗

P ′ fail.

Theorem 4.3 (Completeness of the transformation)
Suppose ⌈P ⌉f,D = P ′. Then, if main sinit ⊥ ⋆ −→∗

P ′ fail then
RECP,C(f) 6⊆ D.

4.2 Proof of Soundness (Theorem 4.2)

The soundness follows from the following properties: (i) each re-
duction of an expression e in the source program is simulated by
the reductions of the corresponding expression ⌈e⌉s,w of the trans-
formed program (Lemma 4.6), and (ii) the argument of an an-
cestor call of f is correctly recorded in the transformed program
(Lemma 4.7).

We first prepare some definitions and auxiliary lemmas. We
extend the transformation to contexts by:

⌈[ ]⌉w = [ ]
⌈let x = E in e⌉w = let (s, x) = ⌈E⌉w in ⌈e⌉s,w

Lemma 4.4 If E is a context for the source language, then ⌈E⌉w
is a context for the target language. Furthermore, ⌈E[e]⌉s,w =
⌈E⌉w[⌈e⌉s,w] holds.

Proof This follows by a straightforward induction on the struc-
ture of E. ✷

Lemma 4.5 ⌈[v/x]e⌉s,w = [⌈v⌉V /x]⌈e⌉s,w.

Proof This follows by a straightforward induction on the struc-
ture of e. ✷

Let σ be a finite sequence of events and s be an event history.
We define σ(s) by:

ǫ(s) = s A · σ(s) = σ(Js{A := true}K)

where Js{A := true}K is the value of the expression s{A :=
true}. We writeD0 for the “trivial” relation such that (ṽ, w̃) ∈ D0

for all ṽ and w̃. The following is the main lemma, which states that
reductions of a source program can be simulated by those of the
transformed program.

Lemma 4.6 Let P ′ be ⌈P ⌉f,D0
, If e1

ℓ
−→P e2, then ⌈e1⌉s,w −→∗

P ′

⌈e2⌉ℓ(s),w.

Proof The proof proceeds by a case analysis on the rule used for

deriving e1
ℓ
−→P e2. We discuss only the main cases; the other cases

are straightforward.

• Case E-EV: In this case, e1 = E[event A] and e2 = E[⋆] with
ℓ = A. By Lemma 4.4 and the definition of the transformation,
we have:

⌈e1⌉s,w = ⌈E⌉w[(s{A := true}, ⋆)]
⌈e2⌉ℓ(s),w = ⌈E⌉w[(ℓ(s), ⋆)]

Thus, we have ⌈e1⌉s,w −→∗
P ′ ⌈e2⌉ℓ(s),w as required.



• Case E-CLOS: In this case, e1 = E[〈g v1 · · · vi−1〉vi] and
e2 = E[〈g v1 · · · vi〉] with ℓ = ǫ and i < arity(g). By
Lemma 4.4 and the definition of the transformation, we have:

⌈e1⌉s,w = ⌈E⌉w[〈g
(i−1)⌈v1⌉V · · · ⌈vi−1⌉V 〉 s w ⌈vi⌉V ]

⌈e2⌉ℓ(s),w = ⌈E⌉w[(ℓ(s), 〈g
(i)⌈v1⌉V · · · ⌈vi⌉V 〉)]

By inspection of the reduction rules, we have

⌈e1⌉s,w −→P ′ ⌈E⌉w[(s, g
(i)⌈v1⌉V · · · ⌈vi⌉V )]

−→∗
P ′ ⌈E⌉w[(s, 〈g

(i)⌈v1⌉V · · · ⌈vi⌉V 〉)].

Since ℓ(s) = s, we have ⌈e1⌉s,w −→P ′ ⌈e2⌉ℓ(s),w as required.

• Case E-CALL: In this case, e1 = E[〈g v1 · · · vi−1〉 vi] and
e2 = E[[v1/x1, . . . , vi/xi]e] with g x1 · · · xi = e ∈ P and
ℓ = ǫ. If g 6= f , then we have:

⌈e1⌉s,w = ⌈E⌉w[〈g
(i−1)⌈v1⌉V · · · ⌈vi−1⌉V 〉s w ⌈vi⌉V ]

−→+
P ′ ⌈E⌉w[[⌈v1⌉V /x1, . . . , ⌈vi⌉V /xi]⌈e⌉s,w]

= ⌈E⌉w[⌈[⌈v1⌉V /x1, . . . , ⌈vi⌉V /xi]e⌉s,w]
= ⌈e2⌉s,w = ⌈e2⌉ℓ(s),w

by Lemma 4.5 and the definition of the transformation.

If g = f , then we have

⌈e1⌉s,w = ⌈E⌉w[〈g
(i−1)⌈v1⌉V · · · ⌈vi−1⌉V 〉s w ⌈vi⌉V ]

−→+
P ′ ⌈E⌉w[assert(fairs ⇒ D#

0 (w, ⌈̃v⌉V )); · · · ]
−→+

P ′ ⌈E⌉w[let (s, w) =

if rand() then · · · else (s,w) in [⌈̃v⌉V /x̃]⌈e⌉s,w]

−→+
P ′ ⌈E⌉w[[⌈̃v⌉V /x̃]⌈e⌉s,w]

= ⌈e2⌉s,w = ⌈e2⌉ℓ(s),w,

as required. ✷

The following lemma guarantees that whenever there is a call
f v1 · · · vk in a source program, the argument (v1, . . . , vk) is
correctly recorded in some reduction sequence of the transformed
program.

Lemma 4.7 Suppose f x1 · · · xk = e ∈ P and ⌈P ⌉f,D0
= P ′.

Then,

⌈〈f v1 · · · vk−1〉vk⌉s,w −→∗
P ′ ⌈[v1/x1, . . . , vk/xk]e⌉sinit,w′

with w′ = (⌈v1⌉V , . . . , ⌈vk⌉V ).

Proof This follows immediately from the definition of the trans-
formation and Lemma 4.5. ✷

Proof of Theorem 4.2 Let ⌈P ⌉f,D = P ′ and f w1 · · · wk ⊲CP
f v1 · · · vk with ((w1, . . . , wk), (v1, . . . , vk)) 6∈ D. Let P ′′ be

⌈P ⌉f,D0
= P ′′ By the definition of f w1 · · · wk ⊲

C
P f v1 · · · vk ,

we have

main ⋆
σ1−→

∗

P E1[〈f w1 · · · wk−1〉wk]

〈f w1 · · · wk−1〉wk
ǫ
−→P [w1/x1, . . . , wk/xk]e

σ2−→
∗

P E2[〈f v1 · · · vk−1〉vk]
f x1 · · · xk = e ∈ P
σ2 |=fin C

By Lemmas 4.6 and 4.7, we have:

main sinit ⊥ ⋆
−→∗

P ′′ ⌈E1[〈f w1 · · · wk−1〉wk]⌉σ1(sinit),⊥

= E′
1[⌈〈f w1 · · · wk−1〉wk⌉σ1(sinit),⊥]

−→∗
P ′′ E′

1[⌈[w1/x1, . . . , wk/xk]e⌉sinit,(w′

1
,...,w′

k
)]

−→∗
P ′′ E′

1[⌈E2[〈f v1 · · · vk−1〉vk]⌉σ2(sinit),(w
′

1
,...,w′

k
)]

= E′
1[E

′
2[⌈〈f v1 · · · vk−1〉vk⌉σ2(sinit),(w

′

1
,...,w′

k
)]]

where w′
i = ⌈wi⌉V , E′

1 = ⌈E1⌉⊥, and E′
2 = ⌈E2⌉(w′

1
,...,w′

k
).

Thus, we have either main sinit ⊥ ⋆ −→∗
P ′ fail, or

main sinit ⊥ ⋆
−→∗

P ′ E′
1[E

′
2[⌈〈f v1 · · · vk−1〉vk⌉σ2(sinit),(w

′

1
,...,w′

k
)]].

Note that the only difference between P ′′ and P ′ is that P ′ has
stronger assertion conditions; thus, reductions under P ′ may have
only more possibilities to fail. In the latter case, we have

⌈〈f v1 · · · vk−1〉vk⌉σ2(sinit),(w
′

1
,...,w′

k
)

= 〈f (k−1) v′1 · · · v′k−1〉 sinit (w
′
1, . . . , w

′
k) v

′
k

−→∗
P ′ E3[assert(fairσ2(sinit) ⇒ D#(w̃′, ṽ′))]

−→∗
P ′ fail

Here, w̃′ = (w′
1, . . . , w

′
k) and ṽ′ = (v′1, . . . , v

′
k) with v′i = ⌈vi⌉V .

Note that fairσ2(sinit) evaluates to true by the condition σ2 |=fin

C, and D#((w′
1, . . . , w

′
k), (v

′
1, . . . , v

′
k)) evaluates to false by the

assumption ((w1, . . . , wk), (v1, . . . , vk)) 6∈ D. ✷

4.3 Proof of Completeness (Theorem 4.3)

The completeness follows from the property that reductions of
the transformed program can be simulated by those of the source
program, as stated in Lemma 4.8 below. The statement is a little
more complex than the converse (Lemma 4.6), due to the non-
determinism in auxiliary reduction steps of the transformed pro-
gram.

We call an expression e an instruction if e matches the lefthand
side of a reduction rule in Section 2 with E = [ ].

Lemma 4.8 Suppose ⌈P ⌉f,D = P ′. If e1 is an instruction and

⌈e1⌉s,w −→+
P ′ e′, then there exist e2 and ℓ such that e1

ℓ
−→P e2

and either (i) e′ −→+
P ′ ⌈e2⌉s′,w′ is obtained without using the

rule for function calls, or (ii) ⌈e1⌉s,w −→+
P ′ ⌈e2⌉s′,w′ −→∗

P ′ e′.
Furthermore, either (iii) s′ = ℓ(s) and w′ = w, or (iv) s′ = sinit
and w′ = (⌈v1⌉V , . . . , ⌈vk⌉V ) with e1 = 〈f v1 · · · vk−1〉vk .

Proof The proof proceeds by induction on the length of the reduc-

tion sequence ⌈e1⌉s,w −→+
P ′ e′, with a case analysis on the shape

of e1. We discuss only the main cases; the other cases are straight-
forward.

• Case e1 = event A: In this case, we have

⌈e1⌉s,w = (s{A := true}, ⋆).

Thus, the result holds for e2 = ⋆ and ℓ = A.

• Case e1 = 〈g v1 · · · vi−1〉vi: In this case, we have

⌈e1⌉s,w = 〈g(i−1)⌈v1⌉V · · · ⌈vi−1⌉V 〉 s w ⌈vi⌉V .

If i < arity(g), then the result holds for e2 = 〈g v1 · · · vi〉
and ℓ = ǫ.

If i = arity(g) and g 6= f with g x1 · · · xi = e ∈ P , then
the result holds for e2 = [v1/x1, . . . , vn/xn]e and ℓ = ǫ.

If i = arity(g) and g = f with g x1 · · · xi = e ∈ P , the

sequence ⌈e1⌉s,w −→+
P ′ e′ must be a prefix or postfix of the

reduction sequence ⌈e1⌉s,w −→+
P ′ ⌈[v1/x1, . . . , vn/xn]e⌉s,w

or ⌈e1⌉s,w −→+
P ′ ⌈[v1/x1, . . . , vn/xn]e⌉sinit,(⌈v1⌉V ,...,⌈vk⌉V ).

Thus, the result holds also for e2 = [v1/x1, . . . , vn/xn]e and
ℓ = ǫ.

✷

The following lemma guarantees that if w is recorded in the
target program as the argument of an ancestor call for f , f has
indeed been called with w before.

Lemma 4.9 Suppose ⌈P ⌉f,D = P ′. If ⌈e1⌉s,w −→∗
P ′ E[⌈e2⌉s′,w′ ]

with w 6= w′ and e2 is a function application, then



• ⌈e1⌉s,w −→∗
P ′ E1[⌈〈f v1 · · · vk−1〉vk⌉s′′ ,w′′ ] and

• ⌈〈f v1 · · · vk−1〉vk⌉s′′,w′′ ] −→∗
P ′ E2[⌈e2⌉s′,w′ ]

with E = E1[E2] and w′ = (⌈v1⌉V , . . . , ⌈vk⌉V ).

Proof This follows by induction on the length of the reduc-
tion sequence ⌈e1⌉s,w −→∗

P ′ E[⌈e2⌉s′,w′ ]. We first note that

⌈e1⌉s,w −→+
P ′ E[⌈e2⌉s′,w′ ], since w 6= w′. Since w 6= w′, ⌈e1⌉s,w

must be reducible. So, e1 can be decomposed to E3[e
′
1] where e′1 is

an instruction. By the assumption ⌈e1⌉s,w −→∗
P ′ E[⌈e2⌉s′,w′ ], we

have one of the following cases.

(a) ⌈e′1⌉s,w −→+
P ′ (s1, v) with ⌈E3⌉w[v] −→

∗
P ′ E[⌈e2⌉s′,w′ ].

(b) ⌈e′1⌉s,w −→+
P ′ E4[⌈e2⌉s′,w′ ] with E = ⌈E3⌉w[E4].

In case (a), by repeated applications of Lemma 4.8, it follows
that v = ⌈v1⌉V for some v1. Thus, we have ⌈E3[v]⌉s1,w −→∗

P ′

E[⌈e2⌉s′,w′ ], and the required property follows from the induction
hypothesis.

In case (b), by Lemma 4.8, there exist e′2, s′′, w′′ such that

⌈e′1⌉s,w −→+
P ′ ⌈e′2⌉s′′,w′′ and ⌈e′2⌉s′′,w′′ −→∗

P ′ E4[⌈e2⌉s′,w′ ];
notice that case (i) of Lemma 4.8 does not hold, since e2 is an
application. If the condition (iv) of Lemma 4.8 holds and w′′ = w′,
then we have the required condition. Otherwise, we can apply the
induction hypothesis to get the required result. ✷

Proof of Theorem 4.3 Suppose ⌈P ⌉f,D = P ′ and
main sinit ⊥ ⋆ −→∗

P ′ fail. Then, by Lemma 4.9, we have:

main sinit ⊥ ⋆

−→∗
P ′ E′

1[〈f
(k−1) w′

1 · · · w′
k−1〉s w′′ w′

k]
−→∗

P ′ E′
1[[w

′
1/x1, . . . , w

′
k/xk]⌈e⌉sinit,(w′

1
,...,w′

k
)]

−→∗
P ′ E′

1[E
′
2[〈f

(k−1) v′1 · · · v′k−1〉s
′ (w′

1, . . . , w
′
k) v

′
k]]

fairs′ −→
∗
true

D#((w′
1, . . . , w

′
k), v

′
1, . . . , v

′
k) −→

∗ false

Note that the only place where the translated program may fail is
the expression:

assert(fairs ⇒ D#(wk, (x1, . . . , xk))).

By induction on the length of the reduction sequence and Lemma 4.8,
it must be the case that:

main ⋆
σ1−→

∗

P E1[〈f w1 · · · wk−1〉wk]

〈f w1 · · · wk−1〉wk
σ2−→

∗

P E2[〈f v1 · · · vk−1〉vk]
⌈wi⌉V = w′

i ⌈vi⌉V = v′i s′ = σ2(sinit)

By the conditions fairs′ −→∗
true and s′ = σ2(sinit), we have

σ2 |=fin C. Together with the condition 〈f w1 · · · wk−1〉wk
σ2−→

∗

P

E2[〈f v1 · · · vk−1〉vk], we have f w1 · · · wk ⊲CP f v1 · · · vk .

By the conditions D#((w′
1, . . . , w

′
k), v

′
1, . . . , v

′
k) −→∗ false,

⌈wi⌉V = w′
i, and ⌈vi⌉V = v′i, we have

((w1, . . . , wk), (v1, . . . , vk)) 6∈ D.

Thus, we have the required result. ✷

5. Implementation and Experiments

We have implemented a prototype of our fair-termination verifica-
tion method for a subset of OCaml. We use MoCHi [17] as the
backend reachability checker, and Z3 [8] as a constraint solver for
ranking function inference. As described in Section 1.1 Termina-
tion Argument Inference (and [20]), we use the implicit parameter
technique to obtain higher-order termination arguments.

We have tested our tool on examples from this paper, and bench-
mark programs taken from previous work on temporal property
verification for functional programs [11, 18, 21]. We translate the

program cycle1 cycle2 time

intro 3 14 11.492
repeat 4 12 2.276
closure 6 18 9.76
hofmann-1 [11, 12] 2 4 0.232
hofmann-2 [11, 12] 3 8 1.032
koskinen-1 [18] 7 27 43.344
koskinen-2 [18] 5 16 3.412
koskinen-3-1 [18] 6 17 2.752
koskinen-3-2 [18] 4 14 2.216
koskinen-3-3 [18] 6 23 4.964
koskinen-4 [18] 10 35 132.552
lester [21] 8 36 38.356

Table 1. The experiment results.

programs to OCaml, and we translate the property to fair termina-
tion (for ones from [18, 21] where the properties are given as tem-
poral logic formulas or automaton inclusion problems). We have
conducted the experiments on a machine with Intel Core i7-3930K
(3.20 GHz, 16 GB of memory), with timeout of 600 seconds. The
web interface of the implementation and the benchmarks used in

the experiments are available on the web.6

Table 1 summarizes the experiment results. The column “pro-
gram” shows the names of the programs. The columns “cycle1” and
“cycle2” show the number of counterexample-guided refinement
(CEGAR) iterations. MoCHi [17] itself uses CEGAR internally,
and “cycle2” is the cumulative count of MoCHi’s internal CEGAR
iterations over the course of the verification process, whereas “cy-
cle1” shows only the number of the outer CEGAR iterations (i.e.,
the number of times candidate termination arguments are inferred
– cf. Figure 2). The column “time” shows the running time in sec-
onds.

All of the benchmarks are fair terminating. We remark that
none of them can be verified by the previous automatic methods.
This is because the methods for imperative programs [10, 15, 20,
29] cannot handle functions, and the methods for higher-order
functional programs cannot handle infinite data [16, 21–23] or
can only handle safety properties [13, 17, 27, 32–34, 36, 37] or
termination [10, 15, 20, 29]. As we describe below, the benchmarks
from the previous literature [11, 18, 21] are either verified manually
or verified after a manual finite-data abstraction in the respective
works. Our work is the first fully automatic approach that is able to
verify these instances.

We describe the benchmarks. The benchmark intro is Pex

from Section 1.1 with the fairness constraint C′ = {(f 0, false)}.
The benchmark repeat is the one from Example 2.2. The bench-
mark closure is the program below with the fairness constraint
C = {(A, Never)}.

const x y = x
finish x = event A;finish x
f g = let n = g ⋆ in

if n > 0 then f (const (n− 1)) else finish ⋆
main x = let n = rand() in f (const n)

The benchmark is an example where a higher-order termination ar-
gument (i.e., disjunctive well-founded relation over function val-
ues) is required for verification. It is interesting to note that the
other benchmarks, including the ones from the previous litera-
ture, can be verified with only first-order termination argument (but
higher-order reasoning is required at the rest of the verification pro-

6 http://www-kb.is.s.u-tokyo.ac.jp/~ryosuke/fair_
termination/



cess even in the other benchmarks – such as when checking the
reachability against the transformed program).

The benchmarks hofmann-1 and hofmann-2 are from a recent
work by Hofmann and Chen [11]. Specifically, hofmann-1 (resp.
hofmann-2) is the first (resp. second) example from Appendix A
of the extended technical report [12] (hofmann-2 also appears as
an example in Section 5.4 of [11]). Their paper shows how these
benchmarks can be verified manually in their framework, but it
does not show how to automate the process.

The benchmarks koskinen-xxx’s are from a recent paper by
Koskinen and Terauchi [18]. They are taken from Figure 10 of the
paper where koskinen-1 is REDUCE, koskinen-2 is RUMBLE,
koskinen-3-x’s are RUMBLE, and koskinen-4 is ALTERNATE

INEVITABILITY. Their paper presents the temporal properties to be
verified as temporal logic formulas, and we have translated them
to fair termination for our experiments in the manner described
in Section 2. We note that RUMBLE is translated into (the con-
junction of) three sub-problems: koskinen-3-1, koskinen-3-2
and koskinen-3-3. During the experiments, we have actually dis-
covered a bug in ALTERNATE INEVITABILITY in their paper, and
the result presented here is for a version with the bug corrected.
As with the work by Hofmann and Chen, their paper shows how
these benchmarks can be verified manually in their framework, but
it does not show how to automate the process.

The benchmark lester is the example from Appendix H.1
of the paper by Lester et al. [21]. Their verification method can
only handle finite data, simply-typed higher-order functional pro-
grams, so they used Church numerals to represent natural numbers,
and manually translated a loop over integers into an iteration over
Church numerals. The version we verify in the experiments directly
uses integers. Also, their paper presents the temporal property to
be verified as a temporal logic formula and an automaton inclu-
sion problem, and we have translated it to fair termination for our
experiments in the manner described in Section 2.

As seen in Table 1, the results show that our implementation
successfully verifies all of the benchmarks. The implementation
is able to verify the benchmarks quite quickly, except for intro,
koskinen-1, koskinen-4, and lester. The performance bottle-
neck appears to be the backend reachability checker MoCHi [17]
which is taking a rather long time to verify the reachability prob-
lems generated in the verification of these benchmarks. In particu-
lar, the benchmarks koskinen-1, koskinen-4, and lester, after
the CPS / HORS (higher-order recursion scheme) translation done
within MoCHi, produce large reachability verification instances.
For intro, the HORS model checker within MoCHi seems to be
the main bottleneck, and we leave for future work to analyze why
the HORS model checker underperforms on the recursion schemes
generated in this benchmark. We remark that this is not a funda-
mental limitation with our fair-termination verification approach,
and we expect further advances in reachability verification to allow
our approach to verify instances like these more quickly.

6. Conclusion

We have presented an automatic approach to temporal property ver-
ification of higher-order functional programs. Previous automated
approaches to this class of programs could only handle finite data
programs or only safety properties or plain termination, and our
work is the first to be able verify arbitrary ω-regular properties of
infinite data high-order functional programs. Our approach com-
bines and extends the techniques from the recent work on binary-
reachability based approaches to plain termination verification of
higher-order functional programs [20] and fair termination verifica-
tion of imperative programs [2], and reduces the temporal property
verification problem soundly and completely to fair binary reach-
ability verification problems over calling relations. A key contri-

bution of our approach includes the novel program transformation
that correctly tracks the calling relation and the event occurrence
information through the higher-order control flow.
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