
Complexity of Model-Checking Call-by-Value
Programs

Takeshi Tsukada1,2 and Naoki Kobayashi3

1 University of Oxford
2 JSPS Postdoctoral Fellow for Research Abroad

3 The University of Tokyo

Abstract. This paper studies the complexity of the reachability prob-
lem (a typical and practically important instance of the model-checking
problem) for simply-typed call-by-value programs with recursion, Boolean
values, and non-deterministic branch, and proves the following results.
(1) The reachability problem for order-3 programs is nonelementary.
Thus, unlike in the call-by-name case, the order of the input program
does not serve as a good measure of the complexity. (2) Instead, the
depth of types is an appropriate measure: the reachability problem for
depth-n programs is n-EXPTIME complete. In particular, the previous
upper bound given by the CPS translation is not tight. The algorithm
used to prove the upper bound result is based on a novel intersection
type system, which we believe is of independent interest.

1 Introduction

A promising approach to verifying higher-order functional programs is to use
higher-order model checking [7, 8, 15], which is a decision problem about the trees
generated by higher-order recursion schemes. Various verification problems such
as the reachability problem and the resource usage verification [5] are reducible
to the higher-order model checking [8].

This paper addresses a variant of the higher-order model checking, namely,
the reachability problem for simply-typed call-by-value Boolean programs. It is
the problem to decide, given a program with Boolean primitives and a special
constant meaning the failure, whether the evaluation of the program fails. This is
a practically important problem that can be a basis for verification of programs
written in call-by-value languages such as ML and OCaml. In fact, MoCHi [11],
a software model-checker for a subset of OCaml, reduces a verification problem
to a reachability problem for a call-by-value Boolean program.

In the previous approach [11], the rechability problem for call-by-value pro-
grams was reduced to that for call-by-name programs via the CPS transforma-
tion. From a complexity theoretic point of view, however, this reduction via the
CPS transformation has a bad effect: the order of a function is raised by 2 for
each increase of the arity of the function. Since the reachability of order-n call-
by-name programs is (n− 1)-EXPTIME complete in general, the approach may
suffer from double exponential blow-up of the time complexity for each increase

of the largest arity in a program. Thus, important questions are: Is the double
exponential blow-up of the time complexity (with respect to the arity increase)
inevitable? If not, what is the exact complexity of the reachability problem for
call-by-value programs, and how can we achieve the exact complexity?

The above questions are answered in this paper. We first show that the
single exponential blow-up with respect to the arity increase is inevitable for
programs of order-3 or higher. This implies that when the arity is not fixed,
the reachability problem for order-3 call-by-value programs is nonelementary.
The key observation used in the proof is that the subset of natural numbers
{0, 1, . . . , expn(2)−1} (here expn(k) is the nth iterated exponential function,
defined by exp0(k) = k and expn+1(k) = 2expn(k)) can be embedded into the

set of values of the type

n︷ ︸︸ ︷
B→ B→ · · · → B→ B by using non-determinism.

Second, we show the depth of types is an appropriate measure, i.e. the reach-
ability problem for depth-n programs is n-EXPTIME complete. The depth of
function type is defined by depth(κ→ κ′) = max{depth(κ) + 1, depth(κ′) + 1}.
In particular, the previous bound given by the CPS translation is not tight.
To prove the upper-bound, we develop a novel intersection type system that
completely characterises programs that reach the failure. Since the target is a
call-by-value language with effects (i.e. divergence, non-determinism and fail-
ure), the proposed type system is much different from that for call-by-name
calculi [18, 7, 9], which we believe is of the independent interest.

Organisation of the paper Section 2 defines the problem addressed in the paper.
Section 3 proves that the reachability problem for order-3 programs is nonele-
mentary. Section 4 provides a sketch of the proof of n-EXPTIME hardness of the
reachability problem for depth-n programs. In Section 5, we develop an intersec-
tion type system that characterises the reachability problem, and a type-checking
algorithm. We discuss related work in Section 6 and conclude in Section 7.

2 Call-by-value Reachability Problem

The target language of the paper is a simply-typed call-by-value calculus with
recursion, product types (restricted to argument positions), Boolean and non-
deterministic branch. Simple types are called sorts in order to avoid confusion
with intersection types introduced later. The sets of sorts, terms and function
definitions (definitions for short) are defined by the following grammar:

(Sorts) κ, ι ::= B | κ1×. . .×κn → ι
(Terms) s, t, u ::= x | f | λ〈x1, . . . , xn〉.t | t 〈u1, . . . , un〉

| t⊕ u | t | f | if(t, u1, u2) | Fκ | Ωκ
(Definitions) D ::= {fi = λ〈xi,1, . . . , xi,ni

〉.ti}i≤m,

where 〈x1, . . . , xn〉 (resp. 〈u1, . . . , un〉) is a non-empty sequence of variables (resp.
terms). The sort B is for Boolean values and the sort κ1× . . .×κn → ι is for
functions that take an n-tuple as the argument and returns a value of ι. A term

b ∈ {t, f}
∆ | K ` b :: B

x :: κ ∈ K
∆ | K ` x :: κ

f :: κ ∈ ∆
∆ | K ` f :: κ

∆ | K, ~x :: ~κ ` t :: ι

∆ | K ` λ〈~x〉.t :: ~κ→ ι

∆ | K ` t :: ~κ→ ι′ ∆ | K ` ~u :: ~κ

∆ | K ` t 〈~u〉 :: ι

∆ | K ` t :: B ∆ | K ` ui :: κ (i ∈ {1, 2})
∆ | K ` if(t, u1, u2) :: κ

∆ | K ` t :: κ ∆ | K ` u :: κ

∆ | K ` t⊕ u :: κ ∆ | K ` Fκ :: κ ∆ | K ` Ωκ :: κ

Fig. 1. Sorting rules for terms

is a variable x, a function symbol f (that is a variable expected to be defined
in D), an abstraction λ〈x1, . . . , xn〉.t that takes an n-tuple as its argument, an
application t 〈u1, . . . , un〉 of t to n-tuple 〈u1, . . . , un〉, a non-deterministic branch
t1⊕t2, a truth value (t or f), a conditional branch if(t, u1, u2), a special constant
Fκ (standing for ‘Fail’) to which the reachability is considered, or divergence Ωκ.
A function definition is a finite set of elements of the form f = λ〈x1, . . . , xn〉.t,
which defines functions by mutual recursion. If (f = λ〈~x〉.t) ∈ D, we write
D(f) = λ〈~x〉.t. The domain dom(D) of D is {f | (f = λ〈~x〉.t) ∈ D}.

For notational convenience, we use the following abbreviations. We write ~x for
a non-empty sequence of variables x1, . . . , xn, and simply write λ〈x1, . . . , xn〉.t as
λ〈~x〉.t. Similarly, t 〈u1, . . . , un〉 is written as t 〈~u〉, where ~u indicates the sequence
u1, . . . , un, and κ1×. . .×κn → ι as ~κ→ ι, where ~κ = κ1, . . . , κn. Note that ~κ→ ι
is not κ1 → · · · → κn → ι. Sort annotation of Fκ and Ωκ are often omitted. For
a 1-tuple 〈t〉, we often write just t.

The sort system is defined straightforwardly. A sort environment is a finite
set of sort bindings of the form x :: κ (here a double-colon is used for sort
bindings and judgements, in order to distinguish them from type bindings and
judgements). We write K(x) = κ if x :: κ ∈ K. A sort judgement is of the form
∆ | K ` t :: κ, where ∆ is the sort environment for function symbols and K is
the sort environment for free variables of t. Given sequences ~x and ~κ of the same
length, we write ~x :: ~κ for x1 :: κ1, . . . , xn :: κn. Given sequences ~t and ~κ of the
same length, we write ∆ | K ` ~t :: ~κ just if we have ∆ | K ` ti :: κi for all i ≤ n,
where n is the length of ~t. The sorting rules are listed in Fig. 1.

When term t does not contain function symbols, we simply write ∅ | K ` t :: κ
as K ` t :: κ. We assume that terms in the sequel are explicitly typed, i.e. every
term is equipped with a sort derivation for it and we can freely refer to sorts of
subterms and variables in the term. For function definitions, a judgement is of
the form ` D :: ∆, which is derived by the following rule:

∆ | ∅ ` D(f) :: κ (for every f :: κ ∈ ∆)

` D :: ∆

A program is a pair of a definition D and a term t of the ground sort B with
` D :: ∆ and ∆ | ∅ ` t :: B for some ∆. A program is written as let rec D in t.
A program let rec ∅ in t with no function symbols is simply written as t.

The set of values is defined by: v, w ::= λ〈~x〉.t | t | f. Recall that ~x is
a non-empty sequence. Evaluation contexts are defined by: E ::= � | E 〈~t〉 |
v 〈w1, . . . , wk−1, E, tk+1, . . . , tn〉 | if(E, t1, t2). Therefore arguments are evalu-
ated left-to-right. The reduction relation on terms is defined by the rules below:

E[(λ〈~x〉.t) 〈~v〉] −→ E[[~v/~x]t] E[t1 ⊕ t2] −→ E[ti] (for i = 1, 2)
E[if(t, t1, t2)] −→ E[t1] E[if(f, t1, t2)] −→ E[t2].

We write −→∗ for the reflexive and transitive closure of −→. The reduction
relation is not deterministic because of the non-deterministic branch. A closed
well-typed term t cannot be reduced just if (1) t is a value, (2) t = E[F] or (3)
t = E[Ω]. In the second case, t immediately fails and in the third case, t never
fails since Ω diverges. So we do not need to consider further reduction steps for
E[F] and E[Ω]. By this design choice, −→ is terminating.

Lemma 1. If ∅ ` t :: κ, then t has no infinite reduction sequence.

Given a function definition D, the reduction relation −→D is defined by the
same rules as −→ and the following additional rule:

E[f] −→D E[D(f)].

We write −→∗D for the reflexive and transitive closure of −→D. Note that reduc-
tion by −→D does not terminate in general.

Definition 1 (Reachability Problem). We say a program let rec D in t
fails if t −→∗D E[F] for some E. The reachability problem is the problem to
decide whether a given program fails.

Example 1. Let t0 = λf.if(f t, if(f t, Ω,F), Ω), which calls the argument f (at
most) twice with the same argument t and fails just if the first call returns t and
the second call f. Let u0 = (λx.t)⊕ (λx.f) and e1 = t0 u0. Then e1 has just two
reduction sequences starting from e1 −→ t0 (λx.t) and e1 −→ t0 (λx.f), both of
which do not fail. In the call-by-name setting, however, e1 would fail since

e1 −→ if(u0 t, if(u0 t, Ω,F), Ω) −→ if((λx.t) t, if(u0 t, Ω,F), Ω)

−→∗ if(u0 t, Ω,F) −→ if((λx.f) t, Ω,F) −→∗ F.

Consider the program e′1 = t0 u
′
0 where u′0 = λx.(t ⊕ f), in which the non-

deterministic branch is delayed by the abstraction. Then e′1 would fail both in
call-by-name and in call-by-value.

Example 2. Consider the program P2 = let rec D2 in e2, where D2 = {f =
λx.f x} and e2 = (λy.F) (f t). Then P2 never fails because

e2 = (λy.F) (f t) −→D2
(λy.F) ((λx.f x) t) −→D2

(λy.F) (f t) = e2 −→D2
· · · .

In the call-by-name case, however, P2 would fail since (λx.F) (f t) −→ F.

Example 3. Consider the program e3 = (λx.t)F. Then e3 (immediately) fails
because e3 = E[F], where E = (λx.t)�. In contrast, e3 would not fail in the
call-by-name setting, in which E is not an evaluation context and e3 −→ t.

We give a technically convenient characterisation of the reachability problem.
Let {f1, . . . , fn} be the set of function symbols in D. The mth approximation of
fi, written Fmi , is the term obtained by expanding the definition m times, as is
formally defined below:

F 0
i = λ〈x1, . . . , xk〉.Ωι (where fi :: κ1×. . .×κk → ι ∈ ∆)
Fm+1
i = [Fm1 /f1, . . . , F

m
n /fn](D(fi)).

The mth approximation of t is defined by: [t]mD = [Fm1 /f1, . . . , F
m
n /fn]t.

Lemma 2. Let P = let rec D in t be a program. Then t −→∗D E[F] for some
E if and only if [t]nD −→∗ E′[F] for some n and E′.

Size of terms and programs The size of sorts is inductively defined by |B| = 1
and |κ1× . . .×κn → ι| = 1 + |ι| +

∑n
i=1 |κi|. The size of sort environments is

given by |K| =
∑
x::κ∈K |κ|. The size of a term is defined straightforwardly (e.g.

|x| = 1 and |t 〈u1, . . . , un〉| = 1 + |t| +
∑n
i=1 |ui|) except for the abstraction

|λ〈x1, . . . , xn〉.t| = 1 + |t| +
∑n
i=1(1 + |κi|), where κi is the sort of xi. Here a

term t is considered to be explicitly sorted, and thus the size of annotated sorts
should be added. For programs, |let rec D in t| = |t|+

∑
f∈dom(D) |D(f)|.

Order and depth of programs Order is a well-known measure that characterises
complexity of the call-by-name reachability problem [10, 15] (it is (n−1)-EXPTIME
complete for order-n programs) and, as we shall see, depth characterises com-
plexity in the call-by-value case. Order and depth of sorts are defined by:

order(B) = depth(B) = 0
order(~κ→ ι) = max{order(ι), order(κ1)+1, . . . , order(κn)+1}
depth(~κ→ ι) = max{depth(ι)+1, depth(κ1)+1, . . . , depth(κn)+1}

For a sort environment, depth(K) = max{depth(κ) | x :: κ ∈ K}. Order and
depth of judgements are defined by ϕ(∆ | K ` t :: κ) = ϕ(κ), where ϕ ∈
{order , depth}. The order of a sort derivation is the maximal order of judgements
in the derivation. The order of a sorted term t is the order of its sort derivation
∆ | K ` t :: κ. The order of a program let rec D in t is the maximal order
of terms t and D(f) (f ∈ dom(D)). The depth of derivations, sorted terms and
programs are defined similarly.

3 Order-3 Reachability is Nonelementary

This section proves the following theorem.

Theorem 1. The reachability problem for order-3 programs is nonelementary.

The key observation is that, for every n, the subset of natural numbers

{0, 1, . . . , expn(2)−1} can be implemented by

n︷ ︸︸ ︷
B→ · · · → B → B in a certain

sense (see Definition 2). The non-determinism of the calculus is essential to the
construction. Note that in the call-by-name case, the set of closed terms (modulo
observational equivalence) of this sort can be bounded by 44

n

, since

n︷ ︸︸ ︷
B→ · · · → B→ B ∼=

n︷ ︸︸ ︷
B× · · · × B→ B.

The proof in this section can be sketched as follows. Let L ⊆ {0, 1}∗ be
a language in n-EXPSPACE. We can assume without loss of generality that
there exists a Turing machine M that accepts L and runs in space expn(x)
(here x is the size of the input). Given a word w, we reduce its acceptance by
M to the reachability problem of a program (say PM,w) of the call-by-value
calculus in Section 2 extended to have natural numbers up to N ≥ expn(x)
(Lemma 3). The order of PM,w is independent from M and w: it is 3 when the
order of the natural number type is defined to be 1. Recall that the natural
numbers up to expn+x(2) ≥ expn(x) can be implemented by the order-1 sort

n+x︷ ︸︸ ︷
B→ · · · → B → B. By replacing natural numbers in PM,w with the implemen-
tation, the acceptance of w by M can be reduced to the reachability problem of
an order-3 program without natural numbers.

3.1 Simulating Turing Machine by Program with Natural Numbers

First of all, we define programs with natural numbers up to N , which is an
extension of the typed calculus presented in Section 2. The syntax of sorts and
terms is given by:

(Sorts) κ, ι ::= · · · | N
(Terms) s, t, u ::= · · · | S | P | EQ | 0 | 1 | · · · | N − 1

The extended calculus has an additional ground sort N for (bounded) natural
numbers. Constants S and P are functions of sort N→ N meaning the successor
and the predecessor functions, respectively, and EQ is a constant of sort N×N→ B

which checks if two arguments are equivalent. A constant n indicates the natural
number n. The set of values is defined by: v ::= · · · | S | P | EQ | n. Function
definitions and evaluation contexts are given by the same syntax as in Section 2,
but terms and values may contain natural numbers. The additional reduction
rules are given by

E[Sn] −→D E[n+ 1] (if n+ 1 < N)

E[Pn] −→D E[n− 1] (if n− 1 ≥ 0)

E[EQ 〈n, n〉] −→D E[t]

E[EQ 〈n,m〉] −→D E[f] (if n 6= m).

Note that E[SN − 1] and E[P 0] get stuck. A program with natural numbers up
to N is a pair of a function definition D and a term t of sort B, written as
let rec D in t. We assume that programs in the sequel do not contain constant
numbers except for 0. The order of N is defined as 1.

Lemma 3. Let L ⊆ {0, 1}∗ be a language and M be a deterministic Turing ma-
chine accepting L that runs in space expn(x) for some n. Then, for every word
w ∈ {0, 1}∗ of length k and natural number N ≥ expn(k), one can construct a
program PM,w with natural numbers up to N such that PM,w fails if and only
if w ∈ L. Furthermore PM,w is of order-3 and can be constructed in polynomial
time with respect to k.

Proof. Let M be a Turing machine with states Q and tape symbols Σ and w be
a word of length k. We can assume without loss of generality that Q = {t, f}q
(that is, the set of all sequences of length q consisting of t and f) and Σ = {t, f}l.

A configuration is expressed as a value of sort4

Config =

q︷ ︸︸ ︷
B× · · · × B×

l︷ ︸︸ ︷
(N→ B)× · · · × (N→ B)×N,

where the first part represents the current state, the second part the tape and
the third part the position of the tape head. The program PM,w has one recursive
function isAccepted of sort Config → B. It checks if the current state is a final
state and it fails if so. Otherwise it computes the next configuration and passes it
to isAccepted itself. The body of the program generates the initial configuration
determined by w and passes it to the function isAccepted .

Clearly we can construct PM,w in polynomial time with respect to k (the
length of w) and the order of PM,w is 3. ut

3.2 Implementing Natural Numbers

Let νn be the order-1 sort defined by ν0 = B and νn+1 = B→ νn. We shall show
that natural numbers up to expn(2) can be implemented as values of νn.

Intuitive Explanation We explain the intuition behind the construction by
using the set-theoretic model. Let N = {0, 1, . . . , N − 1}. We explain the way
to express the set 2N ∼= {0, 1, . . . , 2N − 1} as (a subset of) non-deterministic
functions of B→ N, i.e. functions of B→ P(N), where P(N) is the powerset of
N. The set (B⇒ N) ⊆ (B→ P(N)) is defined by:

(B⇒ N) = {f : B→ P(N) | f(t) ∪ f(f) = N and f(t) ∩ f(f) = ∅}.

4 Strictly speaking, it is not a sort in our syntax because products are restricted
to argument positions. But there is no problem since occurrences of Config in the
following construction are also restricted to argument positions.

In other words, f ∈ B→ P(N) is in B⇒ N if and only if, for every i ∈ N, exactly
one of i ∈ f(t) and i ∈ f(f) holds. Hence a function f : B ⇒ N determines a

function of N→ B, say f̂ , defined by f̂(i) = b iff i ∈ f(b) (b ∈ {t, f}).
There is a bijection between the set of functions N → B and the subset of

natural numbers {0, 1, . . . , 2N−1}, given by binary encoding, i.e. (f̂ : N→ B) 7→∑
i<N,f̂(i)=t 2i. For example, consider the case that N = 4 and N = {0, 1, 2, 3}.

Then 6 (= 0110 in binary) is represented by f̂6 such that f̂6(0) = f̂6(3) = f and

f̂6(1) = f̂6(2) = t. Therefore f6 is given by f6(t) = {1, 2} and f6(f) = {0, 3}.
Now let us consider the way to define operations such as the successor, pre-

decessor and equality test. The key fact is that there is a term (say get) that

computes f̂(i) for f ∈ B ⇒ N and i ∈ N, and there exists a term (say put)

that computes g ∈ B ⇒ N such that ĝ = f̂ [i 7→ b] for f ∈ B ⇒ N, i ∈ N and
b ∈ {t, f}. They are given by the following informal equations:

get 〈f, i〉 = if(f t = i, t, Ω) ⊕ if(f f = i, f, Ω)
put 〈f, i, b〉 = λcB.

(
if(b = c, i, Ω) ⊕ ((λj.if(i 6= j, j, Ω)) (f c))

)
where f :: B→ N and i, j :: N and b, c :: B. Note that put would be incorrect in
the call-by-name setting. By using these functions, we can write operations like
successor, predecessor and equality test for B ⇒ N. For example, the equality
test eq can be defined by eq = λ〈f, g〉.e 〈f, g,N − 1〉, where e is given by the
following recursive definition:

e 〈f, g, i〉 = if((get 〈f, i〉)=(get 〈g, i〉), if(i = 0, t, e 〈f, g, (i− 1)〉), f).

Formal Development We formally define the notion of implementations and
show that replacement of natural numbers with its implementations preserves
reachability.

Definition 2 (Implementation of Natural Numbers). Let N be the tuple
(N,D, κ, {Vi}i∈{0,1,...,N−1}, eq, s,p, z,max), where N is a natural number, D is
a function definition, κ is a sort, {Vi}i is an indexed set of pairwise disjoint sets
of closed values of sort κ, eq is a closed value of sort κ × κ → B, s and p are
closed values of sort κ → κ, and z and max are closed values of sort κ. Here
we consider terms without natural numbers. We say N is an implementation of
natural numbers up to N just if the following conditions hold (here V =

⋃
i Vi).

– For every v, v′ ∈ V , evaluation of eq 〈v, v′〉, s v and p v under D never fails.
– z ∈ V0 and max ∈ VN−1.
– For every v ∈ Vn and v′ ∈ Vn′ , eq 〈v, v′〉 −→∗D t if and only if n = n′, and

eq 〈v, v′〉 −→∗D f if and only if n 6= n′.
– For every v ∈ Vn, s v −→∗D v′ implies v′ ∈ Vn+1 and if n + 1 < N then

s v −→∗D v′ for some v′ ∈ Vn+1. Similarly, p v −→∗D v′ implies v′ ∈ Vn−1
and if n ≥ 1 then p v −→∗D v′ for some v′ ∈ Vn−1. (Here we define V−1 =
VN+1 = ∅.)

The sort of N is κ and the order of N is that of κ.

Given an implementation N of natural numbers up to N and a term t with
natural numbers up to N , we write tN for the term without natural numbers
obtained by replacing constants with values given by N, e.g.,

0N = z SN = s (t u)N = tN uN (λx.t)N = λx.(tN).

Note that programs do not contain constant numbers except for 0 by defini-
tion. Given a function definition D, DN can be defined straightforwardly. See
Appendix C.1 for the concrete definition.

Lemma 4. Let let rec D in t be a program with natural numbers up to N ,
and N be an implementation of natural numbers up to N . Then let rec D in t
fails if and only if let rec DN in tN fails.

Given a natural number n ≥ 1, we present an implementation of natural
numbers up to expn(2) whose order is 1. By using the implementation to the
program constructed in Lemma 3, the nonelementary result for the reachability
problem for order-3 programs is established.

For every n, we shall define an implementation N(n) of natural numbers up
to expn(2) by induction on n. As for the base case, the natural numbers up to
exp0(2) = 2 (i.e. {0, 1}) can be naturally implemented by using B. We call this
implementation N(0). As for the induction step, assuming an implementation
N = (N,D, κ, {Vi}i, eq, s,p, z,max) of natural numbers up to N , it suffices to
construct an implementation of natural numbers up to 2N , say BN = (2N , D ∪
D′,B→ κ, {V ′i }i∈{0,1,...,2N−1}, eq′, s′,p′, z′,max′).

– The additional function definition D′ defines get, put and other auxiliary
functions used to define s′ and others. The definitions of get and put are:

get = λ〈xB→κ, iκ〉. if(eq 〈x t, i〉, t, Ω) ⊕ if(eq 〈x f, i〉, f, Ω)

put = λ〈xB→κ, iκ, bB〉.λcB.
(
if(b = c, i, Ω) ⊕ ((λj.if(eq 〈i, j〉, Ω, j)) (x c))

)
– Let m < 2N and bN−1 . . . b0 be its binary representation. Then V ′m is the set

of values v of sort B→ κ such that
1. bi = 1 iff v t −→∗ v′ for some v′ ∈ Vi,
2. bi = 0 iff v f −→∗ v′ for some v′ ∈ Vi, and
3. v t −→∗ v′ or v f −→∗ v′ implies v′ ∈

⋃
i∈{0,...,N−1} Vi.

Here x = y is the shorthand for if(x, if(y, t, f), if(y, f, t)). For n ≥ 1, we define
N(n + 1) = B(N(n)). See Appendix C.3 for the concrete definition of BN and
the proof of the following lemma.

Lemma 5. N(n) is an implementation of natural numbers up to expn(2). Fur-
thermore, the sort, the function definition and the operations of N(n) can be
constructed in time polynomial with respect to n.

Proof (Theorem 1). The claim follows from Lemmas 3, 4 and 5. Note that (i)
expn(x) ≤ expn+x(2), and (ii) given an order-n program with natural numbers
up to expm(2), the replacement of natural number constants with N(m) can be
done in time polynomial with respect to m and the size of the program, and the
resulting program is of order n (provided that n ≥ 2). ut

4 Depth-n Reachability is n-EXPTIME Hard

In this section, we show a sketch of the proof of Theorem 2 below.

Theorem 2. For every n > 0, the reachability problem for depth-n programs is
n-EXPTIME hard.

We reduce the emptiness problem of order-n alternating pushdown systems,
which is known to be n-EXPTIME complete [4], to the reachability problem
for depth-n programs. The basic idea originates from the work of Knapik et
al. [6], which simulates a deterministic higher-order pushdown automaton by a
safe higher-order grammar.

Since Knapik et al. [6] considered call-by-name grammars, we need to fill the
gap between call-by-name and call-by-value. A problem arises when a divergent
term that would not be evaluated in the call-by-name strategy appears in an
argument position. We use the non-deterministic branch and the Boolean values
to overcome the problem. Basically, by our reduction, every term of the ground
sort is of the form f⊕ s, and thus one can choose whether s is evaluated or not,
by selecting one of the two possible reduction f ⊕ s −→ f and f ⊕ s −→ s. See
Appendix D for more details.

5 Intersection-Type-Based Model-Checking Algorithm

We develop an intersection type system that completely characterises the reacha-
bility problem and give an upper bound of complexity of the reachability problem
by solving the typability problem.

5.1 Types

The pre-types are given by the following grammar:

(Value Pre-types) θ ::= t | f |
∧
i∈I(θ1,i×. . .×θn,i → τi)

(Term Pre-types) τ, σ ::= θ | Fκ

The index I of the intersection is a finite set. We allow I to be the empty set,
and we also write

∧
∅ for the type. The subscript κ of Fκ is often omitted. We

use infix notation for intersection, e.g. (θ1→ τ1) ∧ (θ2→ τ2). The intersection
connective is assumed to be associative, commutative and idempotent. Thus
types

∧
i∈I(θ1,i×. . .×θn,i → τi) and

∧
j∈J(θ′1,j×. . .×θ′n,j → τ ′n,j) are equivalent

if {(θ1,i, . . . , θn,i, τi) | i ∈ I} and {(θ′1,j , . . . , θ′n,j , τ ′j) | j ∈ J} are equivalent sets.
Value pre-types are types for values and term pre-types are those for terms.
The value pre-type t is for the Boolean value t and f for the Boolean value

f. The last one is for abstractions. It can be understood as the intersection of
function types of the form θ1×. . .×θn → τ . The judgement λ〈~x〉.t : θ1×. . .×θn → τ
means that, for all values vi : θi (for every i ≤ n), one has [~v/~x]t : τ . For example,
λx.x : t→ t and λx.x : f→ f. The judgement λ〈~x〉.t :

∧
i∈I(θ1,i×. . .×θn,i → τi)

means that, for every i ∈ I, one has λ〈~x〉.t : θ1,i× . . .×θn,i → τi. Therefore,
λx.x : (t→ t) ∧ (f→ f).

The term pre-type F means failure, i.e. t : F just if t −→∗ E[F]. The term
pre-type θ is for terms that is reducible to a value of type θ, i.e. t : θ just if
t −→∗ v and v : θ for some v. For example, consider u0 = (λx.t) ⊕ (λx.f)
and u′0 = λx.(t ⊕ f) in Example 1. Then u0 : t → t since u0 −→ λx.t, and
u0 : t → f since u0 −→ λx.f. It is worth noting that t : θ1 and t : θ2 does not
imply t : θ1 ∧ θ2, e.g. u0 does not have type (t → t) ∧ (t → f). In contrast,
u′0 : (t→ t)∧(t→ f). So the difference between u0 and u′0 is captured by types.

Given a sort κ, the relation τ :: κ, read “τ is a refinement of κ,” is inductively
defined by the following rules:

t :: B f :: B Fκ :: κ

θk,i :: κk τi :: ι (for all i ∈ I, k ∈ {1, . . . , n})∧
i∈I(θ1,i×. . .×θn,i → τi) :: κ1×. . .×κn → ι

Note that intersection is allowed only for pre-types of the same sort. So a pre-
type like ((t → t) → t) ∧ (t → t) is not a refinement of any sort. A type is a
value pre-type with its sort θ :: κ or a term pre-type with its sort τ :: κ. A type
is often simply written as θ or τ .

Let θ, θ′ :: κ be value types of the same sort. We define θ ∧ θ′ by:

t ∧ t = t f ∧ f = f (
∧
i∈I

(~θi → τi)) ∧ (
∧
j∈J

(~θj → τj)) =
∧

i∈I∪J
(~θi → τi)

and t ∧ f and f ∧ t are undefined.

5.2 Typing Rules

A type environment Γ is a finite set of type bindings of the form x : θ (here x
is a variable or a function symbol). We write Γ (x) = θ if x : θ ∈ Γ . We assume
type bindings respect sorts, i.e. x :: κ implies Γ (x) :: κ. A type judgement is of
the form Γ ` t : τ . The judgement intuitively means that, if each free variable
x in t is bound to a value of type Γ (x), then at least one possible evaluation of
t results in a value of type τ . We abbreviate a sequence of judgements Γ ` t1 :
τ1, . . . , Γ ` tn : τn as Γ ` ~t : ~τ . The typing rules are listed in Fig. 2.

Here are some notes on typing rules. Rule (Abs) can be understood as
the (standard) abstraction rule followed by the intersection introduction rule.
Rule (App) can be understood as the intersection elimination rule followed by
the (standard) application rule. Note that intersection is introduced by (Abs)
rule and eliminated by (App) rule, which is the converse of the call-by-name
case [7]. Rule (Var) is designed for ensuring weakening. Rule (App-F1) re-
flects the fact that, if t −→∗ E[F], then t 〈~u〉 −→∗ E′[F] where E′ = E 〈~u〉.
Rule (App-F2) reflects the fact that, if t −→ v0 and ui −→∗ vi for i <
l, then t 〈u1, . . . , ul−1, ul, ul+1, . . . , un〉 −→∗ v0 〈v1, . . . , vl−1, E[F], ul+1, . . . , un〉.
The premises t : θ0 and ui : θi (i < l) ensure may-convergence of their evaluation.

Typability of a program is defined by using the notion of the nth approxi-
mation (see Section 2 for the definition). Let P = let rec D in t be a program.

x : θ ∧ θ′ ∈ Γ for some θ′

Γ ` x : θ
(Var)

b ∈ {t, f}
Γ ` b : b

(Bool)

Γ ` F : F
(F)

Γ, ~x : ~θi ` t : τi for all i ∈ I
Γ ` λ〈~x〉.t :

∧
i∈I(

~θi → τi)
(Abs)

Γ ` t :
∧
i∈I(

~θi → τi)

Γ ` ~u : ~θl l ∈ I
Γ ` t 〈~u〉 : τl

(App)

Γ ` t : F

Γ ` t 〈~u〉 : F
(App-F1)

Γ ` t : θ0
Γ ` u1 : θ1

...
Γ ` ul−1 : θl−1

Γ ` ul : F

Γ ` t 〈~u〉 : F
(App-F2)

Γ ` t : t Γ ` s1 : τ

Γ ` if(t, s1, s2) : τ
(C-T)

Γ ` t : f Γ ` s2 : τ

Γ ` if(t, s1, s2) : τ
(C-F)

Γ ` t : F

Γ ` if(t, s1, s2) : F
(C-F)

∃i ∈ {1, 2} Γ ` ti : τ

Γ ` t1 ⊕ t2 : τ
(Br)

Fig. 2. Typing Rules

Thus t is a term of sort B with free occurrences of function symbols. We say the
program P has type τ (written as ` P : τ) just if ` [t]nD : τ for some n.

Soundness and completeness of the type system can be proved by using a
standard technique for intersection type systems, except that Substitution and
De-Substitution Lemmas are restricted to substitution of values and Subject
Reduction and Expansion properties are restricted to call-by-value reductions.
For more details, see Appendix E.

Theorem 3. ` P : F if and only if P fails.

5.3 Type-Checking Algorithm and Upper Bound of Complexity

We provide an algorithm that decides the typability of a given depth-n program
P in time O(expn(poly(|P |))) for some polynomial poly . Let P = let rec D in t
and suppose that ` D :: ∆, ∆ ` t :: B and ∆ = {fi :: δi | i ∈ I}.

We define T (κ) = {τ | τ :: κ} and T (∆) = {Γ | Γ :: ∆}. For τ, σ ∈ T (κ), we
write τ � σ just if τ = σ ∧ σ′ for some σ′. The ordering for type environments
is defined similarly. Let FD be a function on T (∆), defined by:

FD(Θ) =
{
f :
∧
{~θ → τ | Θ,~x : ~θ ` t : τ}

∣∣∣ (f = λ〈~x〉.t) ∈ D
}
.

The algorithm to decide whether ` let rec D in t : F is shown in Fig. 3.

1 : Θ0 := {f :
∧
∅ | f ∈ dom(∆)}, Θ1 = FD(Θ0), i := 1

2 : while Θi 6= Θi−1 do

2-1 : Θi+1 := FD(Θi)
2-2 : i := i+ 1
3 : if Θi ` t : F then yes else no

Fig. 3. Algorithm checking if ` let rec D in t : F

Termination of the algorithm comes from monotonicity of FD and finiteness
of T (∆). Correctness is a consequence of the following lemma and the mono-
tonicity of the approximation (i.e. if [t]mD fails and m ≤ m′, then [t]m

′

D fails).

Lemma 6. Suppose ∆ | K ` t :: B. Then ∅ ` [t]nD : τ if and only if Θn ` t : τ .

We shall analyse the cost of the algorithm. For a set A, we write #A for the
number of elements. The height of a poset A is the maximum length of strictly
increasing chains in A.

Lemma 7. Let κ be a sort of depth n. Then #T (κ) ≤ expn+1(2|κ|) and the
height of T (κ) is bounded by expn(2|κ|).

Lemma 8. Let ∆ | K ` t :: κ be a sorted term of depth n, and Θ :: ∆. Assume
that depth(K) ≤ n − 1. Then AΘ,t = {(Γ, τ) ∈ T (K) × T (κ) | Θ,Γ ` t : τ} can
be computed in time O(expn(poly(|t|))) for some polynomial poly.

Proof. We can compute AΘ,t by induction on t. An important case is that the
sort κ is of depth n. In this case, there exists BΘ,t ⊆ T (K) × T (κ) such that
(1) (Γ, τ) ∈ AΘ,t if and only if (Γ, τ ′) ∈ BΘ,t for some τ ′ � τ and (2) for
each Γ , the number of elements in BΘ,t � Γ = {τ | (Γ, τ) ∈ BΘ,t} is bounded
by |t|. This claim can be proved by induction on t. See Appendix H. By using
BΘ,t as the representation of AΘ,t, AΘ,t can be computed in the desired bound.
For other cases, one can enumerate all the elements in AΘ,t, since #AΘ,t ≤
expn(2(|K|+ |κ|)) ≤ expn(2|t|) (here we assume w.l.o.g. that each variable in
dom(K) appears in t). ut

Theorem 4. The reachability problem for depth-n programs is in n-EXPTIME.

Proof. By Lemma 8, each iteration of loop 2 in Fig. 3 runs in n-EXPTIME. Since
the height of T (∆) is bounded by expn(2|∆|), one needs at most expn(2|∆|)
iterations for loop 2, and thus loop 2 runs in n-EXPTIME. Again by Lemma 8,
step 3 can be computed in n-EXPTIME. Thus the algorithm in Fig. 3 runs in
n-EXPTIME for depth-n programs. ut

6 Related Work

Higher-order model checking. Model-checking recursion schemes against modal
µ-calculus (known as higher-order model checking) has been proved to be decid-
able by Ong [15], and applied to various verification problems of higher-order pro-
grams [7, 11, 12, 17]. The higher-order model-checking problem is n-EXPTIME

complete for order-n recursion schemes [15]. The reachability problem for call-
by-name programs is an instance of the higher-order model checking, and (n−1)-
EXPTIME complete for order-n programs [10].

Model-checking call-by-value programs via the CPS translation. The previous
approach for model-checking call-by-value programs is based on the CPS trans-
lation. Our result implies that the upper bound given by the CPS translation
is not tight. However this does not imply that the CPS translation followed
by call-by-name model-checking is inefficient. It depends on the model-checking
algorithm. For example, the näıve algorithm in [7] following the CPS transla-
tion takes more time than our algorithm, but we conjecture that HorSat [2]
following the CPS translation meets the tight bound.

Sato et al. [16] employed the selective CPS translation [14] to avoid unnec-
essary growth of the order, using a type and effect system to capture effect-free
fragments and then added continuation parameters to only effectful parts.

Intersection types for call-by-value calculi. Davies and Pfenning [3] studied an
intersection type system for a call-by-value effectful calculus and pointed out
that the value restriction on the intersection introduction rule is needed. In our
type system, the intersection introduction rule is restricted immediately after the
abstraction rule, which can be considered as a variant of the value restriction.

Similarly to the previous work on type-based approaches for higher-order
model checking [7–9], our intersection type system is a variant of the Essential
Type Assignment System in the sense of van Bakel [18], in which the typing rules
are syntax directed. Our syntax of intersection types differs from the standard
one for call-by-name calculi. Our syntax is inspired by the embedding of the call-
by-value calculus into the linear lambda calculus [13], in which the call-by-value
function type A→ B is translated into !(A(B) (recall that function types in
our intersection type system is

∧
i(τi → σi)).

Zeilberger [19] proposed a principled design of the intersection type system
based on the idea from focusing proofs [1]. Its connection to ours is currently
unclear, mainly because of the difference of the target calculi.

Our type system is designed to be complete. This is a characteristic feature
that the previous work for call-by-value calculi [3, 19] does not have.

7 Conclusion

We have studied the complexity of the reachability problem for call-by-value
programs, and proved the following results. First, the reachability problem for
order-3 programs is non-elementary, and thus the order of the program does not
serve as a good measure of the complexity, in contrast to the call-by-name case.
Second, the reachability problem for depth-n programs is n-EXPTIME complete,
which improves the previous upper bound given by the CPS translation.

For future work, we aim to (1) develop an efficient model-checker for call-by-
value programs, using the type system proposed in the paper, and (2) study the
relationship between intersection types and focused proofs [1, 19].

Acknowledgement This work is partially supported by JSPS KAKENHI Grant
Number 23220001.

References

1. J.-M. Andreoli. Logic programming with focusing proofs in linear logic. J. Log.
Comput., 2(3):297–347, 1992.

2. C. H. Broadbent and N. Kobayashi. Saturation-based model checking of higher-
order recursion schemes. In CSL 2013, volume 23 of LIPIcs, pages 129–148. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.

3. R. Davies and F. Pfenning. Intersection types and computational effects. In ICFP
2000, pages 198–208. ACM, 2000.

4. J. Engelfriet. Iterated stack automata and complexity classes. Inf. Comput.,
95(1):21–75, 1991.

5. A. Igarashi and N. Kobayashi. Resource usage analysis. ACM Trans. Program.
Lang. Syst., 27(2):264–313, 2005.

6. T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy. In
FoSSaCS 2002, volume 2303 of Lecture Notes in Computer Science, pages 205–222.
Springer, 2002.

7. N. Kobayashi. Types and higher-order recursion schemes for verification of higher-
order programs. In POPL 2009, pages 416–428. ACM, 2009.

8. N. Kobayashi. Model checking higher-order programs. J. ACM, 60(3):20, 2013.
9. N. Kobayashi and C.-H. L. Ong. A type system equivalent to the modal mu-

calculus model checking of higher-order recursion schemes. In LICS 2009, pages
179–188. IEEE Computer Society, 2009.

10. N. Kobayashi and C.-H. L. Ong. Complexity of model checking recursion schemes
for fragments of the modal mu-calculus. Logical Methods in Computer Science,
7(4), 2011.

11. N. Kobayashi, R. Sato, and H. Unno. Predicate abstraction and CEGAR for
higher-order model checking. In PLDI 2011, pages 222–233. ACM, 2011.

12. N. Kobayashi, N. Tabuchi, and H. Unno. Higher-order multi-parameter tree trans-
ducers and recursion schemes for program verification. In POPL 2010, pages 495–
508. ACM, 2010.

13. J. Maraist, M. Odersky, D. N. Turner, and P. Wadler. Call-by-name, call-by-value,
call-by-need and the linear lambda calculus. Electr. Notes Theor. Comput. Sci.,
1:370–392, 1995.

14. L. R. Nielsen. A selective CPS transformation. Electr. Notes Theor. Comput. Sci.,
45:311–331, 2001.

15. C.-H. L. Ong. On model-checking trees generated by higher-order recursion
schemes. In LICS 2006, pages 81–90. IEEE Computer Society, 2006.

16. R. Sato, H. Unno, and N. Kobayashi. Towards a scalable software model checker
for higher-order programs. In PEPM 2013, pages 53–62. ACM, 2013.

17. Y. Tobita, T. Tsukada, and N. Kobayashi. Exact flow analysis by higher-order
model checking. In FLOPS 2012, volume 7294 of Lecture Notes in Computer
Science, pages 275–289. Springer, 2012.

18. S. van Bakel. Intersection type assignment systems. Theor. Comput. Sci.,
151(2):385–435, 1995.

19. N. Zeilberger. Refinement types and computational duality. In PLPV 2009, pages
15–26. ACM, 2009.

A Proof of Lemma 1 (Termination)

By the standard technique based on the logical relation. For every sort κ, we
define a set of closed terms Rκ by the following rules.

– t ∈ RB if and only if
1. ∅ ` t :: B, and
2. t has no infinite reduction sequence.

– t ∈ Rκ1×...×κn→ι if and only if
1. ∅ ` t :: κ1×. . .×κn → ι,
2. t has no infinite reduction sequence, and
3. ∀u1 ∈ Rκ1

. . . un ∈ Rκn
. t 〈u1, . . . , un〉 ∈ Rι.

Our goal is to prove that ∅ ` t :: κ implies t ∈ Rκ. For a sequence of terms
~t = t1, . . . , tn and a sequence of sorts ~κ = κ1, . . . , κn, we write ∅ ` ~t :: ~κ just if
∅ ` ti :: κi for every i ∈ {1, . . . , n} and ~t ∈ R~κ just if ui ∈ Rκi

for every i. We
write [~v/~x]t for simultaneous substitution of xi in t to vi for all i.

Lemma 9. ~x :: ~κ ` t :: ι and ∅ ` ~u :: ~κ implies ∅ ` [~u/~x]t :: ι.

Proof. By induction on t. ut

Lemma 10. Suppose that ∅ ` t :: κ and {t1, . . . , tn} be a set of terms that
satisfies the following condition:

t −→∗ t′ implies t′ −→∗ ti or ti −→∗ t′ for some i ∈ {1, . . . , n}.

If ti ∈ Rκ for every i, then t ∈ Rκ.

Proof. By induction on the sort κ. ut

Lemma 11. Suppose that ~x :: ~κ ` t :: ι and ~v ∈ R~κ, where ~v is a sequence of
values. Then [~v/~x]t ∈ Rι.

Proof. By induction on the structure of t. We prove the case that t = λ〈~y〉.u.
Other cases can be proved easily.

Assume that ~v ∈ R~κ and ι = ~κ′ → ι′. It is necessary to prove that [~v/~x](λ〈~y〉.u) =
λ〈~y〉.([~v/~x]u) ∈ R~κ′→ι′ . Since λ〈~y〉.([~v/~x]u) is a value and cannot be reduced
more, it suffices to prove the condition (3). Let ~s = s1, . . . , sn be a sequence of
terms such that ~s ∈ R~κ′ . Let t′ = [~v/~x]t and

A1 = {t′ 〈~s′〉 | t′ 〈~s〉 −→∗ t′ 〈~s′〉 and t′ 〈~s′〉 cannot be reduced more}
A2 = {[~w/~y,~v/~x]u | t′ 〈~s〉 −→∗ t′ 〈~w〉 where ~w is a sequence of values}.

For every t′ 〈~s′〉 ∈ A1, we have t′ 〈~s′〉 ∈ Rι′ since if t′ 〈~s′〉 gets stuck, then
t′ 〈~s′〉 〈~s′′〉 also gets stuck for every ~s′′. For every t′′ ∈ A2, we have t′′ ∈ Rι′ by
the induction hypothesis and ~w ∈ R~κ′ . The set of terms A1 ∪ A2 satisfies the
condition of Lemma 10, and thus t′ ~s ∈ Rι′ . ut

Lemma 1 is a special case of Lemma 11, in which ~x is the empty sequence.

B Proof of Lemma 2

We first introduce an ordering on terms, defined by induction on terms:

Ω � t
x � x

λ〈~x〉.t � λ〈~x〉.u iff t � u
t 〈~u〉 � t′ 〈~u′〉 iff t � t′ and ui � u′i for all i

t1 ⊕ t2 � u1 ⊕ u2 iff t1 � u1 and t2 � u2
t � t

f � f

if(t1, t2, t3) � if(u1, u2, u3) iff t1 � u1 and t2 � u2 and t3 � u3
Fκ � Fκ

Lemma 12.

1. � is a partial order.
2. t � t′ and t −→∗ E[F] implies t′ −→∗ E′[F].
3. For every function definition D, n ≤ m implies [t]nD � [t]mD .

Proof. (1): Easy.
(2): First we prove that E[F] � t′ implies t′ = E′[F] by induction on E.

Second we prove that t � t′ and t −→ u implies t′ −→ u′ and u � u′ for some
u′. The proposition (2) is a consequence of these facts.

(3): By induction on n and t. ut

Lemma 13. Let D be a function definition and t be a term and n > 0. If
t −→D u, then there exists t′ such that [t]nD −→ t′ or [t]nD = t′ and [u]n−1D � t′.

Proof. If t = E[f] for some function symbol f , then u = E[D(f)]. For a given
evaluation context E and E′, the nth approximation [E]nD and the ordering
E � E′ are defined straightforwardly. It is easy to see the following properties:

– E � E′ implies E[t] � E′[t] for every t.
– [E]nD � [E]mD if n ≤ m.

Then
[t]nD = [E]nD[[f]nD]

and
[u]n−1D = [E]n−1D [[D(f)]n−1D] = [E]n−1D [[f]nD].

Set t′ = [t]nD and we have [u]n−1D � t′ as required. Other cases can be proved
easily. ut

Let t be a term without any function symbols and u be a term containing
function symbols. We write t �D u just if t � [u]nD for some n.

Lemma 14. If t �D u and t −→ t′, then u −→∗D u′ and t′ �D u′ for some u′.

Proof. By induction on the structure of t. ut

Lemma 15. If E[F] �D u, then u = E′[F].

Proof. By induction on E.

Proof (Proof of Lemma 2). Let P = let rec D in t be a program.

We prove that t −→∗D E[F] implies [t]nD −→∗ E′[F] for some n, by induction
on the length of t −→∗D E[F]. The base case, where t = E[F], can be proved
by induction on E. Assume that t −→D u −→∗D E[F]. Then by the induction
hypothesis, we have [u]nD −→∗ E′[F] for some n. By Lemma 13, we have t′ such
that

– [t]n+1
D −→ t′ or [t]n+1

D = t′, and

– [u]nD � t′.

By Lemma 12(2), we have t′ −→∗ E′′[F]. Thus [t]n+1
D −→∗ E′′[F].

We prove the converse. Assume that [t]nD −→∗ E[F] for some n. More pre-
cisely,

[t]nD −→ t1 −→ t2 −→ . . . −→ tn = E[F].

By definition of �D, we have [t]nD �D t. Then by Lemma 14, we have

t −→∗D u1 −→∗D u2 −→∗D . . . −→∗D un

where ti �D ui for every i. In particular, t −→∗D un and E[F] �D un. By
Lemma 15, we have un = E′[F] as desired. ut

C Definitions, Proofs of Lemmas in Section 3

C.1 Definition of Replacement

Let N = (N,D, ι, {Vi}i∈{0,1,...,N−1}, eq, s,p, z,max) be an implementation of
natural numbers up to N .

For a sort κ possibly containing the natural number sort, κN is defined by:

B
N = B

N
N = ι

(κ1×. . .×κn → δ)N = κN1 × · · · × κNn → δN.

For a term t with natural numbers up to N , tN is inductively defined by:

0N = z

SN = s

PN = p

EQN = eq

xN = x

fN = f

(λ〈~x〉.t)N = λ〈~x〉.(tN)

(t 〈u1, . . . , un〉)N = (tN) 〈uN1 , . . . , uNn 〉
(t⊕ u)N = (tN)⊕ (uN)

tN = t

fN = f

if(s, t, u)N = if(sN, tN, uN)

FN = F

ΩN = Ω

Let D′ = {fi = λ〈~xi〉.ti | i ∈ I} be a function definition. Then (D′)N is
defined by:

({fi = λ〈~xi〉.ti | i ∈ I})N = {fi = λ〈~xi〉.(tNi) | i ∈ I} ∪D.

For a sort environment ∆, we define

∆N = {x :: κN | x :: κ ∈ ∆}.

Lemma 16. If ∆ | K ` t :: κ, then ∆N | KN ` tN :: κN. Therefore if P =
let rec D′ in t is a well-sorted program with natural numbers, then PN =
let rec (D′)N in tN is a well-sorted program without natural numbers.

Proof. By induction on t. ut

C.2 Proof of Lemma 4

Let let rec D in t be a program with natural numbers up to N , and N =
(N,DN, κ, {Vi}i∈{0,1,...,N−1}, eq, s,p, z) be an implementation of natural num-
bers up to N .

First we prove the left-to-right direction. Assume let rec D in t fails. We
prove that let rec DN in tN fails.

A simulation ∼ between terms with natural numbers and terms without
natural numbers is defined by:

n ∼ vn if vn ∈ Vn
S ∼ s
P ∼ p

EQ ∼ eq
x ∼ x

t 〈u1, . . . , un〉 ∼ t′ 〈u′1, . . . , u′n〉 if t ∼ t′ and ui ∼ u′i for every i ∈ {1, . . . , n}
λ〈~x〉.t ∼ λ〈~x〉.u if t ∼ u
t1 ⊕ t2 ∼ u1 ⊕ u2 if t1 ∼ u1 and t2 ∼ u2

t ∼ t

f ∼ f

if(t0, t1, t2) ∼ if(u0, u1, u2) if ti ∼ ui for i = 0, 1, 2
F ∼ F
Ω ∼ Ω

We write D ∼ D′ just if

1. dom(D′) = dom(D)] dom(DN),
2. D(f) ∼ D′(f) for every f ∈ dom(D), and
3. D′(f) = DN(f) for every f ∈ dom(DN).

The simulation relation on evaluation contexts is defined by the rules above and
the following rule:

� ∼ �.

Lemma 17. For every term t with natural numbers, we have t ∼ tN. Similarly,
for every function definition D with natural numbers, we have D ∼ DN.

Proof. The first part can be proved by induction on the structure of t. The
second part can be proved by using the first part. ut

Lemma 18.

1. If v ∼ u for some value v, then u is a value.
2. If E[t′] ∼ u, there exist unique E′ and u′ such that u = E′[u′] and E ∼ E′

and t′ ∼ u′.
3. If E[F] ∼ u, then u = E′[F] for some evaluation context E′.
4. If t ∼ v for some value v, then t is a value.
5. If t ∼ E′[u′], there exist unique E and t′ such that t = E[t′] and E ∼ E′ and

t′ ∼ u′.
6. If t ∼ E′[F], then t = E[F] for some evaluation context E.

Proof.
(1): Since v is a value, we know that v = λ〈~x〉.t, t, f, S, P, EQ or n. It is easy

to check that u is a value in every case.
(2): By induction on the structure of E.
(3): By induction on the structure of E, using (1).

(4): Since v is a value, we know that v = λ〈~x〉.t, t or f. If v = λ〈~x〉.u, then
t = λ〈~x〉.t′, S, P, EQ or n, and thus t is a value. If v = t (resp. f), then t = n or
t (resp. f), and thus t is a value.

(5): By induction on the structure of E′.
(6): By induction on the structure of E′, using (4). ut

Lemma 19. If t ∼ t′ and ui ∼ u′i for every i ∈ {1, . . . , n}, then [~u/~x]t ∼
[~u′/~x]t′. If E ∼ E′ and t ∼ t′, then E[t] ∼ E′[t′].

Proof. The first proposition is proved by induction on t. The second proposition
is proved by induction on E. ut

Lemma 20. Assume that t ∼ t′ and D ∼ D′. If t −→∗D E[F], then t′ −→∗D′
E′[F].

Proof. By induction on the length of t −→∗D E[F]. If t = E[F], then by Lemma 18(3),
we have t′ = E′[F]. Assume that t −→D u −→∗D E[F]. It suffices to prove that
t′ −→∗D′ u′ and u ∼ u′ for some u′.

Case t = E0[Sn] −→D E0[n+ 1] = u: Then by Lemma 18(2), there exist
E′0 and t′′ such that t′ = E′0[t′′] and E0 ∼ E′0 and Sn ∼ t′′. Hence t′′ = s vn
for some vn ∈ Vn. Then t′′ = s vn −→∗DN

vn+1 for some vn+1 ∈ Vn+1, which
implies t′ = E′0[t′′] −→∗D′ E′0[vn+1]. Since n+ 1 ∼ vn+1, from Lemma 19, we
have u = E0[n+ 1] ∼ E′0[vn+1].

Case t = E0[(λ〈~x〉.t0) 〈~v〉] −→D E0[[~v/~x]t0] = u: Then by Lemma 18(2),
there exist E′0 and t′′ such that t′ = E′0[t′′] and E0 ∼ E′0 and (λ〈~x〉.t0) 〈~v〉 ∼ t′′.
Then t′′ = (λ〈~x〉.t′0) 〈~v′〉 with t0 ∼ t′0 and vi ∼ v′i for every i. We have

E′0[(λ〈~x〉.t′0) 〈~v′〉] −→D′ E
′
0[[~v′/~x]t′0].

By Lemma 19, we have [~v/~x]t0 ∼ [~v′/~x]t′0. So by Lemma 19, we have u =
E0[[~v/~x]t0] ∼ E′0[[~v′/~x]t′0].

Case t = E0[f] −→D E0[D(f)] = u: By Lemma 18(2), there exist E′0 and
t′′ such that t′ = E′0[t′′] and E0 ∼ E′0 and f ∼ t′′. Hence t′′ = f . Now we have
t′ = E′0[f] −→D′ E

′
0[D′(f)]. From the assumption, we know that D(f) ∼ D′(f).

So by Lemma 19, we have u = E0[D(f)] ∼ E′0[D′(f)] as required.
Other cases can be proved similarly. ut

Lemma 21. Assume that t ∼ t′ and D ∼ D′. If t′ −→∗D′ E′[F], then t −→∗D
E[F].

Proof. By induction on the length of t′ −→∗D′ E′[F]. If t′ = E′[F], then by
Lemma 18(6), we have t = E[F]. Assume that t′ = E′0[t′0] −→D′ u

′ −→∗D′ E′[F],
where t′0 is the redex. By Lemma 18(5), there exist E0 and t0 such that E0 ∼ E′0
and t0 ∼ t′0 and t = E0[t0]. We prove that there exists u′′ and u such that

– t′ −→D′ u
′ −→∗D′ u′′ −→D′ E

′[F],
– t −→D u, and
– u ∼ u′′.

If so, by the induction hypothesis, we have t −→D u −→∗D E[F] as required. We
prove the above claim by case analysis of t′0.

Consider the case that t′0 = (λ〈~x〉.t′00) 〈~v′〉. We do case analysis of t0. If
t0 = (λ〈~x〉.t00) 〈~v〉, it is easy to prove the claim. Assume that t0 = Sn. Since
t0 = Sn ∼ (λ〈~x〉.t′00) 〈~v′〉, we know that λ〈~x〉.t′00 = s and ~v′ = vn for some
vn ∈ Vn (i.e. the length of the sequence ~v′ is 1). Since evaluation of s vn does not
fail, the reduction sequence t′ −→∗D′ E′[F] can be decomposed as follows:

t′ = E′0[s vn] −→∗D′ E′0[vn+1] −→∗D′ E′[F],

where vn+1 ∈ Vn+1 (so n + 1 < N). Then we have E0[Sn] −→D E0[n+ 1] and
E0[n+ 1] ∼ E′0[vn+1] as desired.

Other cases can be proved similarly. ut

Proof (Proof of Lemma 4). Lemma 4 is a direct consequence of Lemma 17,
Lemma 20 and Lemma 21. ut

C.3 Definition of BN and Proof of Lemma 5

Let N = (N,D, κ, {Vi}i∈{0,1,...,N−1}, eq, s,p, z,max) be an implementation of
natural numbers up to N . First we define the implementation BN = (2N , D ∪
D′,B→ κ, {V ′i }i∈{0,1,...,2N−1}, eq′, s′,p′, z′,max′) of natural numbers up to 2N .

– The additional function definition D′ consists of:

up = λiκ.(i⊕ (up(s i)))

get = λ〈xB→κ, iκ〉. if(eq 〈x t, i〉, t, Ω) ⊕ if(eq 〈x f, i〉, f, Ω)

put = λ〈xB→κ, iκ, bB〉.λcB.
(
if(b = c, i, Ω) ⊕ ((λj.if(eq 〈i, j〉, Ω, j)) (x c))

)
ss = λ〈xB→κ, iκ〉. if(get 〈x, i〉, ss 〈put 〈x, i, f〉, s i〉, put 〈x, i, t〉)
pp = λ〈xB→κ, iκ〉. if(get 〈x, i〉, put 〈x, i, f〉, pp 〈put 〈x, i, t〉, s i〉)
e = λ〈xB→κ, yB→κ, iκ〉.

if(get 〈x, i〉 = get 〈y, i〉, if(eq 〈i, z〉, t, e 〈x, y,p i), f)

– Let m < 2N and bN−1 . . . b0 be its binary representation. Then V ′m is the set
of values v of sort B→ κ such that

1. bi = 1 iff v t −→∗ v′ for some v′ ∈ Vi,
2. bi = 0 iff v f −→∗ v′ for some v′ ∈ Vi, and

3. v t −→∗ v′ or v f −→∗ v′ implies v′ ∈
⋃
i∈{0,...,N−1} Vi.

– eq′ = λxB→κ.λyB→κ.e〈x, y,max〉.
– s′ = λxB→κ.ss〈x, z〉 and p′ = λxB→κ.pp〈x, z〉.
– z′ = λxB.if(x,Ω, up z).

– max′ = λxB.if(x, up z, Ω).

We prove that BN is an implementation of natural numbers up to 2N . Set
V =

⋃
i Vi and V ′ =

⋃
i V
′
i . In this subsection, we simply write −→ for −→D∪D′ .

For a natural number k < 2N , the binary encoding of k is a sequence
bN−1bN−2 . . . b1b0 of Boolean values of length N such that

k =
∑

l∈[0,N−1]

bl=t

2l

We write k = [bN−1bN−2 . . . b1b0] if bN−1bN−2 . . . b1b0 is the binary encoding of
k.

Lemma 22. Let v ∈ Vk.

1. For every k′ such that k ≤ k′ < N , up v −→∗ w ∈ Vk′ for some w.
2. If up v −→∗ w, then w ∈ V .

Proof. By induction on N − k.
(Case k = N − 1) To prove (1), consider the following reduction sequence:

up v −→ v ⊕ up (s v) −→ v ∈ VN−1.

This gives a witness of (1) since k′ must be N − 1. We prove (2). Assume
that up v −→∗ w and w /∈ V . Since t = v ⊕ up (s v) is the only term such that
up v −→ t, we have t −→∗ w. Since w 6= v ∈ VN−1, we have t −→ up (s v) −→∗ w.
However s v does not converge to any value, which contradicts the assumption.

(Case k < N − 1) We prove (1). We know that k′ = k or k′ > k. For the
former case, we have

up v −→ v ⊕ up (s v) −→ v ∈ Vk.

For the latter case, we have s v −→∗ v′ ∈ Vk+1 for some v′ and

up v −→ v ⊕ up (s v) −→ up (s v) −→∗ up v′ −→∗ w ∈ Vk′ ,

where we use the induction hypothesis for the last reduction step. We prove (2).
Assume that up v −→∗ w. Then we have

up v −→ v ⊕ up (s v) −→ v = w

or
up v −→ v ⊕ up (s v) −→ up (s v) −→∗ up v′ −→∗ w.

For the former case, we have w ∈ Vk ⊆ V as desired. For the latter case, we have
w ∈ V by the induction hypothesis. ut

Lemma 23. Let v ∈ V ′k, wi ∈ Vi and b ∈ {t, f}. Assume that

k = [bN−1bN−2 . . . b1b0].

Then get 〈v, wi〉 −→∗ b if and only if bi = b.

Proof. First we prove the left-to-right direction. Assume that get 〈v, wi〉 −→∗ b.
Then we have

get 〈v, wi〉 −→ if(eq 〈v t, wi〉, t, Ω) ⊕ if(eq 〈v f, wi〉, f, Ω)

−→ if(eq 〈v t, wi〉, t, Ω)

−→∗ b

or

get 〈v, wi〉 −→ if(eq 〈v t, wi〉, t, Ω) ⊕ if(eq 〈v f, wi〉, f, Ω)

−→ if(eq 〈v f, wi〉, f, Ω)

−→∗ b.

Both cases can be proved similarly. Assume the latter case. Then we have b = f.
By inspecting the reduction sequence, we have

eq 〈v f, wi〉 −→∗ eq〈v′, wi〉 −→∗ t

with v f −→∗ v′. By definition of V ′k, we have v′ ∈ Vi′ for some i′ ∈ {0, . . . , N−1}.
By the condition on eq, we have i = i′. Thus we have v f −→∗ v′ ∈ Vi. So by
the definition of V ′k, we have bi = f as required.

Second we prove the right-to-left direction. Assume that bi = b = f. Then
by definition of V ′k, we have v f −→∗ w′i for some w′i ∈ Vi. Thus

get 〈v, wi〉 −→ if(eq 〈v t, wi〉, t, Ω) ⊕ if(eq 〈v f, wi〉, f, Ω)

−→ if(eq 〈v f, wi〉, f, Ω)

−→∗ if(eq 〈w′i, wi〉, f, Ω)

−→∗ if(t, f, Ω)

−→ f,

where we use the condition on eq in the fourth step. The case that bi = b = t

can be proved similarly. ut

Lemma 24. Let v ∈ V ′k, wi ∈ Vi and b′ ∈ {t, f}. Assume that

k = [bN−1bN−2 . . . b1b0]

k′ = [bN−1 . . . bi+1b
′bi−1 . . . b0].

Then

– If put 〈v, wi, b′〉 −→∗ v′, then v′ ∈ Vk′ .
– put 〈v, wi, b′〉 −→∗ v′ for some v′ ∈ Vk′ .

Proof. By definition of put, the only reduction sequence starting from put 〈v, wi, b′〉
is

put 〈v, wi, b′〉 −→ λcB.
(
if(b′ = c, wi, Ω) ⊕

(
(λj.if(eq 〈wi, j〉, Ω, j)) (v c)

))
.

We write v′ for the right-hand-side of the above reduction. In order to prove
both items, it suffices to prove that v′ ∈ Vk′ , i.e.,

1. bj = t (j 6= i) if and only if v′ t −→∗ v′′ for some v′′ ∈ Vj ,
2. bj = f (j 6= i) if and only if v′ f −→∗ v′′ for some v′′ ∈ Vj ,
3. b = b′ if and only if v′ b −→∗ v′′ for some v′′ ∈ Vi, and
4. v′ t −→∗ v′′ or v′ f −→∗ v′′ implies v′′ ∈ V .

(1): The following reduction sequence proves the left-to-right direction:

v′ t
−→ if(b′ = t, wi, Ω)⊕

(
(λj.if(eq 〈wi, j〉, Ω, j)) (v t)

)
−→ (λj.if(eq 〈wi, j〉, Ω, j)) (v t)
−→∗ (λj.if(eq 〈wi, j〉, Ω, j))wj
−→∗ if(eq 〈wi, wj〉, Ω,wj)
−→∗ if(f, Ω,wj)
−→ vj ,

where wj ∈ Vj . We prove the converse. Assume that v′ t −→∗ wj for some
wj ∈ Vj . The key observation is that the right branch of the non-deterministic
branch must be chosen in the reduction sequence, since in the left branch only
wi is returned. Thus the reduction sequence must be of the form:

v′ t
−→ if(b′ = t, wi, Ω)⊕

(
(λj.if(eq 〈wi, j〉, Ω, j)) (v t)

)
−→ (λj.if(eq 〈wi, j〉, Ω, j)) (v t)
−→∗ (λj.if(eq 〈wi, j〉, Ω, j))wj
−→∗ if(eq 〈wi, wj〉, Ω,wj)
−→∗ if(f, Ω,wj)
−→ wj .

So v t −→∗ wj . Hence bj = t by the definition of Vk.
(2): Similar to (1).
(3): The following reduction sequence proves the left-to-right direction:

v′ b
−→ if(b′ = b, wi, Ω)⊕

(
(λj.if(eq 〈wi, j〉, Ω, j)) (v b)

)
−→ if(b′ = b, wi, Ω)
−→∗ if(t, wi, Ω)
−→ vi.

The converse can also be proved easily.
(4): A consequence of the fact that v′ b −→∗ v′′ implies v′′ = vi or v b −→∗ v′′.

ut

Lemma 25. Assume v ∈ V ′k and wi ∈ Vi. Let k′ = k + 2i.

– If k′ < N , then ss 〈v, wi〉 −→∗ v′ ∈ V ′k′ for some v′.
– ss 〈v, wi〉 −→∗ v′ implies k′ < 2N and v′ ∈ V ′k′ .

Proof. By induction on N − i. ut

Lemma 26. Assume v ∈ V ′k and wi ∈ Vi. Let k′ = k − 2i.

– If k′ ≥ 0, then pp 〈v, wi〉 −→∗ v′ ∈ V ′k′ for some v′.
– pp 〈v, wi〉 −→∗ v′ implies k′ ≥ 0 and v′ ∈ V ′k′ .

Proof. By induction on N − i. ut

Lemma 27. Assume v ∈ V ′k, v′ ∈ V ′k′ and wi ∈ Vi. Let k = [bN−1bN−2 . . . b1b0]
and k′ = [b′N−1b

′
N−2 . . . b

′
1b
′
0].

– bj = b′j for every j ≤ i if and only if e 〈v, v′, wi〉 −→∗ t.
– bj 6= b′j for some j ≤ i if and only if e 〈v, v′, wi〉 −→∗ f.

Proof. By induction on N − i. ut

Lemma 28. If N is an implementation of natural numbers up to N , then BN
is an implementation of natural numbers up to 2N .

Proof. An easy consequence of Lemma 22, Lemma 23, Lemma 24, Lemma 25,
Lemma 26 and Lemma 27. ut

Definition of N(0) The implementation N(0) = (2, D,B, {V0, V1}, eq, s,p, z,max)
of natural numbers up to 2 is defined by:

D = {} V0 = {f} V1 = {t} z = f max = t

eq = λ〈x, y〉.if(x, if(y, t, f), if(y, f, t))

s = λx.if(x,Ω, t) p = λx.if(x, f, Ω).

Lemma 29. N(0) is an implementation of natural numbers up to 2 = exp0(2).

Proof. Easy. ut

Proof (Lemma 5). A consequence of Lemma 28 and Lemma 29.

D Proof of n-EXPTIME Hardness of Depth-n
Reachability

D.1 Higher-Order Pushdown Systems

First of all, we define higher-order alternating pushdown systems and related
notions. Then we show that the existence of a finite run tree for a given order-
n alternating pushdown system is n-EXPTIME complete. We shall reduce this
problem to the depth-n reachability problem in the next subsection.

Definition 3 (Higher-Order Stacks). Let Π be a finite set of stack symbols.
Then the set Sn of order-n stacks are defined by induction on n as follows:

1. S0 = Π, and
2. S(n+1) = S+n .

Thus an order-(n+ 1) stack is a stack α0α1 . . . αk of order-n stacks, where α0 is
the stack top.

It is convenient to represent an order-(n+1) stack αn+1 by a pair of the stack
top and the remainder, which is a possibly empty sequence of order-n stacks, as
αn+1 = αn : ξn+1. By iteratively applying this notation, an order-n stack can
be represented as (. . . ((a : ξ1) : ξ2) : . . .) : ξn, where a is a stack symbol and ξk
is an order-k remainder (i.e. a possibly empty sequence of order-(k− 1) stacks).
We assume : is left-associative, and simply write as a : ξ1 : · · · : ξn.

The set Opn of operations on order-n stacks is {popk | 1 ≤ k ≤ n} ∪ {pushk |
1 < k ≤ n} ∪ {pusha1 | a ∈ Π}.

popk(a0 :ξ1 : . . . :ξn) = ξk : . . . :ξn

pusha
′

1 (a :ξ1 : . . . :ξn) = a′ : (a : ξ1) :ξ2 : . . . :ξn

pushk(a0 :ξ1 : . . . :ξn) = a0 : . . . :ξk−1 : (a0 : . . . :ξk−1 :ξk) :ξk+1 : . . . :ξn

Note that (i) order-k remainder ξk is an order-k stack just if ξk is not empty,
and (ii) for every order-k stack αk and order-(k + 1) remainder ξk+1, αk : ξk+1

is an order-(k + 1) remainder (in particular, an order-(k + 1) stack). So push
operations are always defined but the order-k pop operation is defined just if the
order-k remainder ξk is not empty.

Given a higher-order stack α ∈ Sn, its top symbol top(α) is defined by:

top(a0 :ξ1 : . . . :ξn) = a0.

Definition 4 (Alternating Higher-Order Pushdown Automaton). An
order-n alternating pushdown automaton is a tuple A = (Σ,Q,Π, δ), where

– Σ is a finite alphabet,
– Q is a finite set of states,
– Π is a finite set of stack symbols, and
– δ ⊆ (Σ] {ε}) ×Q ×Π × P(Q × Opn) is a transition relation, where P(A)

means the powerset of A.

An order-n alternating pushdown system (order-n PDS for short) is an order-n
alternating pushdown automaton over the empty alphabet (i.e. Σ = ∅). For an
order-n alternating pushdown system, the transition relation is often considered
as a subset of Q×Π × P(Q×Opn).

We use O as a metavariable ranging over P(Q×Opn).
Let A be a pushdown automaton. A configuration for A is a pair (q, α) ∈

Q × Sn. The transition relations are naturally extended to configurations. We
define the relation �aA (here a ∈ Σ] {ε}) on configurations and (finite) sets of
configurations by the following rule.

If (a, q, a0,O) ∈ δ and a0 = top(α), then

(q, α) �aA {(p, op(α)) | (p, op) ∈ O)},

provided that op(α) is defined for all (p, op) ∈ O.

Let w ∈ Σ∗ be a word and c = (q, α) be a configuration. The relation
w ∈ L(q, α), read “w is accepted from (q, α)”, is inductively defined by the
following rules.

1. If (q, α) �aA ∅, then a ∈ L(q, α).

2. If (q, α) �aA C and w ∈ L(p, β) for every (p, β) ∈ C, then aw ∈ L(q, α).

Note that a can be the empty word in the above rules. We often write w ∈
LA(q, α) to make the pushdown automaton A explicit.

Lemma 30 (Engelfriet [4]). Consider the problem that decides whether w ∈
LA(q, α) for a given order-n alternating higher-order pushdown automaton A,
a given word w and a given configuration (q, α). This problem is n-EXPTIME
complete.

If A is a pushdown system (i.e. Σ = ∅), the above problem becomes simpler
since LA(q, α) = { } or {ε}. We write (q, α)↓A just if ε ∈ LA(q, α). We simply
write (q, α)↓ if A is clear from the context. The problem to decide whether
(q, α)↓A is also n-EXPTIME complete for order-n pushdown systems.

Lemma 31. Consider the problem that decides whether (q, α)↓A for a given
order-n pushdown system A and a given configuration (q, α). This problem is
n-EXPTIME complete.

Proof. Given an order-n pushdown automaton A, a word w and a configura-
tion (q, α), we construct an order-n pushdown system A′ and a configuration
(q′, α′) in polynomial time such that w ∈ LA(q, α) if and only if (q′, α′)↓A′ . The
pushdown system A′ is constructed by embedding words into its states.

Let A = (Σ,Q,Π, δ). For a given word w, we write Post(w) be the set
of all postfixes of w, i.e. Post(w) = {w′ | w = w′′w′ for some w′′}. Formally
A′ = (Q′, Π ′, δ′) is defined as follows.

– Q′ = Q× Post(w).

– Π ′ = Π.

– δ′ ⊆ Q′ ×Π ′ × P(Q′ ×Opn) = Q× Post(w)×Π × P(Q× Post(w)×Opn)
is given by:

If (a, q, a0, {(p1, op1), . . . , (pk, opk)}) ∈ δ and aw′ ∈ Post(w), then
one has (q, aw′, a0, {(p1, w′, op1), . . . , (pk, w

′, opk)}) ∈ δ′.
Note that a can be the empty word. If so, the word in the states is not
changed.

Let w′ ∈ Post(w). Then w′ ∈ LA(q, α) if and only if (q, w′, α)↓A′ . This
proposition can be proved by induction on the derivation of w′ ∈ LA(q, α) for
the left-to-right direction and by induction on the derivation of (q, w′, α)↓A′ for
the right-to-left direction. ut

D.2 Depth-n Program Simulating Order-n PDS

Let A = (Q,Π, δ) be an order-n PDS (here we omit the alphabet Σ that
must be empty by definition). Following [6], we shall prove that every stack
operation can be implemented by terms of depth at most n. We assume that
Q = {1, 2, . . . , |Q|}.

For terms s and t of sort B, we define s&t = if(s, if(t, t, Ω), Ω), and for a
finite sequence of terms ~t = t1, . . . , tn, we define &~t = t1&(t2& . . . (tn&t) . . .).
If t1, . . . , tn are terms without fail, then &~t −→∗ t if and only if ti −→∗ t for all
i ≤ n, and thus the ordering of terms is not important. So the operation &A for
a finite set A of terms of the sort B is well-defined provided that each t ∈ A does
not have the constant F. For a finite set A = {t1, . . . , tk} of terms of the sort B,
we define

⊕
A = t1 ⊕ (t2 ⊕ . . . (tk ⊕ f) . . .). We have

⊕
A −→∗ t for t ∈ A and⊕

A −→∗ f.

The sort %d for representation of order-d stacks (and remainders) is defined
by induction on n− d by:

%n = B

%d =

|Q|︷ ︸︸ ︷
%d+1×. . .×%d+1 → %d+1 (if d < n).

The sort environment for function symbols is given by:

∆ = {faq :: %0 | q ∈ Q, a ∈ Π}.

A configuration (q, α) with α = a0 : ξ1 : ξ2 : · · · : ξn is encoded as a term (with
function symbols) of the form

fa0q 〈~v1〉 〈~v2〉 . . . 〈~vn〉,

where ~vk is a sequence of length |Q| consisting of values of sort %k, which repre-
sents the order-k remainder ξk. The precise description of the encoding will be
presented later.

We define closed terms (containing function symbols) that simulate opera-
tions on higher-order stacks. Given a ∈ Π, p ∈ Q and op ∈ Opn, the closed
term

[[(a; q, op)]] ::

|Q|︷ ︸︸ ︷
%1×. . .×%1× · · · ×

|Q|︷ ︸︸ ︷
%n×. . .×%n → B

is defined by:

[[(a; q, popk)]] = λ〈~x1, ~x2, . . . , ~xn〉. xk,q 〈~xk+1〉 . . . 〈~xn〉

[[(a; q, pushb1)]] = λ〈~x1, ~x2, . . . , ~xn〉. f bq


fa1 〈~x1〉
fa2 〈~x1〉

...
fa|Q|〈~x1〉

 〈~x2〉 . . . 〈~xn〉

[[(a; q, pushk)]] = λ〈~x1, ~x2, . . . , ~xn〉. faq 〈~x1〉 . . . 〈~xk−1〉


fa1 〈~x1〉 . . . 〈~xk〉
fa2 〈~x1〉 . . . 〈~xk〉

...
fa|Q|〈~x1〉 . . . 〈~xk〉

 〈~xk+1〉 . . . 〈~xn〉

where 
t1
t2
...
tm


is an alternative notation for 〈t1, t2, . . . , tm〉.

We now define the program PA = let rec DA in tA. The function definition
is given by:

DA = {faq = λ〈~x1〉.λ〈~x2〉. . . . λ〈~xn〉.taq | q ∈ Q, a ∈ Π}

where

taq =
⊕

O∈δ(q,a)

&(p,op)∈O([[(a; p, op)]]〈~x1, ~x2, . . . , ~xn〉).

(hereO ∈ δ(q, a) means (q, a,O) ∈ δ). For k ≤ n,⊥k is defined as λ〈~xk+1〉. . . . λ〈~xn〉.f.
For a pair of a state q and an order-k remainder ξk, [[(q, ξk)]]k is a term of sort
%k defined by:

[[(q, ε)]]k = ⊥k

[[(q, a :ξ1 : . . . :ξk)]]k = λ〈~xk+1〉. . . . λ〈~xn〉.faq

 [[(1, ξ1)]]1
...

[[(|Q|, ξ1)]]1

 . . .
 [[(1, ξk)]]k

...
[[(|Q|, ξk)]]k

 〈~xk+1〉 . . . 〈~xn〉

The next lemma is a key to prove correctness of the reduction. The lemma
shall be proved in the following subsection.

Lemma 32 (Correctness). Let (q, α) be a configuration of a higher-order push-
down system A. Then (q, α)↓A if and only if [[(q, α)]]n −→∗DA t.

D.3 Correctness of the Simulation

Here we prove the correctness of the simulation (Lemma 32). We fix an order-n
pushdown system A.

A witness of (q, α)↓ is a derivation with the conclusion (q, α)↓, of which the
inference rule is given by:

(q′, op(α))↓ (for all (q′, op) ∈ O)

(q, α)↓
[(q, top(α),O) ∈ δ].

Axioms are (q, α)↓ such that (q, α, ∅) ∈ δ. A witness $ is said to be uniform if
it satisfies the following condition:

If $1 and $2 are subderivations of the same conclusion, then $1 and
$2 are identical.

Given a witness $, one can construct a uniform witness $′ of the same con-
clusion. Hereafter, we shall consider only uniform witnesses. Note that every
subderivation of a uniform witness is uniform. For a witness $ and a config-
uration (q, α), we write (q, α) ∈ $ if $ has a proper subderivation with the
conclusion (q, α)↓.

Lemma 33. Let q ∈ Q be a state, α = a : ξ1 : · · · : ξn be a stack and $ be a
witness of (q, α)↓. Assume that

– vk,p = [[(p, ξk)]]k for every p ∈ Q and k < n, and
– vn,p ∈ {t, f} such that (p, ξn) ∈ $ implies vn,p = t.

Then faq 〈~v1〉 . . . 〈~vn〉 −→∗DA t.

Proof. By induction on the structure of $. Assume that the last rule used in $
is (q, a,O1) ∈ δ. Then by definition of DA,

faq 〈~v1〉 . . . 〈~vn〉 −→∗DA
⊕

O∈δ(q,a)

&(p,op)∈O([[(a; p, op)]]〈~v1, ~v2, . . . , ~vn〉)

−→∗DA &(p,op)∈O1
([[(a; p, op)]] 〈~v1, ~v2, . . . , ~vn〉).

It suffices to show that [[(a; p, op)]] 〈~v1, . . . , ~vn〉 −→∗DA t for every (p, op) ∈ O1.
We do case analysis on op. Note that, for every (p, op) ∈ O1, we have a witness
$′ of (p, op(α)) that is a subderivation of $.

Case op = popk for some k < n: Then ξk is not empty since (p, popk(α))↓.
Assume that ξk = a′ : ξ′1 : · · · : ξ′k. By the definition of [[(a; q, popk)]], we have

[[(a; p, op)]] 〈~v1, . . . , ~vn〉 −→ vk,p 〈~vk+1〉 . . . 〈~vn〉.

By the assumption, we have vk,p = [[(p, ξk)]]k and thus

vk,p = λ〈~xk+1〉. . . . λ〈~xn〉.fa
′

p 〈~v′1〉 . . . 〈~v′k〉〈~xk+1〉 . . . 〈~xn〉,

where v′i,p′ = [[(p′, ξ′i)]]i for every i ∈ {1, . . . , k} and p′ ∈ Q. Therefore

vk,p 〈~vk+1〉 . . . 〈~vn〉 −→∗ fa
′

p 〈~v′1〉 . . . 〈~v′k〉 〈~vk+1〉 . . . 〈vn〉 −→∗DA t.

Here we use the induction hypothesis for the second step (note that (p, popk(α)) =
ξk : ξk+1 : · · · : ξn = a′ : ξ′1 : · · · : ξ′k : ξk+1 : · · · : ξn).

Case op = popn: Then by the definition of [[(a; p, op)]], we have

[[(a; p, op)]] 〈~v1, . . . , ~vn〉 −→ vn,p.

Since (p, ξn) = (p, popn(α)) ∈ $, we have vn,p = t by the assumption.
Case op = pushn: Then by the definition of [[(a; p, op)]], we have

[[(a; p, op)]] 〈~v1, . . . , ~vn〉 −→ fap 〈~v1〉 . . . 〈~vn−1〉 〈~u〉,

where up′ = fap′ 〈~v1〉 . . . 〈~vn〉 for every p′ ∈ Q. By the definition of fap′ in DA, we
have

up′ −→∗DA f

for every p′ ∈ Q. Furthermore, by the induction hypothesis, if (p′, α) ∈ $, then
we have

up′ −→∗DA t.

We define wp′ = t if (p′, α) ∈ $ and wp′ = f otherwise. Then up′ −→∗DA
wp′ for every p′ ∈ Q. Let $′ be the subderivation of $ whose conclusion is
(p, pushn(α))↓. Then (p′, α) ∈ $′ implies wp′ = t. Thus

fap 〈~v1〉 . . . 〈~vn−1〉 〈~u〉 −→DA (λ〈~x1〉 . . . λ〈~xn〉.tap) 〈~v1〉 . . . 〈~vn−1〉 〈~u〉
−→∗

(
λ〈~xn〉.([~v1/~x1, . . . , ~vn−1/~xn−1]tap)

)
〈~u〉

−→∗DA
(
λ〈~xn〉.([~v1/~x1, . . . , ~vn−1/~xn−1]tap)

)
〈~w〉

−→∗DA t.

Here we use the induction hypothesis for the last step.
Other cases can be proved similarly. ut

Lemma 34. Let q ∈ Q be a state and α = a : ξ1 : · · · : ξn be a stack. Assume
that

– vk,p = [[(p, ξk)]]k for every p ∈ Q and k < n, and
– vn,p ∈ {t, f} such that vn,p = t implies that (p, ξn)↓.

If faq 〈~v1〉 . . . 〈~vn〉 −→∗DA t, then (q, α)↓.

Proof. By induction on the length of the reduction sequence. By the definition
of faq in DA, the reduction sequence must be of the form

faq 〈~v1〉 . . . 〈~vn〉 −→∗DA
⊕

O∈δ(q,a)

&(p,op)∈O([[(a; p, op)]]〈~v1, ~v2, . . . , ~vn〉)

−→∗DA &(p,op)∈O1
([[(a; p, op)]] 〈~v1, ~v2, . . . , ~vn〉)

−→∗DA t

for some O1 ∈ δ(q, a). If O1 is the empty set, i.e. (q, a, ∅) ∈ δ, then (q, a : ξ1 :
· · · : ξn)↓ as desired. Assume that O1 is not empty.

By the definition of &, we know that

[[(a; p, op)]] 〈~v1, ~v2, . . . , ~vn〉 −→∗DA t

for every (p, op) ∈ O1. Let (p, op) ∈ O1. Assume that op(α) = a′ : ξ′1 : · · · : ξ′n.
By an argument similar to the proof of Lemma 33, this reduction sequence must
be of the form

[[(a; p, op)]] 〈~v1, ~v2, . . . , ~vn〉 −→∗DA f
a′

p 〈~v′1〉 . . . 〈~v′n〉,

where

– v′i,p′ = [[(p′, ξ′i)]]i for every i ∈ {1, . . . , n− 1} and p′ ∈ Q, and
– v′n,p′ = {t, f} such that v′n,p′ = t implies (p′, ξ′n)↓ (here we use the induction

hypothesis to prove this claim).

So by the induction hypothesis, we have (p, a′ : ξ′1 : · · · : ξ′n)↓, which is equivalent
to (q, op(α))↓. ut

Lemma 35. Let q ∈ Q and ξn be an order-n remainder. Then [[(q, ξn)]]n −→∗DA
f.

Proof. By induction on ξn. If ξn = ε, then [[(q, ξn)]]n = f. Assume that ξn = a :
ξ′1 : · · · : ξ′n. Then we have

[[(q, ξn)]]n = faq 〈v1〉 . . . 〈vn−1〉

 [[(1, ξ′n)]]n
...

[[(|Q|, ξ′n)]]n

 ,
where vk,p = [[(p, ξ′k)]]k for every k < n and p ∈ Q. By definition, vk,p is a value.
By the induction hypothesis, [[(p, ξ′n)]]n −→∗DA f. Therefore

[[(q, ξn)]]n −→DA (λ〈~x1〉. . . . λ〈~xn〉.taq) 〈~v1〉 . . . 〈~vn−1〉

 [[(1, ξ′n)]]n
...

[[(|Q|, ξ′n)]]n


−→∗

(
λ〈~xn〉.([~v1/~x1, . . . , ~vn−1/~xn−1]taq)

)  [[(1, ξ′n)]]n
...

[[(|Q|, ξ′n)]]n


−→∗DA

(
λ〈~xn〉.([~v1/~x1, . . . , ~vn−1/~xn−1]taq)

)
〈~f〉

−→DA

⊕
O∈δ(q,a)

&(p,op)∈O([[(a; p, op)]]〈~v1, . . . , ~vn−1,~f〉)

−→∗ f.

ut

Proof (Lemma 32). By induction on ξn. If ξn = ε, then (q, ξn)↓ never holds and
[[(q, ξn)]]n = f. Assume that ξn = a′ : ξ′1 : · · · : ξ′n.

We prove the left-to-right direction. Assume that (q, a′ : ξ′1 : · · · : ξ′n)↓. Then
we have a witness $ of (q, a′ : ξ′1 : · · · : ξ′n)↓. For every p ∈ Q, we define vp = t if
(p, ξ′n) ∈ $ and vp = f otherwise. By Lemma 35 and the induction hypothesis,
we have [[(p, ξ′n)]]n −→∗DA vp. So by Lemma 33, we have [[(q, ξn)]]n −→∗DA t.

We prove the right-to-left direction. Assume that [[(q, a′ : ξ′1 : · · · : ξ′n)]]n −→∗DA
t. Let vk,p = [[(p, ξ′k)]]k for every k ∈ {1, . . . , n−1} and p ∈ Q. Then the reduction
sequence must be of the form

[[(q, a′ :ξ′1 : . . . :ξ′n)]]n

= fa
′

q 〈~v1〉 . . . 〈~vn−1〉

 [[(1, ξ′n)]]n
...

[[(|Q|, ξ′n)]]n


−→DA (λ〈~x1〉. . . . λ〈~xn〉.ta

′

q) 〈~v1〉 . . . 〈~vn−1〉

 [[(1, ξ′n)]]n
...

[[(|Q|, ξ′n)]]n


−→∗

(
λ〈~xn〉.([~v1/~x1, . . . , ~vn−1/~xn−1]ta

′

q)
)  [[(1, ξ′n)]]n

...
[[(|Q|, ξ′n)]]n


−→∗DA

(
λ〈~xn〉.([~v1/~x1, . . . , ~vn−1/~xn−1]ta

′

q)
)
〈~w〉

−→∗DA t.

Here [[(p, ξ′n)]]n −→∗DA wp ∈ {t, f} for every p. By the induction hypothesis,
vp = t implies (p, ξ′n)↓. So by Lemma 34, we have (q, a′ : ξ′1 : · · · : ξ′n)↓. ut

Proof (Theorem 2). A consequence of Lemma 31 and Lemma 32. The program
corresponding to (q, α)↓A is let rec DA in if([[(q, α)]]n,F, Ω). Note that DA
and [[(q, α)]]n do not contain F, and thus let rec DA in if([[(q, α)]]n,F, Ω) fails
if and only if [[(q, α)]]n −→∗DA t. ut

E Proof of Soundness and Completeness (Theorem 3)

We first prove some useful lemmas.
If Γ :: K and Γ ′ :: K, we define Γ ∧ Γ ′ by (Γ ∧ Γ ′)(x) = Γ (x) ∧ Γ ′(x).

Lemma 36 (Weakening). If Γ ` t : τ , then Γ ∧ Γ ′ ` t : τ for every Γ ′

(provided that Γ ∧ Γ ′ is defined).

Proof. By induction on the structure of the derivation of Γ ` t : τ . ut

The intersection introduction rule is admissible for values.

Lemma 37 (Intersection). If Γ ` v : ϑ1 and Γ ` v : ϑ2, then Γ ` v : ϑ1 ∧ ϑ2.

Proof. By the case analysis of v. If v = t, then ϑ1 = ϑ2 = t and thus ϑ1∧ϑ2 = t.
If v = f, then ϑ1 = ϑ2 = f and thus ϑ1 ∧ ϑ2 = f. Assume that v = λ〈~x〉.t. Then
ϑ1 and ϑ2 must be of the form

ϑ1 =
∧
i∈I

(~ϑ′i → τi) and ϑ2 =
∧
j∈J

(~ϑ′j → τj).

It suffices to prove that Γ ` λ〈~x〉.t :
∧
i∈I∪J(~ϑ′i → τi). To this end, one needs to

prove
Γ, ~x : ~ϑ′i ` t : τi

for every i ∈ I ∪ J . If i ∈ I, then a derivation of the above judgement appears
in the derivation of Γ ` λ〈~x〉.t :

∧
i∈I(

~ϑ′i → τi). Similarly for i ∈ J . ut

E.1 Soundness

Soundness of the type system can be proved straightforwardly, using Substitution
Lemma (Lemma 39) and Progress Lemma (Lemma 40).

Lemma 38. If Γ ` v : τ ∧ τ ′, then Γ ` v : τ .

Proof. Recall that v = t or f or λ〈~x〉.t. If v = t, then τ ∧ τ ′ = t and thus
τ = τ ′ = t. The case that v = f can be proved similarly.

Assume v = λ〈~x〉.t. Then τ =
∧
i∈I(

~ϑi → ψi) and τ ′ =
∧
i∈I′(

~ϑj → ψj) for

some I and I ′, and τ ∧ σ =
∧
i∈I∪I′(

~ϑi → ψi). Since Γ ` λ〈~x〉.t : τ ∧ σ, we have

Γ, ~x : ~ϑi ` t : ψi for every i ∈ I ∪ I ′. Therefore Γ, ~x : ~ϑi ` t : ψi for every i ∈ I.
By (Abs) rule, we have Γ ` λ〈~x〉.t :

∧
i∈I(

~ϑi → ψi). ut

Lemma 39 (Substitution). If Γ, x : τ ` t : σ and Γ ` v : τ , then Γ ` [v/x]t :
σ.

Proof. By induction on the structure of t. The proof of the case t = x needs
Lemma 38. ut

Lemma 40 (Progress). Suppose that ` t : τ . Then

– t −→ t′ and ` t′ : τ for some t′,
– τ = F and t = E[F], or
– τ 6= F and t is a value.

Proof. By induction on the derivation of ` t : τ . We do case analysis on the last
rule used in ` t : τ .

– Case (F): Then t = F and condition (2) holds.
– Case (App): Then t = s 〈~u〉 and ` s :

∧
i∈I(~σi → ϑi) and there exists l ∈ I

such that ` uk : σk,l (for every k ∈ {1, . . . , n}) and τ = ϑl. By the induction
hypothesis, s −→ s′ and ` s′ :

∧
i∈I(~σi → ϑi) or s is a value. For the former

case, we have ` s′ 〈~u〉 : τ . Assume the latter case. Then we check if uk is not

a value for some k. If so, by the induction hypothesis, we have uk −→ u′k
and this gives a reduction

s 〈u1, . . . , uk−1, uk, uk+1, . . . , un〉 −→ s 〈u1, . . . , uk−1, u′k, uk+1, . . . un〉

that preserves typing. Assume that s and uk (for all k ∈ [1, n]) are values.
Then s = λ〈~x〉.s′ and ~x : ~σi ` s′ : ϑi for every i ∈ I. Since s 〈~u〉 −→ [~u/~x]s′,
it suffices to show that ` [~u/~x]s′ : ϑl, which is a consequence of Substitution
Lemma (Lemma 39).

– Case (App-F1): Then t = s 〈~u〉 and ` s : F. By the induction hypothesis,
we have s′ such that s −→ s′ and ` s′ : F or s = E[F] for some evaluation
context E. In the former case, we have s 〈~u〉 −→ s′ 〈~u〉 and ` s′ 〈~u〉 : F. In
the latter case, t = E′[F], where E′ = E 〈~u〉.

– Case (Br-1): Then t = s1 ⊕ s2 and ` s1 : τ . We have s1 ⊕ s2 −→ s1 as
desired.

Other cases can be proved easily. ut

Theorem 5 (Soundness). Let P = let rec D in t be a program. If ` P : F,
then t −→∗D E[F].

Proof. Assume `D t : F, i.e. ` [t]nD : F for some n. By iteratively applying
Lemma 40, we have either a reduction sequence of the form

[t]nD −→ t1 −→ t2 −→ . . . −→ ti −→ E[F].

or an infinite reduction sequence, but the latter is not possible by Lemma 1. By
Lemma 2, we have t −→∗D E′[F] for some E′. ut

E.2 Completeness

A key to prove completeness is the admissibility of the intersection introduction
rule for values (Lemma 37). Using this lemma, we have De-Substitution Lemma
for substitution of values and Subject Expansion for call-by-value reduction.

Lemma 41 (De-Substitution). Assume that Γ ` [~v/~x]t : τ . Then there exists
~θ such that Γ, ~x : ~θ ` t : τ and Γ ` ~v : ~θ.

Proof. By induction on the structure of t, using Lemma 37. ut

Lemma 42. If ` E[t] : τ , then x : θ ` E[x] : τ and ` t : θ for some θ.
Conversely, x : θ ` E[x] : τ and ` t : θ implies ` E[t] : θ.

Proof. By induction on the structure of E. ut

Lemma 43 (Subject Expansion). If ` t′ : τ and t −→ t′, then ` t : τ .

Proof. Assume that t −→ t′ and ` t′ : τ . We prove the lemma by case analysis
on the reduction rules:

– Case E[(λ〈~x〉.t) 〈~v〉] −→ E[[~v/~x]t]: By Lemma 42, y : σ ` E[y] : τ and
` [~v/~x]t : σ for some σ. By De-Substitution Lemma (Lemma 41), there

exists ~ϑ such that ~x : ~ϑ ` t : σ and ` ~v : ~ϑ. By applying (Abs) rule,

we have ` λ〈~x〉.t :
∧
{~ϑ → σ}. By (App) rule, ` (λ〈~x〉.t) 〈~v〉 : σ and thus

` E[(λ〈~x〉.t) 〈~v〉] : τ by Lemma 42.
– Case E[t1 ⊕ t2] −→ E[t1]: By Lemma 42, x : σ ` E[x] : τ and ` t1 : σ for

some σ. By (Br-1) rule, we have ` t1 ⊕ t2 : σ. Thus ` E[t1 ⊕ t2] : τ .
– Case E[if(t, t1, t2)] −→ E[t1]: By Lemma 42, x : σ ` E[x] : τ and ` t1 : σ for

some σ. Then it is easy to prove ` if(t, t1, t2) : σ and thus ` E[if(t, t1, t2)] : τ
by Lemma 42.

Other cases can be proved similarly. ut

Theorem 6 (Completeness). Let P = let rec D in t be a program. If
t −→∗D E[F], then ` P : F.

Proof. Assume t −→∗D E[F]. Then by Lemma 2, [t]nD −→∗ E′[F] for some n.
Using Subject Expansion (Lemma 43), ` [t]nD : F can be proved by induction on
the length of the reduction sequence. Thus ` P : F. ut

Proof (Theorem 3). A consequence of Soundness (Theorem 5) and Completeness
(Theorem 6). ut

F Proof of Lemma 6

Assume that ∆ = {f1 :: δ1, . . . , fk :: δk} and let Fmi be the mth approximation
of fi (see Section 2 for the definition of Fmi).

Lemma 44. For every function symbol fi, ` Fmi : τ if and only if τ � Θm(fi).

Proof. By induction on m. The base case is trivial. We prove the induction step.
For the left-to-right direction, suppose that ` Fm+1

i : τ . By definition of
Fm+1
i , we have

` [Fm1 /f1, . . . , F
m
k /fk](D(fi)) : τ.

By De-substitution Lemma (Lemma 41), we have f1 : θ1, . . . , fk : θk ` D(fi) : τ
and ` Fmj : θj for every j ≤ k (note that Fmj is a value for every m and j). By
the induction hypothesis, θj � Θm(fj) for every j ≤ k. So by Lemma 36, we
have Θm ` D(fi) : τ . Hence τ � Θm+1(fi) by definition of Θm+1.

For the right-to-left direction, suppose that τ � Θm+1(fi). Then by definition
of Θm+1(fi), we have Θm ` D(fi) : τ ∧ τ ′ for some τ ′. Since D(fi) is a value,
we know that ΓDm ` D(fi) : τ by Lemma 38. By the induction hypothesis, for
every j ≤ k, we have ` Fmj : Θm(fj). So by Substitution Lemma (Lemma 39),
` [Fm1 /f1, . . . , F

m
k /fk]D(fi) : τ as desired. ut

Lemma 6 is a consequence of Lemma 44, De-Substitution Lemma (Lemma 41)
and Substitution Lemma (Lemma 39).

G Proof of Lemma 7

Lemma 45. Let n,m1, . . . ,mk be positive natural numbers (i.e. n ≥ 1 and mi ≥
1 for every i). Then

k∏
i=0

expn(mi) ≤ expn(

k∑
i=0

mi) .

Proof. By induction on n. If n = 1, then

k∏
i=0

exp1(mi) =

k∏
i=0

2mi = 2
∑k

i=0mi .

Assume that n ≥ 2. Note that expn−1(mi) ≥ 2. Thus
∑k
i=0 expn−1(mi) ≤∏k

i=0 expn−1(mi). So, by using the induction hypothesis, we have

k∏
i=0

expn(mi) =

k∏
i=0

2expn−1(mi)

= 2
∑k

i=0 expn−1(mi)

≤ 2
∏k

i=0 expn−1(mi)

≤ 2expn−1(
∑k

i=0mi)

= expn(

k∑
i=0

mi)

as desired. ut
Proof (Proof of Lemma 7). By induction on the structure of κ. If κ = B, then
T (B) = {t, f,FB} and n = 0 and |B| = 1. It is easy to see that #T (B) = 3 ≤
22 = expn+1(2|B|). The height of T (κ) is 1, which is less than exp0(2|B|) = 2.

Assume that κ = κ1×. . .×κk → ι. Then

T (κ1×. . .×κk → ι) ∼= P
(

(T (κ1)− {F})× · · · × (T (κk)− {F})× T (ι)
)
,

where P(A) is the set of all subsets of A. So #T (κ) can be estimated, using the
induction hypothesis and Lemma 45, as:

#T (κ1×. . .×κk → ι) = #P
(

(T (κ1)− {F})× . . . (T (κk)− {F})× T (ι)
)

= 2(#T (κ1)−1)×···×(#T (κk)−1)×#T (ι)

≤ 2expn(2|κ1|)×···×expn(2|κk|)× expn(2|ι|)

≤ 2expn(2(|κ1|+···+|κk|+|ι|))

< 2expn(2|κ|)

= expn+1(2|κ|) .

It is easy to see that the height of T (κ) is bounded by the number of elements
in T (κ1)× · · · × T (κk)× T (ι), which is bounded by expn(2|κ|). ut

H Proof of Claim in Proof of Lemma 8

For a term t with ∆ | K ` t :: κ and Θ :: ∆, we define AΘ,t ⊆ T (K)× T (κ) by

AΘ,t = {(Γ, τ) ∈ T (K)× T (κ) | ∆,Γ ` t : τ}.

Lemma 8 states that AΘ,t can be computed in time O(expn(poly(|t|)) under
certain conditions, where n ≥ max{depth(t), depth(K)}.

For a subset A ⊆ T (K)× T (κ) and Γ ∈ T (K), we define A � Γ by

(A � Γ) = {τ | (Γ, τ) ∈ A}.

We prove the following claim used in the proof of Lemma 8.

Lemma 46. Assume that depth(t) = depth(κ) = n and depth(K) < n. Then
there exists BΘ,t ⊆ T (K)× T (κ) that satisfies the following properties.

1. (Γ, τ) ∈ AΘ,t if and only if (Γ, τ ′) ∈ BΘ,t for some τ ′ � τ .
2. #(BΘ,t � Γ) ≤ |t| for every Γ .

Proof. By induction on the structure of t.
Case t = f for some function symbol f : Take BΘ,f = {(Γ,Θ(f)) | Γ ∈ T (K)}.
Case t = λ〈~x〉.u: For every Γ :: K, we define

τΓ =
∧
{~θ → σ | Θ,Γ, ~x : ~θ ` u : σ}.

It is easy to see that Θ,Γ ` λ〈~x〉.u : τ0 implies τ0 � τΓ . Recall that∧
i∈I

(~θi → σi) �
∧
j∈J

(~θj → σj)

intuitively means that I ⊆ J . So take BΘ,λ〈~x〉.u = {(Γ, τΓ) | Γ :: K}.
Case t = t1 ⊕ t2: Take BΘ,t1⊕t2 = BΘ,t1 ∪ BΘ,t2 . Then BΘ,t1⊕t2 satisfies

the condition (2). We prove the condition (1). Assume that (Γ, τ) ∈ AΘ,t1⊕t2 .
Then Θ,Γ ` t1 ⊕ t2 : τ . Thus Θ,Γ ` ti : τ for some i ∈ {1, 2}, which means
that (Γ, τ) ∈ AΘ,ti . By the induction hypothesis, we have (Γ, τ ′) ∈ BΘ,ti for
some τ ′ � τ . Then (Γ, τ ′) ∈ BΘ,t1⊕t2 as expected. The converse can be proved
similarly.

Case t = if(s, u1, u2): We define BΘ,if(s,u1,u2) by

BΘ,if(s,u1,u2) = {(Γ, τ) ∈ BΘ,u1
| (Γ, t) ∈ AΘ,s}∪{(Γ, τ) ∈ BΘ,u2

| (Γ, f) ∈ AΘ,s}.

It is easy to check that BΘ,if(s,u1,u2) meets the conditions.
Case t = s 〈~u〉: This contradicts the assumption that depth(t) = depth(κ),

since the sort of s is ~ι→ κ for some ~ι and depth(~ι→ κ) > depth(κ). ut

