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Abstract
We introduce type-checking games, which are ω-regular games
over Böhm trees, determined by a type of the Kobayashi-Ong in-
tersection type system. These games are a higher-type extension of
parity games over trees, determined by an alternating parity tree
automaton. However, in contrast to these games over trees, the
“game boards” of our type-checking games are composable, using
the composition of Böhm trees. Moreover the winner (and winning
strategies) of a composite game is completely determined by the re-
spective winners (and winning strategies) of the component games.

To our knowledge, type-checking games give the first composi-
tional analysis of higher-order model checking, or the model check-
ing of trees generated by recursion schemes. We study a higher-
type analogue of higher-order model checking, namely, the prob-
lem to decide the winner of a type-checking game over the Böhm
tree generated by an arbitrary λY-term. We introduce a new type-
assignment system and use it to prove that the problem is decidable.

On the semantic side, we develop a novel (two-level) arena
game model for type-checking games, which is a cartesian closed
category equipped with parametric monad and comonad that them-
selves form a parametrised adjunction.

Categories and Subject Descriptors Theory of computation [Se-
mantics and reasoning]: Program constructs—Type structures;
Theory of computation [Semantics and reasoning]: Program se-
mantics

General Terms Theory, Verification

Keywords Higher-order model checking, Intersection type, Game
semantics, Böhm tree

1. Introduction
Higher-order model checking (HOMC), or the model checking
problem for trees generated by recursion schemes, is a widely stud-
ied problem in connection with the verification of higher-order pro-
grams [10, 18]. With respect to monadic second-order (MSO) prop-
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erties, the model checking of trees generated by recursion schemes
was first proved to be decidable in 2006 [15], using game semantics
[9]. A variety of semantic and algorithmic techniques, and models
of computation have since been employed to study HOMC: no-
tably, intersection types [11], collapsible pushdown automata [8]
and Krivine machines [19]. Algorithmic properties that refine and
extend the MSO decidability result have also been introduced, such
as logical reflection [1], effective selection [2, 7] and transfer theo-
rem [20].

In both theory and practice, model checking is mainly a whole
program analysis. Perhaps surprisingly, this is also true of HOMC.
There are multiple decision procedures that can model check trees
generated by ground-type functional programs, but not by higher-
type programs, which generate trees with binders i.e. Böhm trees.
Indeed it is open as to what is an appropriate higher-type analogue
of HOMC qua decision problem. It seems natural to consider a
Böhm tree as a graph with additional edges from bound variables
to their binders, but the MSO theory is undecidable even for a λY-
definable Böhm tree [4].

Symptomatic of our limited understanding of HOMC is a lack
of a denotational (i.e. compositional) semantics of higher-order
programs suitable for the direct analysis of model checking algo-
rithms. A precise and abstract formulation of such a compositional
semantics would be a cartesian closed category of parity games.

Our goal, then, is to build a compositional framework for
HOMC, using the λY-calculus as our programming language. The
primary task is to identify a well-behaved set C of properties τ over
Böhm trees U , and a mechanism for a satisfaction relation |= U : τ
whose validity is characterised by a system of witnesses s. We list
some desiderata.

(1) The satisfaction relation |= should conservatively extend the
MSO properties of trees (i.e. order-2 Böhm trees).

(2) Decidability of λY-definable Böhm trees: It should be decid-
able, given a λY-term M and τ ∈ C, whether |= BT(M) : τ ,
writing BT(M) for the Böhm tree of M .

(3) Two-Level Compositionality: Suppose Böhm trees U and V are
composable, the set of properties satisfied by U ◦ V should
be completely determined by those of U and of V . Further, if
|= U : τ and |= V : σ imply |= U ◦ V : δ, the witnesses sτU of
|= U : τ and sσV of |= V : σ should be composable, generating
a witness sτU ◦ sσV of |= U ◦ V : δ.

(4) Effective Selection: If |= BT(M) : τ , then there should exist,
constructively, a λY-definable witness of |= BT(M) : τ .

To this end, our choice of C is the set of intersection types of the
Kobayashi-Ong type system [11], as formulas of Böhm trees; we
introduce a new notion of 2-player game over Böhm trees, called
type-checking games, as the mechanism of a satisfaction relation



whose validity is witnessed by P having a winning strategy for the
game in question.

1.1 Contributions of the paper
We start from an algebraic abstraction of the parity conditions,
called left-closed ω-monoid. This general notion—every ω-regular
winning condition can be expressed by using a finite left-closed
ω-monoid—underpins all subsequent developments: our type-
checking games (Sec. 3), the concomitant type system (Sec. 4),
effect arena and two-level games (Sec. 5 and 6) are all parametrised
on a left-closed ω-monoids and a finite set of ground types.

We introduce type-checking games, which are a kind of higher-
type property-checking games played over a Böhm tree, the prop-
erty in question being an intersection type of the Kobayashi-Ong
type system [11]. On the one hand, type-checking games gener-
alise the property-checking games (such as parity games) which
are played over trees, to games which are played over trees with
binders; on the other, they may be viewed as an extension of Stir-
ling’s dependency tree automata [21] to infinite (binding) trees with
ω-regular conditions. The table below summarises the various as-
pects of types as a higher-order analogue of alternating parity tree
automata (APT).

Trees and APT Böhm trees and Types
Tree constructors Order-1 free variables
Trees Order-2 Böhm trees
Recursion schemes λY-terms with order-1 free vars
Value tree of a grammar Böhm tree of a term
MSO properties / APT Order-2 types
A tree accepted by an automaton A Böhm tree of a type

A remarkable feature of type-checking games is their inten-
sional or two-level compositionality. Given two such games of
composable simple types, not only are their underlying “game
boards” composable as Böhm trees, the winning strategies of the
composite game are completely determined by the respective win-
ning strategies of the component games (Theorem 11). A key to
this result is Lemma 10: certain (but enough) winning strategies of
type-checking games are themselves representable as Böhm trees.

We introduce a new intersection type system that characterises
the winner of type-checking games for λY-definable Böhm trees.
Since HOMC can be regarded as the 2nd-order fragment of the
type-checking games, this type system—which is decidable (Theo-
rem 17)—also characterises HOMC, and may be viewed as a con-
servative extension and simplification of the Kobayashi-Ong type
system. Precisely we prove a transfer theorem (Theorem 18): P
wins the type-checking game determined by a given intersection
type τ over the Böhm tree of a λY-term iff that term is typable
by τ . The second major result is a higher-order version of effective
selection (Theorem 20): given an inhabited intersection type, we
can effectively construct a λY-term whose Böhm tree represents a
P-winning strategy of the type-checking game of that type.

The semantic foundation, and the ultimate basis of the results
mentioned above, is a new category of effect arena games. To our
knowledge, this is the first example of a cartesian closed category
of games and winning strategies of ω-regular conditions. We then
construct a two-level game semantics (in the sense of [16]) as an
accurate model of our type system. Our categorical constructions
give HOMC examples of positive and negative actions [14] and of
parametrised adjunction.

1.2 Related work
Salvati and Walukiewicz [20] have established a transfer theorem
for (infinitary) λY-terms: for a fixed vocabulary of terms, the MSO
properties of Böhm trees of terms are effectively MSO properties
of the terms themselves. However their theorem is only applicable

to Böhm trees without binders (i.e. order-2 Böhm trees in our ter-
minology). This restriction seems essential to their development.
Their proof of the transfer theorem relies on the (effective) equiv-
alence between MSOL and non-deterministic parity automata for
defining tree languages. However, no such equi-expressivity results
for defining Böhm-tree languages are known. Moreover, MSOL is
undecidable on the binding structures of λY-definable Böhm trees
[4]. In contrast, our framework, and in particular our type-based
transfer theorem (Theorem 18), work for Böhm trees of all orders
definable by (finitary) λY-terms.

Haddad [7] has given a new proof of effective selection [2]
for recursion schemes, using a notion of shape-preserving scheme
transformation. We (Theorem 20) extend Haddad’s result to all
higher orders, based on a derivation-as-term interpretation of a new
intersection type system. This approach can be found in the work of
van Bakel [22] and of Kobayashi et al. [12], but applied to different
problems.

2. Monoidal-Closed Structure of Priorities
This section introduces the notion of left-closed ω-monoid, ab-
stracting the algebraic properties of the parity condition (see Ex-
ample 3). Types and games of this paper are parametrised by a left-
closed ω-monoid.

First we review the notion of ordered ω-semigroups [17]. We
write 〈e1, e2, . . . 〉 or 〈ei〉i∈ω for infinite sequences.

Definition 1 (Ordered ω-semigroup). A (partially) ordered ω-
semigroup is a pair (E,F), where E and F are partially ordered
sets equipped with the following operations:

- An associative binary operation ◦ : E× E→ E.
- An operation ~ : E× F→ F that defines a semigroup action of
E to F (i.e. e1 ~ (e2 ~ f) = (e1 ◦ e2)~ f ).

- A surjective mapping π : Eω → F called infinite product.

All the operations must respect the partial orders i.e.

(i) e1 � e′1 and e2 � e′2 implies e1 ◦ e2 � e′1 ◦ e′2,
(ii) e � e′ and f � f ′ implies e~ f � e′ ~ f ′, and

(iii) ei � e′i for every i implies π〈ei〉i∈ω � π〈e′i〉i∈ω .

Furthermore the infinite product must satisfy the following laws:

(i) e0 ~ π〈e1, e2, . . . 〉 = π〈e0, e1, e2, . . . 〉.
(ii) If 〈ei〉i∈ω  〈e′j〉j∈ω , then π〈ei〉i∈ω = π〈e′j〉j∈ω .

Here is defined by

〈e1, . . . , ei1 , ei1+1, . . . ei2 , ei2+1, . . . , ei3 , . . . 〉 
〈(e1 ◦ · · · ◦ ei1), (ei1+1 ◦ · · · ◦ ei2), (ei2+i ◦ · · · ◦ ei3), . . . 〉

for every infinite chain 0 < i1 < i2 < · · · of natural numbers.

An ordered ω-monoid is an ordered ω-semigroup (E,F) such
that E has an identity element. We write ε for the identity element.
We have ε ~ f = f for every f ∈ F. An ordered monoid E has
left-residuals if there exists a binary operation e\e′ s.t. e ◦ d �
e′ iff d � e\e′. Then E as the preorder category is a left-closed
(strict) monoidal category.

Definition 2 (Left-closed ω-monoid / winning condition). A left-
closed ω-monoid is an ordered ω-monoid (E,F) with E having left-
residuals. A winning condition is a triple (E,F,Ω), where (E,F) is
a left-closed ω-monoid and Ω ⊆ F is a lower-closed subset of F
(i.e. f ∈ Ω and f ′ � f implies f ′ ∈ Ω).

A winning condition (E,F,Ω) determines the winner of an in-
finite play associated with an infinite sequence 〈ei〉i∈ω of elements
in E: we say that P wins the play just if π〈ei〉i∈ω ∈ Ω.



Given a winning condition (E,F,Ω), we say Ω ⊆ F is stable if
for every e ∈ E and f ∈ F, f ∈ Ω ⇐⇒ e~ f ∈ Ω. A winning
condition is finite if E and F are finite.

Example 3. The parity condition is a finite and stable winning
condition. Let P = {0, 1, 2, . . . , 2N} be the set of priorities and
Ωparity ⊆ Pω be the set of all infinite sequences satisfying the
parity condition (i.e. the largest priority that occurs infinitely of-
ten is even). The priorities have a monoidal product e1 ◦ e2 =
max(e1, e2) with 0 as the identity. Consider the sub-priority or-
der [6]:

2N ≺ · · · ≺ 4 ≺ 2 ≺ 0 ≺ 1 ≺ 3 ≺ · · · ≺ 2N − 1.

The monoid product respects the sub-priority order. Priorities have
left-residuals, defined by:

(e\e′) :=


e′ if e < e′ or (e = e′ and (e is odd or 0))
e+ 1 if e > e′ and e is odd
e− 1 if e ≥ e′ and e is even and e > 0.

Consider a winning condition (P, {e,o}, {e}) with e ≺ o. The in-
finite product is defined as π〈e1, e2, . . . 〉 = e just if 〈e1, e2, . . . 〉 ∈
Ωparity and the mixed product is defined by e ~ f = f . It is finite
and Ω = {e} is stable.

It is well-known that finite ω-semigroups coincide with ω-
regular languages [17]. By a similar argument, every ω-regular
winning condition can be viewed as a finite winning condition
and vice versa. In particular, for every finite winning condition
(E,F,Ω), the ω-language {〈ei〉i∈ω | π〈ei〉i∈ω ∈ Ω} is ω-regular.
See Appendix A.2.

In the sequel, for simplicity, Ω is assumed to be stable. See
Appendix F for the general case.

3. Type-Checking Games
This section introduces formulas describing the properties of
Böhm trees, which may be viewed as a (slight) extension of the
Kobayashi-Ong type system [11]. The main result is composition-
ality (Theorem 11), which will be proved by game semantics in
Section 6.2 (proofs of other results are in the Appendix).

Henceforth we fix a stable winning condition (E,F,Ω) and a
finite set Q of ground types.

3.1 Preliminary: Böhm trees
We briefly review the notion of simply-typed Böhm trees. See
Appendix B.1 for the formal definitions.

First, we define simple types, which we shall refer to as kinds in
order to avoid confusion with (intersection) types to be introduced
later. The set of kinds is defined inductively: κ ::= o | κ → κ,
where o is the unique base kind and κ1 → κ2 is the kind for
functions from κ1 to κ2. A kind environment is a finite sequence
of kind bindings of the form x :: κ. Kind environments are ranged
over by ∆. We use :: for kind bindings and kind judgements in
order to distinguish them from type bindings and type judgements.

We assume the standard notion of Böhm trees, which are possi-
bly infinite trees with binders, defined co-inductively by the gram-
mar:

T ::= ⊥ | xU1 . . . Uk

U ::= λx1. . . . λxk.T

where⊥ (meaning divergence) is a special symbol of kind o. Böhm
trees are required to be well-kinded and η-long. Kind judgements
∆ ` T :: o and ∆ ` U :: κ have the expected meaning. Böhm
trees of appropriate kinds can compose: for Böhm trees U and V
of kinds κ → κ′ and κ respectively, we write U @ V for the

application of U to V , which has kind κ′ (see Appendix B.3). It
is well-known [5, 9] that Böhm trees of a given kind corresponds
bijectively to innocent strategies of the corresponding arena (see
Appendix B.2). This bijection bridges the gap between the Böhm-
tree representation in this section and the game-semantic analysis
in the following sections.

Böhm trees subsume ordinary (node-labelled, ranked) trees. Let
Σ = {a1, . . . , an} be a set of tree constructors and ar(ai) be the
arity of the constructor ai. We write Σ⊥ for Σ ] {⊥}, where ⊥ is
of arity 0. A tree over Σ⊥ is just a Böhm tree of 2nd-order kind
(oar(a1) → o)→ · · · → (oar(an) → o)→ o.

3.2 Kobayashi-Ong types
We use types of the Kobayashi-Ong type system [11] as formulas
specifying properties of Böhm trees. Our syntax simplifies the orig-
inal system [11] by removing flags from the type envionments, and
extends it by being parametrised by winning conditions. Further-
more we introduce new operations on types, namely, positive and
negative actions of effects.

There are two classes of types, prime types and intersection
types, defined by the following grammar:

(Prime Types) τ, σ ::= q | α→ τ

(Intersection Types) α, β ::=
∧
i∈I〈τi; ei〉

where q ∈ Q, ei ∈ E and I = ∅, ω or {1, 2, . . . , k} for some
k ∈ ω. Precisely, the set of types is defined by induction on the
structure of kinds. See the refinement relation below.

We use the infix notation for intersection, e.g., 〈τ1; e1〉∧〈τ2; e2〉
means

∧
i∈{1,2}〈τi; ei〉. The intersection connective ∧ is neither

associative, commutative nor idempotent (e.g. 〈τ1; e1〉∧〈τ2; e2〉 6=
〈τ2; e2〉∧〈τ1; e1〉 and 〈τ ; e〉∧〈τ ; e〉 6= 〈τ ; e〉). However these laws
are true modulo the equivalence induced by the subtyping relation
(defined below). Note that we allow intersection of countably infi-
nite types

∧
i∈ω〈τi; ei〉. A type is finite if all the index sets are fi-

nite. We define the projection pk by pk(
∧
i∈I〈τi; ei〉) := 〈τk; ek〉

for each k ∈ I .
We call an element e ∈ E an effect. The effect e of 〈τ ; e〉 is

the summary of effects from a certain point to the call of τ . For
example, e in the judgement U : 〈τ ; e〉 is the summary of effects
from the beginning of the computation to the call of U , and e in
λx.T : 〈τ ; e〉 → q is the summary of effects from the call of λx.T
to the call of its argument x.

The Kobayashi-Ong type system considers only types that re-
fine kinds. The judgement τ :: κ (resp. α :: κ) means that the
prime type τ (resp. the intersection type α) refines the kind κ. The
derivation rules are as follows.

q :: o

α :: κ τ :: κ′

α→ τ :: κ→ κ′
∀i ∈ I.τi :: κ∧
i∈I〈τi; ei〉 :: κ

The subtyping relation is defined by the following mostly stan-
dard rules. Precisely it is a kind-indexed family of relations on
prime types of the same kind and on intersection types of the same
kind. We write τ ≈ τ ′ if τ � τ ′ and τ ′ � τ .

q � q
α′ � α τ � τ ′

α→ τ � α′ → τ ′

∀j ∈ J .∃i ∈ I . (τi � σj and ei � dj)∧
i∈I〈τi; ei〉 �

∧
j∈J〈σj ; dj〉

Note that the effect annotation is contravariant. Intuitively this is
because an effect describes a property of the caller (the context)
who is contravariant to the callee (the term).

A type environment Γ is a finite sequence of intersection type
bindings of the form x : α such that the binding variables are



pairwise distinct. We write Γ(x) = α if x : α is in Γ. The
refinement relation and the subtyping relation for environments are
both defined by point-wise extension.

The positive action [14] of E to intersection types and type
environments is defined by:

e~ (
∧
i∈I

〈τi; di〉) :=
∧
i∈I

〈τi; e ◦ di〉 (e~ Γ)(x) := e~ (Γ(x)).

Similarly the negative action e\\− can be defined, e.g.,

e\\(
∧
i∈I

〈τi; di〉) :=
∧
i∈I

〈τi; e\di〉.

They form a Galois connection by the definition of e\e′:
(e\\Γ1) � Γ2 iff Γ1 � (e~ Γ2).

Here e\\− is the left-adjoint since the effect annotation is con-
travariant. The positive action on type environments simplifies and
generalises the flag-updating operation in the original type sys-
tem [11] and the priority-updating operation in the work of Fujima
et al. [6]. Its left adjoint (the negative action) is new, to the best of
our knowledge.

3.3 Type-checking games over Böhm trees
It is well-known that the problem of whether a tree is accepted by a
given parity tree automaton is equivalent to solving a certain parity
game over the tree. This subsection extends such games over trees
to games over Böhm trees. Given a Böhm tree U of kind κ and
a type α :: κ, we shall define a type-checking game, which is
a game between Proponent and Opponent (henceforth, simply P
and O) over the Böhm tree U . This is a conservative extension of
games over trees, which can be considered as type-checking games
restricted to 2nd-order types.

Definition 4 (Type-checking games). A node of the game graph is
called a position. A position is of the form

Γ � T : q or Γ � (U1, . . . , Un) : (α1, . . . , αn)

where n ≥ 0. The former is a P-position and the latter, written
Γ � (Ui)i≤n : (αi)i≤n, is an O-position. Positions must be kind-
respecting: for the former, Γ :: ∆ for some ∆, and ∆ ` T :: o;
and for the latter, Γ :: ∆ and ∆ � Ui :: κi and αi :: κi for every
i. In our game, effects (corresponding to priorities or colours in the
standard terminology) are assigned to edges, instead of positions.
There are three kinds of edges. The first kind has the form

(Γ � xU1 . . . Ul : q)
ε7−→ (Γ � (U1, . . . , Ul) : (α1, . . . , αl))

where pk(Γ(x)) = 〈α1 → · · · → αl → q; e〉 with e � ε for some
k. The second kind of edges has the form

(Γ � (Ui)i≤n : (αi)i≤n)
e7−→ ((e\\Γ), x̃ : β̃ � T : q)

where, for some j ≤ n and k, Uj = λx1. . . . .λxl.T and pk(αj) =

〈β1 → · · · → βl → q; e〉 and x̃ : β̃ means x1 : β1, . . . , xl : βl.
The third kind of edges is for divergence,

(Γ � ⊥ : q)
ε7−→ (Γ � ⊥ : q).

So the unique infinite play starting from (Γ � ⊥ : q) has ef-
fects 〈ε, ε, . . . 〉. The winner of an infinite play is determined by
the effects of the path: P wins just if π〈e1, e2, . . . 〉 ∈ Ω, where
〈e1, e2, . . . 〉 is the sequence of effects along the path. If a fi-
nite maximal play ends at a P-position (resp. O-position) then O
(resp. P) wins.

Specifying the initial position determines a game. By abuse of
notation, we write Γ � T : q and Γ � U : α for the games starting
from these positions. Further when the game Γ � T : q has a
winning P-strategy, we say Γ � T : q is valid and write Γ � T : q.

We abbreviate Γ � (U) : (α) to Γ � U : α and Γ � U : 〈τ ; ε〉 to
Γ � U : τ .

In edges from P-positions, P can use only types annotated by
ε (or greater). This means that variable x is used immediately
without making any effect. The effect ε in the first kind of edges is
“meaningless” since π〈e1, ε, e2, ε, e3, ε, . . . 〉 = π〈e1, e2, e3, . . . 〉.

The second rule can be understood as a combination of three
moves. First O chooses a component j ≤ n and an index k of the
intersection type αj , resulting in

(Γ � (Ui)i≤n : (αi)i≤n)
ε7−→ (Γ � Uj : pk(αj)).

Let 〈τ ; e〉 = pk(αj). Then the effect e acts:

(Γ � Uj : 〈τ ; e〉) e7−→ (e\\Γ � Uj : τ).

Lastly new variables are introduced:

(e\\Γ � Uj : τ)
ε7−→ ((e\\Γ), x̃ : β̃ � T : q),

where U = λx̃.T and τ = β1 → · · · → βl → q.
The third rule says that the divergence makes infinitely many ε

effects. The ε effects here is significant: P wins the play if and only
if π〈ε, ε, . . . 〉 ∈ Ω.

Example 5. Let ∆ = a :: o, b :: o → ((o → o) → o) →
o. Consider the order-4 Böhm tree U0, due to Clairambault and
Murawski [4], as shown in Figure 1. Notice that in U0, each bound
variable occurs infinitely often, and infinitely many names are
required to represent variable binding. Consider the tree property
ϕ = “there are only finitely many occurrences of bound variables
in each branch”. Let U be a Böhm tree satisfying ∆ ` U ::
(o → o) → o. Take the parity winning condition consisting of
effects 2 ≺ 0 ≺ 1, and a single ground type q. Then U satisfies
ϕ iff Γ � U : (1 → 1) → 0 where Γ = a : 1, b : 0 →
((1 → 1) → 0) → 1.1 Observe that, because the effect at each
contravariant position in the typing judgement is 1 and the identity
effect ε = 0 � 1, the typing does not restrict where a bound
variable may occur in the input tree U . Intuitively, the effect 1 (at
the underlined covariant position 1) in the type of b accounts for
each occurrence of a variable introduced by b.

Consider the type-checking game Γ � U0 : (1 → 1) → 0.
Now (Γ � (U0) : ((1 → 1) → 0))

07−→ (0\\Γ, x1 : 1 → 1 �
b (x1 a) (λx2.−) : q). Since 0\\Γ = Γ and ε = 0 � 1, we have
(Γ, x1 : 1 → 1 � b (x1 a) (λx2.−) : q)

ε7−→ (Γ, x1 : 1 → 1 �
(x1 a, λx2.−) : (0, (1 → 1) → 0)). Then, with O choosing the
right branch and then the left, we have

(Γ, x1 : 1→ 1 � (x1 a, λx2.−) : (0, (1→ 1)→ 0))

07−→(Γ, x1, x2 : 1→ 1 � b (x2 (x1 a)) (λx3.−) : q) ∵ ε � 1
ε7−→(Γ, x1, x2 : 1→ 1 � (x2 (x1 a), (λx3.−)) : (0, (1→ 1)→ 0))

07−→(Γ, x1, x2 : 1→ 1 � x2 (x1 a) : q)
ε7−→(Γ, x1, x2 : 1→ 1 � (x1 a) : (1))

17−→(Γ′ � x1 a : q) where Γ′ = 1\\(Γ, x1, x2 : 1→ 1)
ε7−→(Γ′ � (a) : (1))

17−→(1\\Γ′ � a : q) ∵ (1\\Γ′)(a) = 1\1 = 1 and ε � 1
ε7−→(1\\Γ′ � () : ())

and P wins the play. Note that P has a winning strategy.

Remark 6. The game over a tree (i.e. a 2nd-order Böhm tree)
determined by a parity tree automaton is a type-checking game

1 Since the ground type is unique, we can abbreviate types α to α whereby
〈α1 → . . .→ αn → q; e〉 := α1 → . . . → αn → e and α ∧ β :=

α ∧ β.
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Figure 1. The order-4 Böhm tree U0 of Examples 5 and 19

over the same tree. The type corresponding to the automaton is
constructed as follows. For instance, consider the transition rule
(q0, a, {(1, q1), (2, q2), (2, q3)}), which means the tree is accepted
from q0 if (i) the root is labelled by a, (ii) the first child of the tree
is accepted from q1, and (iii) the second child is accepted from both
q2 and q3. This rule can be expressed by the type binding

a : 〈〈q1; e1〉 → (〈q2; e2〉 ∧ 〈q3; e3〉)→ q0; 2N − 1〉
where ei is the priority of the state qi and 2N − 1 is the maximum
odd priority (meaning that this rule is available at every position).
The type environment corresponding to an APT is just the collec-
tion of all such type bindings.
Remark 7. The type-checking games are closely related to (alter-
nating) dependency tree automata [21], automata for (finite) trees
with binders like the λ-abstraction of Böhm trees. As recogniser of
well-kinded finite Böhm trees (i.e. finite terms in βη-normal form),
dependency tree automata are equi-expressive to type-checking
games. From this point of view, type-checking games can be con-
sidered as an ω-regular extension of dependency tree automata,
which is new, to the best of our knowledge.

Composition of Böhm trees gives us a way to compose the
“game boards” of the type-checking games. This is a significant
generalisation of the situation of games over trees. The main the-
orem of the paper states that the winner of a game over U @ V is
characterised by the respective winners of the games over its com-
ponents, U and V .

Theorem 8. Γ � U1 @ U2 : τ if and only if Γ � U1 : α → τ and
Γ � U2 : α for some α.

This theorem is a consequence of a refined version (Theo-
rem 11) together with Lemma 10 below.

3.4 Böhm tree representation of a winning strategy
As for a parity game over a tree determined by an alternating parity
tree automaton, a winning strategy of the game can be represented
by a tree labelled by the transition rules, known as a run-tree.
Lifting this observation to higher orders, we shall prove that a
winning strategy of a type-checking game over a Böhm tree can
itself be represented by a Böhm tree.

The basic idea of the Böhm-tree representation of a derivation
is similar to our previous work [16], interpreting intersections as

products. For example, consider a type environment

Γ = x :〈τ1; e1〉 ∧ 〈τ2; e2〉 ∧ 〈τ3; e3〉, y :〈τ4; e4〉 ∧ 〈τ5; e5〉

and assume that Γ � xU : q. A strategy-describing Böhm tree is a
Böhm tree under the type environment

[(Γ) = x :〈τ1; e1〉×〈τ2; e2〉×〈τ3; e3〉, y :〈τ4; e4〉×〈τ5; e5〉.

At the initial position Γ � xU : q, P has three options, using
〈τ1; e1〉, 〈τ2; e2〉 or 〈τ3; e3〉. In [(Γ), each option corresponds to a
component of the product type for x. A strategy choosing 〈τ2; e2〉
for the first move is described as (p2 x) V̂ , where V̂ describes the
strategy for succeeding plays. For instance, when τ2 = (〈σ1; d1〉∧
〈σ2; d2〉) → q, O can move to Γ � U : 〈σ1; d1〉 and Γ � U :

〈σ2; d2〉. Then V̂ is V̂1 u V̂2, where V̂i describes the winning
strategy for Γ � U : 〈σi; di〉 for each i = 1, 2.

In order to formalise the above idea, we need to endow Böhm
trees and types with indexed products. Extended Böhm trees are
(co-inductively) defined by the following grammar:2

V̂ ::= λx̃.⊥ | λx̃.(pk y) (
l

i∈I1

V̂ i1 ) . . . (
l

i∈In

V̂ in),

where x̃ is a possibly empty sequence of variables. In an ex-
tended Böhm tree, the subterm at the head position must be a pro-
jected variable pk y, and each argument subterm an indexed tu-
ple

d
i∈I V̂

i. Extended types are closed under indexed products,
which are written

∏
i∈I〈τi; ei〉, instead of

∧
i∈I〈τi; ei〉. We write

[ for the replacement of intersections by products; for example
[(
∧
i∈I〈

∧
j∈Ji〈qij ; eij〉 → qi; ei〉) means∏

i∈I

〈
∏
j∈Ji

〈qij ; eij〉 → qi; ei〉.

Definition 9. The relation V̂ b U between extended Böhm trees
and (standard) Böhm trees is defined by the following rules (see
Appendix B.7 for details): λx̃.⊥ b λx̃.⊥, and

λx̃.(pk y) (
l

i∈I1

V̂ i1 ) . . . (
l

i∈In

V̂ in) b λx̃.y U1 . . . Un

where V̂ ik b Uk for every k ≤ n and i ∈ Ik. We write V̂ I (Γ �
U : τ) just if V̂ b U and [(Γ) � V̂ : [(τ) (this is the natural
extension of type-checking games over extended Böhm trees). In
that case, we say V̂ is a run-Böhm-tree.

The following lemma justifies the Böhm-tree representation of
winning strategies.

Lemma 10. Γ � U : τ iff V̂ I (Γ � U : τ) for some V̂ .

As the main contribution of the paper, we show how winning
strategies can be composed and decomposed. This is the “proof-
relevant” version of compositionality (Theorem 8). This theorem
will be proved by game semantics in the sequel.

Theorem 11. (i) V̂1 I (Γ � U1 :α→τ) and V̂2 I (Γ � U2 :α)

implies (V̂1 @ V̂2) I (Γ � U1 @ U2 : τ).
(ii) If Ŵ I (Γ � U1 @ U2 : τ), then V̂1 I (Γ � U1 : α → τ)

and V̂2 I (Γ � U2 : α) and Ŵ = V̂1 @ V̂2 for some α, V̂1

and V̂2.

2 Extended Böhm trees are similar to non-uniform η-long Böhm trees [13],
but not the same. A non-uniform η-long Böhm tree is affine in the sense
that pky has at most one occurrence for each k and y. Affineness plays
an important rôle in its connection to game semantics. In contrast, we
do not assume affineness, i.e., an extended Böhm tree may have multiple
occurrences of pky.



4. Type System for Model-Checking Böhm Trees
This section studies (decision procedures for) the Model-Checking
Problem for λY-definable Böhm Trees, i.e., whether � BT(M) : τ
for a given λY-term M and type τ , where BT(M) is the Böhm
tree of M . We develop a type assignment system that characterises
the winner of type-checking games for λY-definable Böhm trees.
Since the standard higher-order model-checking can be regarded
as the second-order fragment of the type-checking games, the type
system also characterises higher-order model checking (for tree-
generating λY-terms).

In this section, we assume that (E,F,Ω) is finite. Otherwise
some algorithmic results would fail.

4.1 Preliminary: λY-calculus
The set of terms is given by:

M ::= x |M M | λx.M | Yκ

where Yκ is the fixed-point combinator of kind (κ → κ) → κ.
The kinding rules are defined as usual. We write M [N/x] for the
standard capture-avoiding substitution. The reduction relation is
given by the following rules

(λx.M) N −→M [N/x] YM −→M (YM),

with the η-expansion rule and the congruence rule: if M −→ M ′,
then M N −→M ′N and N M −→ N M ′.

A λY-term M generates the Böhm tree BT(M) as the result
of infinite reductions. An important fact is that BT(−) and the
application commute in the following sense.

Proposition 12. Let (M N) be a well-kinded λY-term. Then
BT(M N) = BT(M) @ BT(N).

4.2 Typing rules
Definition 13. Assume a kinded term ∆ `M :: κ. There are three
kinds of judgements for M : prime type judgement Γ ` M : τ ,
prime effect judgement Γ ` M : 〈τ ; e〉, and intersection type
judgement Γ ` M : α, where Γ :: ∆, τ :: κ and α :: κ. The
typing rules are as follows:

〈τ ; e〉 = pi(Γ(x)) for some i and e � ε
Γ ` x : τ

Γ, x : α `M : τ

Γ ` λx.M : α→ τ

Γ `M : α→ τ Γ ` N : α
Γ `M N : τ

Γ′ � Γ Γ `M : τ τ � τ ′

Γ′ `M : τ ′

Γ `M : τ
e~ Γ `M : 〈τ ; e〉

∀i ∈ I. Γ `M : 〈τi; ei〉
Γ `M :

∧
i∈I〈τi; ei〉

� BT(Y) : τ

Γ ` Y : τ

and the subtyping rule for Γ ` M : 〈τ ; e〉. The variable rule
requires x to have type τ with effect ε, since x is used immediately
without any effects. This rule is equivalent to the rule

x : 〈τ ; ε〉 ` x : τ

followed by the subtyping rule with Γ � (x : 〈τ ; ε〉). The
positive-action rule applies e-action to both sides. This rule would
be unsound or incomplete if Ω were not stable. The rule for Y just
checks if the judgement is true in the Böhm-tree semantics. Without
relying on the type-checking game, we can define an equivalent
game for Y on a finite graph.

Definition 14 (Game for Y). Given a prime type τ of kind (κ →
κ) → κ, we define the game G(τ) as follows. Here types are
considered modulo ≈. A P-position has the form α �P σ, where
α :: κ → κ and σ :: κ, and an O-position has the form α �O β,
where α :: κ → κ and β :: κ. Recall that σ, τ (resp. α, β) range

over prime (resp. intersection) types. Edges are defined by:

(α �P τ)
ε7−→ (α �O β),

whenever pk(α) = 〈β → τ ′; e〉 with e � ε and τ ′ � τ for some
k, and

(α �O β)
e7−→ (e\\α �P τ)

whenever pk(β) = 〈τ ; e〉 for some k. The initial position of
G(α→ τ) is α �P τ . The winner of an infinite play is determined
by the (infinite sequence of) effects along the play.

Lemma 15. P wins � BT(Y) : τ iff P wins G(τ).

Remark 16. Though our game G(τ) has the same flavour as the
game used in the Kobayashi-Ong system [11], it requires careful
effect handling. That is because Y can be applied to an open term,
whereas the recursion of recursion schemes always takes closed
terms. For a closed term M , `M : τ is equivalent to `M : 〈τ ; e〉
for every e, so the effect of this position is not significant. In
contrast, as for open terms, the effect e of Γ ` M : 〈τ ; e〉 affects
Γ. This is handled by the left-residual operation e\\α in edges from
O-positions.

Assuming a finite winning condition, the set of types modulo
≈ is finite for each kind. It follows that G(τ) is an ω-regular
game on a finite graph; hence G(τ) is decidable. Further, for every
term ∆ ` M :: κ, there are only finitely many type judgements
Γ ` M : τ modulo ≈. Therefore, by an induction on the structure
of the term, the type-checking problem is decidable .

Theorem 17 (Decidability). Γ`M :τ is decidable.

The type system is sound and complete with respect to the type-
checking games. The proof is by induction on the structure of the
term, using Proposition 12 and Theorem 8.

An order-n transfer theorem for a set C of properties says that
the C-definable properties of order-n λY-definable Böhm trees
are effectively the C-definable properties of the term-generators
themselves. See Appendix G for further details.

Theorem 18 (Transfer). Γ `M : τ iff Γ � BT(M) : τ .

Proof. (Sketch) If M = Y, both directions are trivial by the
typing rule. Assume M = M1 M2. If Γ ` M1 M2 : τ , then
Γ ` M1 : α → τ and Γ ` M2 : α for some α by the typing
rules. By the induction hypothesis, we have Γ � BT(M1) : α→ τ
and Γ � BT(M2) : α. By Theorem 8, we have Γ � BT(M1) @
BT(M2) : τ . By Proposition 12, we have Γ � BT(M1 M2) : τ
as required. The converse is similar. See Appendix C.4 for other
cases.

Example 19. Recall the Böhm tree U0 in Example 5. Set

M = Y (λf o→(o→o)→o.λyo.λxo→o.b (x y) (f (x y))) a

with ∆ ` M :: (o → o) → o. Then U0 = BT(M). By ` Y :
〈〈τ ; 0〉 → τ ; 0〉 → τ , where τ = 〈q; 1〉 → (〈〈q; 1〉 → q; 1〉)→ q,
we have Γ ` M : 〈〈〈q; 1〉 → q; 1〉 → q; 0〉 (which is abbreviated
to Γ `M : (1→ 1)→ 0 in Example 5). The tree BT(M), due to
Clairambault and Murawski [4], is interesting. When viewed as a
graph, consisting of the tree edges augmented by the binding rela-
tion (so that each bound variable points to its binder), BT(M) has
an undecidable MSO theory [4]. However, thanks to Theorems 17
and 18, problems such as whether BT(M) satisfies a given type-
describable property (e.g. ϕ in Example 5) are decidable.

Function type with effect-annotated result type
In the current syntax of function types α → τ , the result part
must be a prime type, which has no effect annotation. However
this is not a real restriction. Actually, one can define another kind



of function types in which the result part has effect annotation, e.g.,
α⇒ 〈τ ; e〉, as a derived form using the negative action of e.

The key observation is

Γ `M : 〈τ ; e〉 ⇐⇒ e\\Γ `M : τ.

Using this fact, it is easy to see that

Γ, x : α `M : 〈τ ; e〉
iff (e\\Γ), x : (e\\α) `M : τ

iff e\\Γ ` λx.M : (e\\α)→ τ

iff Γ ` λx.M : 〈(e\\α)→ τ ; e〉.

So by defining α ⇒ 〈τ ; e〉 := 〈(e\\α) → τ ; e〉, we have
Γ, x : α `M : 〈τ ; e〉 iff Γ ` λx.M : α⇒ 〈τ ; e〉 as desired.

A similar construction will appear in the definition of the expo-
nential arena in Section 5.

4.3 Effective selection
As we have seen, if P wins Γ � BT(M) : τ , there exists a Böhm
tree representing a winning strategy. It is natural to ask: can we
effectively construct a λY-term D such that BT(D) represents a
winning strategy of the game i.e. BT(D) I (Γ � BT(M) : τ)?
This subsection proves that D can easily be constructed from a
derivation of Γ ` M : τ by induction on the derivation. This
result extends the effective selection result [2, 7] to higher-order
judgements.

A derivation is finite if all types in it are finite. If Γ ` M : τ
is derivable and Γ and τ are finite, then it has a finite derivation.
A representation of a finite derivation Γ ` M : τ is a λY-term
[(Γ) ` D : [(τ) (augmented with finite products), defined by
induction on the derivation. We write D B (Γ ` M : τ) if D
is a representation of a derivation concluding Γ ` M : τ . See
Appendix C.5 for the complete list of rules.

BT(D) I (� BT(Y) : τ)

D B (Γ ` Y : τ)

pi(Γ(x)) = 〈τ ; e〉 and e � ε
(pix)B (Γ ` x : τ)

Di B (Γ `M : 〈τi; ei〉) (i = 1, 2, . . . , k)

(
d
i∈{1,...,k}Di)B (Γ `M :

∧
i∈{1,...,k}〈τi; ei〉)

D0 B (Γ `M : α→ τ) D1 B (Γ ` N : α) some α
(D0 D1)B (Γ `M N : τ)

The second main theorem states that a representationD actually
generates a winning strategy. The proof is the same as that of the
soundness direction of Theorem 18, but uses the “proof-relevant”
version (Theorem 11) instead of Theorem 8.

Theorem 20. DB(Γ `M : τ) implies BT(D) I (Γ � BT(M) :
τ).

Now what is left is the effective construction of D for the base
case of Y. SinceG(τ) is an ω-regular game, it has a finite-memory
winning strategy. The expected λY-term can be extracted from
this winning strategy, using mutual recursion. For more details, see
Appendix C.5.

Lemma 21. If P wins � Y : τ , then one can effectively construct
a λY-term D s.t. BT(D) I (� Y : τ).

If Γ � BT(M) : τ , one can effectively construct a finite
derivation of Γ `M : τ and compute its term representation using
Lemma 21, resulting in a λY-term D such that D B (Γ ` M : τ).
Recall that, if M is of 2nd-order, BT(M) is the value tree and a
winning strategy is an accepting run-tree. So this result gives an
effective construction of an accepting run-tree, which is known as
effective selection [2, 7]. In fact, our result leads to a generalisation
of the previous result to arbitrary higher-order judgement.

5. Effect Arena Games
In order to prove the results in the previous sections, this section
and the next develop innocent game semantics for type-checking
games. Given a winning condition (E,F,Ω) and a finite set Q
of ground types, we construct a category G(E,F,Ω) of effect arena
games. The category G(E,F,Ω) is cartesian closed and, when Ω
is stable as we have assumed, it is equipped with an adjunction
(−\\−) a (− ~ −) parametrised by E which is considered a pre-
order category. Furthermore (−~−) : Eop×G(E,F,Ω) −→ G(E,F,Ω)

is itself a positive action (equivalently, a parametric comonad) [14].
An important result of this section is the well-definedness of the

category G(E,F,Ω); the main technical lemmas are concerned with
the preservation of the winning condition by strategy composition.

5.1 Effect arenas
The category G(E,F,Ω) is based on Inn , the category of arenas
(consisting of only question moves) and innocent strategies [9].
An object A of G(E,F,Ω) is an arena |A|, called the underlying
arena, equipped with an assignment of an effect for each move.
The hom-set G(E,F,Ω)(A,B) can naturally be viewed as a subset of
Inn(|A|, |B|).

Definition 22 (Effect arena). An effect arena (or arena for short)
A is a tuple (MA,`A, λA, ϑA, EA) where

1. MA is a set of moves,
2. `A ⊆ (MA ×MA) is an enabling relation,
3. λA :MA → {P,O} is the ownership function,
4. ϑA :MA → Q is a ground-type assignment, and
5. EA :MA → E is an effect assignment.

We write `A m if there is no m′ such that m′ `A m. The enabling
relation must satisfy the conditions:

(i) For each m ∈ MA, either `A m or m′ `A m for a unique
m′ ∈MA.

(ii) If `A m, then λA(m) = O. If m `A m′, then λA(m) 6=
λA(m′).

An effect arena is just a standard arena equipped with effect and
ground-type assignments, which are used to determine the set of
“good” innocent strategies, called consistent strategies.

For an arena A, the setMinit
A ⊆ MA of initial moves of A is

{m ∈ MA | `A m}. A move m ∈ MA is called an O-move if
λA(m) = O and a P-move if λA(m) = P . We often write mP

(resp. mO) to make the owner explicit.
A justified sequence of an arena A is a sequence of moves such

that each element except the first is equipped with a justification
pointer to some earlier move. A play of an arenaA is a justified se-
quence s that satisfies: (i) Well-openness, (ii) Alternation, (iii) Jus-
tification, and (iv) Visibility. (The definition of these standard no-
tions can be found in [9].) A P-strategy (or strategy) s of an arena
A is a prefix-closed subset of plays of A that satisfies Determinacy
and Contingent Completeness (see [9] for the definitions). An in-
finite justified sequence is said to be an infinite play if all its finite
prefixes are plays. A strategy contains an infinite play just if it con-
tains all its finite prefixes. An infinite P-view is an infinite play all
of whose finite prefixes are P-views. We use bold symbols such as
s and p for infinite plays and P-views.

Strategies are not required to be total. If a play s ∈ s ending
with an O-move is not answered by s, we write s · ⊥ ∈ s. Let us
write psq to mean the P-view [9] of s. A strategy s is innocent just
if for every pair of plays s · m, s′ ∈ s (where s and s′ end with
O-moves and m is a P-move), psq = ps′q implies s′ ·m′ ∈ s and
ps ·mq = ps′ ·m′q for some m′.

Consistency of innocent strategies has three criteria: Ground-
type Reflection, Correctness of Summary and Winning Condition.



Ground-type Reflection was introduced in our previous work [16]
(called Colour Reflection therein): An innocent strategy is ground-
type reflecting if s ·mO

1 ·mP
2 ∈ s implies ϑ(mO

1 ) = ϑ(mP
2 ). This

captures well-typedness in the simple type system with multiple
ground types.

Definition 23 (Correctness of Summary). Let A be an effect arena
and s be a play of the underlying arena |A|. The effect of a P-
move mP in s is a correct summary if E(mP ) is a summary of
the respective effects of the O-moves between m and its justifier.
Formally, assume s = s0 ·mP · s1 and let

ps0q ·mP = p0 · nO1 · nP2 · nO3 · . . . · nO2k−1 · m
P .

Then the effect E(mP ) is a correct summary just if

ε ◦ E(n3) ◦ E(n5) ◦ · · · ◦ E(n2k−1) � E(m).

A play s is summarising if for every P-movem that occurs in s, the
effect of m is a correct summary. A strategy is summarising just if
every play in the strategy is summarising.

Notice that we only consider P-views in the definition of cor-
rectness of summary (because there may be an irrelevant O-move
outside of the P-view between the moves in question).

We introduce some convenient notations. Given a finite se-
quence of moves s = m1 ·m2 · . . . ·mk (not necessarily a play),
we write s�O for the subsequence consisting of O-moves. When
applied to plays, the resulting subsequence is no longer a play. The
effect map is naturally extended to sequence of moves as

E∗(m1 ·m2 · . . . ·mk) := E(m1) ◦ E(m2) ◦ · · · ◦ E(mk)

(and ε if k = 0). Using these notations, the correctness of summary

can be expressed as p · n · s · m ∈ s implies E∗(s�O) � E(m).
For an infinite sequence of moves, we define

Eω(m1 ·m2 · · · · ) := π 〈E(m1), E(m2), . . . 〉.
Definition 24 (Winning Condition). An innocent strategy s of an
effect arena A satisfies the winning condition (or simply Ω) if the
following conditions hold:

1. Infinite P-views: For every infinite P-view p = mO
1 · mP

2 ·
mO

3 · · · · ∈ s, the sequence of effects of O-moves satisfies Ω,
i.e. π〈E(mO

1 ), E(mO
3 ), E(mO

5 ), . . . 〉 ∈ Ω.
2. Infinite Chattering: For every unanswered finite P-view mO

1 ·
· · ··mO

2k−1·⊥ ∈ s, considering⊥ as the infinite εs, one requires
π〈E(mO

1 ), . . . , E(mO
2k−1), ε, ε, ε, . . . 〉 ∈ Ω.

The condition on P-views is rephrased as Eω(p �O) ∈ Ω.
Remark 25. If π〈ε, ε, . . . 〉 ∈ Ω, then every unanswered finite P-
views satisfies Ω. If not, consistent strategies must be total.

Definition 26 (Consistency). An innocent strategy s of an effect
arena A is consistent if s is ground-type reflecting, summarising
and satisfies the winning condition.

5.2 Products and exponentials
Given two effect arenas A and B, we construct the product A ×
B and the exponential A ⇒ B. The underlying arenas of the
product and of the exponential are respectively the product and the
exponential of underlying arenas. I.e. |A × B| = |A| × |B| and
|A ⇒ B| = |A| ⇒ |B|. Recall thatMA×B = MA +MB and
MA⇒B =Minit

B ×MA+MB . The effect assignments forA×B
and A⇒ B are defined by:

EA×B(m) :=

{
EA(m) (if m ∈MA)
EB(m) (if m ∈MB)

and

EA⇒B( (m,n) ) := EB(m)\EA(n) (if n ∈Minit
A )

EA⇒B( (m,n) ) := EA(n) (if n /∈Minit
A ).

EA⇒B(mB) := EB(mB) (if mB ∈MB)

For an explanation of the effect assignments for the exponential
arena, see the argument at the end of Section 4.2.

5.3 Category of consistent strategies
We say an arena A satisfies the winning condition (or simply Ω)
just if m1 ` m2 ` · · · implies π〈E(m1), E(m2), . . . 〉 ∈ Ω.

Definition 27. The category G(E,F,Ω) of effect arenas and consis-
tent strategies is defined by the following data.

• Objects: An effect arena that satisfies Ω.
• Maps: G(E,F,Ω)(A,B) is the set of all innocent and consistent

strategies of A⇒ B.

The identity maps and composition are inherited from the underly-
ing arena game model.

To prove that G(E,F,Ω) is well-defined, it suffices to show (i) con-
sistency of the identity maps, and (ii) consistency of the composite
of consistent strategies. The consistency of the identity is rather
straightforward.

Lemma 28. For every effect arena A that satisfies Ω, the identity
idA of the underlying arena is consistent.

We prove that for every consistent strategies s : A ⇒ B and
t : B ⇒ C, the composite (s; t) : A⇒ C is consistent.

First we consider correctness of summary. An interaction se-
quence s ∈ Int(A,B,C) is said to generate a P-view just if
s �A⇒C is a P-view. Given an interaction sequence s, we write
s �OA⇒C for the subsequence of s �A⇒C consisting of O-moves.
The first key lemma is about effects on an interaction sequence of
summarising strategies.

Lemma 29. Assume that s : A ⇒ B and t : B ⇒ C are sum-
marising strategies. Let s ∈ Int(s, t) be an interaction sequence
generating a P-view. Take any move m in s and let

s = s1 · n · s2 · m · s3.

Then E∗(A⇒B)⇒C((s2 ·m) �OA⇒C) � E(A⇒B)⇒C(m).

Corollary 30. If s and t are summarising, so is s; t.

Now we study an infinite interaction sequence generating an in-
finite P-view, in order to prove the preservation of the winning con-
dition by composition. Let s = m1 ·m2 · · · · ∈ Int(|A|, |B|, |C|)
be an infinite interaction sequence. Its sub-view is an infinite sub-
sequence p = n1 · n2 · · · · of s s.t.

s = s1 · n1 · n2 · s3 · n3 · n4 · s5 · n5 · n6 · s7 · n7 . . . ,

where n1 is an initial C-move or an initial B-move. A sub-view
starting from an initial C-move is a P-view of B ⇒ C, and a sub-
view starting from an initial B-move can be viewed as a P-view of
A⇒ B. The second key lemma says that every infinite interaction
sequence has an infinite sub-view. The proof relies on a result of
Clairambault and Harmer [3].

Lemma 31. Let s : |A| ⇒ |B| and t : |B| ⇒ |C| be innocent
strategies and s ∈ Int(s, t) be an infinite interaction sequence
generating a P-view. Then s has an infinite P-view of s or t as
its sub-view.

Lemma 32. If s and t are summarising and satisfies Ω then s; t
satisfies Ω.



Proof. (Sketch) Here we check that the winning condition holds for
infinite P-views. See Appendix D.6 for more details. Let p ∈ (s; t)
be an infinite P-view in the composite, and s ∈ Int(s, t) be the
interaction sequence such that p = s�A⇒C . By Lemma 31, s has
an infinite P-view of s or t as its sub-view. Consider the case that it
is an infinite P-view q of s. The other case can be proved similarly.
Assume that s = m1 ·m2 · · · · and q = n1 · n2 · · · ·. Since q is a
sub-view of s, we have

s = m 1 · s1 · n1 · n2 · s3 · n3 · n4 · s5 · n5 · n6 · · · · .

Note that n2k cannot be an O-move of A⇒ C and hence

p�O = s�OA⇒C = m1 · ((s1 · n1)�OA⇒C) · ((s3 · n3)�OA⇒C) · · · · .

Let us define t2k+1 = (s2k+1 · n2k+1)�OA⇒C . Then p�O =
m1 · t1 · t3 · · · ·. By Lemma 29, for every k, we have

E∗(A⇒B)⇒C(t2k+1) � E(A⇒B)⇒C(n2k+1).

Evaluating EωA⇒C(p�O) carefully, we have

EωA⇒C(p�O) = π〈EA⇒C(m1) ◦ E∗A⇒C(t1), E∗A⇒C(t3), . . . 〉
� π〈 EA⇒B(n1), EA⇒B(n3), . . . 〉.

The last expression is in Ω because s satisfies Ω. Hence by lower-
closedness of Ω, we have EωA⇒C(p�O) ∈ Ω.

The next theorem follows from Corollary 30 and Lemma 32.

Theorem 33. The composite of consistent strategies is consistent.
Therefore G(E,F,Ω) is well-defined.

5.4 Categorical structure of G(E,F,Ω)

For simplicity, we write G for G(E,F,Ω). Since an effect arena
is an ordinary arena with additional information, it is natural to
consider the forgetful functor |−| : G −→ Inn . Because G (A,B)
maps forgetfully to Inn(|A|, |B|) and the identities and strategy
composition are inherited from Inn , |−| surely defines a functor.

Proposition 34. A × B is a cartesian product and A ⇒ B is an
exponential in G . Furthermore |−| is a CCC functor.

For an arena A and effect e, we define e~A to be an arena that
has the same underlying arena and the same ground-type assign-
ment as A, equipped with the effect assignment

Ee~A(m) :=

{
e ◦ EA(m) (if m ∈Minit

A )
EA(m) (otherwise).

By defining e~ s = s for strategies, e~− is a functor for every e.
(This follows from the fact that Ω is stable.) Further it is a (strict)
positive action of Eop [14].

Lemma 35. − ~ − is a bifunctor Eop × G −→ G . Furthermore
(e1 ◦ e2)~ (−) = e1 ~ (e2 ~ (−)) and ε~ (−) = idG .

For each e ∈ E, e ~ − has a left-adjoint e\\− : G −→ G .
The arena e\\A has the same underlying arena as A. The effect
assignment is given by

Ee\\A(m) :=

{
e\EA(m) (if m ∈Minit

A )
EA(m) (otherwise).

For strategies, e\\s = s similarly to e~ (−).

Lemma 36. −\\− is a bifunctor E × G −→ G . It satisfies
(e2 ◦ e1)\\− = e1\\(e2\\−) and ε\\− = idG .

It is easy to see e\\− a e ~ − for every e ∈ E, and hence they
form an E-parametrised adjunction.

6. Two-Level Games
Based on the effect arena games of Section 5, we shall build a game
model that can interpret intersection types with effect annotations.
The constructions of this section are a straightforward adaptation of
the two-level constructions introduced in our previous work [16].

6.1 Two-level effect arena games
Definition 37 (Two-Level Arenas). A two-level arena is a triple
(A,$,K), where A is an effect arena, K is an arena without
effects, and $ : MA → MK is a map of moves that preserves
the enabling relation i.e. `A m implies `K $(m) and m `A m′

implies $(m) `K $(m′). In case the map $ is clear from the
context, we abbreviate (A,$,K) to A :: K.

The map of moves can be extended naturally to a map of plays,
$(m1 ·m2 · . . . ·mk) := $(m1) ·$(m2) · . . . ·$(mk). Notice
that the RHS is actually a play ofK, since the enabling relations are
preserved by $. Take a two-level arena (A,$,K) and strategies s
of A and t of K. We write s ⊂$ t just if s ∈ s implies $(s) ∈ t
for every s. We omit $ and simply write s ⊂ t if $ is clear from
the context.

Definition 38 (Two-Level Strategies). A two-level strategy of a
two-level arena (A,$,K) is just a pair s :: t of innocent strategies
of A and of K respectively such that s ⊂$ t. It is consistent if s is
a consistent strategy of A. It is relatively total if s · ⊥ ∈ s implies
$(s) · ⊥ ∈ t. A consistent and relatively total two-level strategy is
said to be winning.

The product (resp. exponential) of two-level arenas is defined
as component-wise products (resp. exponentials) equipped with the
obvious map of moves. The category G ::Inn has two-level arenas
as objects and the maps from (A ::J) to (B ::K) are the two-level
winning strategies of (A ::J) ⇒ (B ::K). Composition is defined
component-wise.

Lemma 39. Let s1::t1 and s2::t2 be winning two-level strategies.
Then the composite (s1; s2)::(t1; t2) is winning.

The category of two-level games is a CCC by the products and
exponentials introduced in the preceding. Projection on the second
component p : (G :: Inn) −→ Inn : (A ::K) 7→ K is a strict
CCC functor. This functor is neither a fibration nor an opfibration,
but satisfies a weaker property that suffices for completeness.

Lemma 40 (De-substitution). Let (s::t) : (A :: I) −→ (C ::K).
Then for any decomposition of t in Inn , i.e., I t−→ K = I

t1−→
J

t2−→ K, we have a decomposition of s :: t in G ::Inn

(A ::I)
s::t−→ (C ::K) = (A ::I)

s1::t1−→ (B ::J)
s2::t2−→ (C ::K)

for some B, s1 and s2.

Two-level arenas (A1, $1,K) and (A2, $2,K) sharing the
same K have another kind of the product, defined by

(A1, $1,K) ∧ (A2, $2,K) := (A1 ×A2, $,K),

where $ := [$1, $2] : MA1 +MA2 → MK . This two-level
arena is the pull-back of a certain diagram.

Positive action e~− is defined by e~(A :: K) := (e~A) :: K
on two-level arenas and e~(s :: t) := s :: t on two-level strategies.
Negative action is defined similarly.

6.2 Connection to type-checking games
The results in Section 3 described by Böhm trees are just a rephras-
ing of results in this section described by the two-level arena game
model, via the bijective correspondence between Böhm trees and
innocent strategies.



The game semantics of types mapping types to arenas is
straightforwardly defined by using the CCC structure, fibred prod-
ucts and effect actions. Given q ∈ Q, we define the two-level arena
Oq = (A,$,K), where A consists of a unique O-move of effect
ε and ground type q, K consists of a unique O-move and $ is the
canonical map. The two-level arena interpretation [[·]] of types is
given by:

[[q ::o]] := Oq

[[
∧
i∈I

〈τi; ei〉 ::κ]] :=
∧
i∈I

(ei ~ [[τi ::κ]])

[[(α→ τ) :: (κ→ κ′)]] := [[α ::κ]]⇒ [[τ ::κ′]].

A type environment is interpreted as the product of its components.
We simply write [[τ ]] leaving the kind implicit.

Assume the map 〈|·|〉 from kinds to (ordinary) arenas, and
the bijection from the Böhm trees of kind κ to the innocent
strategies of the arena 〈|κ|〉. By abuse of notation, this bijective
map is also written as 〈|·|〉. The next lemma bridges the gap be-
tween the type-checking games and the two-level game model.
See Appendix E.3 for more details. Theorem 11 is a corollary of
Lemma 39, Lemma 40 and Lemma 41.

Lemma 41. V̂ I (Γ ` U : τ) iff (〈|V̂ |〉 ::〈|U |〉) : [[Γ]] −→ [[τ ]].

Further directions
The type-describable properties seem not to be closed under union
and negation. The introduction of negation to higher-order types
could be of practical significance, since negative ground types
have played a key rôle in PREFACE, a state-of-the-art model
checker [18]. It would be interesting to understand the general
semantic picture when E is a category, rather than a preorder.
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A. Supplementary Materials for Section 2
This section proves the claims in Section 2.

A.1 Parity condition as a winning condition
This subsection proves the properties of the parity condition
claimed in Section 2. Assume the maximum priority 2N ∈ ω.
Let P = {0, 1, 2, . . . , 2N} be the set of priorities. The operation ◦
on P is defined by e1 ◦ e2 = max(e1, e2). The order � is define
by:

2N ≺ · · · ≺ 6 ≺ 4 ≺ 2 ≺ 0 ≺ 1 ≺ 3 ≺ 5 ≺ · · · ≺ 2N − 1.

Let Ωparity be the parity condition, i.e. the set of all infinite sequence
in which the maximum priority found infinitely often is even.

Proposition 42. Assume that 〈ei〉i∈ω  〈e′i〉i∈ω . Then π〈ei〉i∈ω =
π〈e′i〉i∈ω .

Proof. It suffices to prove that 〈ei〉i∈ω ∈ Ωparity iff 〈e′i〉i∈ω ∈
Ωparity.
〈e1, e2, . . . 〉 ∈ Ωparity if and only if there exists a natural number

l ∈ ω and an even priority p ∈ P such that

• For every j ≥ l, ej ≤ p, and
• For every j ∈ ω, there exists j′ ≥ j such that ej′ = p.

Assume that 〈e1, e2, . . . 〉 ∈ Ωparity and an infinite sequence
0 < k1 < k2 < · · ·. We prove that

〈(e1 ◦· · ·◦ek1), (ek1+1 ◦· · ·◦ek2), . . . 〉 = 〈e′1, e′2, . . . 〉 ∈ Ωparity.

Since 〈e1, e2, . . . 〉 ∈ Ωparity, we have l and p that satisfy the above
conditions. Since liml→∞ kl = ∞, we have l < kl′ for some l′.
Then l′ + 1 and p satisfy the above conditions for 〈e′1, e′2, . . . 〉.

To prove the converse, assume an infinite sequence 0 < k1 <
k2 < · · · and an infinite sequence of priorities 〈ei〉i∈ω . Let

〈e′i〉i∈ω = 〈(e1 ◦ · · · ◦ ek1), (ek1+1 ◦ · · · ◦ ek2), . . . 〉
and suppose that 〈e′i〉i∈ω ∈ Ωparity. So we have l′ and p that satisfies
the above condition for 〈e′i〉i∈ω . Let l = kl′ . Then l satisfies the
first condition for 〈ei〉i∈ω . Let j ∈ ω. By the second condition for
j and 〈e′i〉i∈ω , there exists n ≥ j such that

e′n = ekn−1+1 ◦ · · · ◦ ekn = p.

Hence ej′ = p for some j′ ∈ {kn−1 + 1, . . . , kn}. Since n− 1 ≤
kn−1, we have j ≤ n = (n − 1) + 1 ≤ kn−1 + 1 ≤ j′ as
desired.

Proposition 43. If e1 � e′1 and e2 � e′2, then e1 ◦ e2 � e′1 ◦ e′2.

Proof. Since ◦ is symmetric, it suffices to prove that d1 � d2

implies e ◦ d1 � e ◦ d2. Assume that d2 is the successor of d1.
Then the claim can be proved by case analysis.

• Case d1 ∈ {2, 4, 6, . . . , 2N}: The successor d2 is d1 − 2.
If e ≤ d2, then e ◦ d1 = d1 � d2 = e ◦ d2.
If d2 < e < d1, then e ◦ d1 = d1 and e ◦ d2 = e. In this
cane, e must be an odd number, so d1 � e.
If d1 ≤ e, then e ◦ d1 = e = e ◦ d2.

• Case d1 = 0: The successor d2 is 1.
If e = 0, then e ◦ d1 = 0 � 1 = e ◦ d2.
If e ≥ 1, then e ◦ d1 = e = e ◦ d2.

• Case d1 ∈ {1, 3, . . . , 2N − 3}: The successor d2 is d1 + 2.
If e ≤ d1, then e ◦ d1 = d1 � d2 = e ◦ d2.
If d1 < e < d2, then e ◦ d1 = e and e ◦ d2 = d2. In this
cane, e must be an even number, so e � d2.
If d2 ≤ e, then e ◦ d1 = e = e ◦ d2.

Since � is transitive, we can prove the general case by induction
on the “distance” between d1 and d2 in the list sorted by �.

Proposition 44. Assume that e′i � ei for every i ∈ ω. Then
π〈e′i〉i∈ω � π〈ei〉i∈ω .

Proof. It suffices to prove that 〈ei〉i∈ω ∈ Ωparity implies that
〈e′i〉i∈ω ∈ Ωparity.

Assume that 〈e1, e2, . . . 〉 ∈ Ω. Let M be the maximum prior-
ity found in the sequence and L be the maximum priority found
infinitely often in the sequence. Since 〈e1, e2, . . . 〉 ∈ Ω, we know
that L is even. Now we have an infinite sequence of indexes 0 <
i1 < i2 < i3 < . . . which satisfies

e1 ◦ e2 ◦ · · · ◦ ei1 = M

ei1+1 ◦ · · · ◦ ei2 = L

ei2+1 ◦ · · · ◦ ei3 = L

...

Now by Proposition 43, we have

e′1 ◦ e′2 ◦ · · · ◦ e′i1 = M ′ �M
e′i1+1 ◦ · · · ◦ e′i2 = L′2 � L
e′i2+1 ◦ · · · ◦ e′i3 = L′3 � L

...

Since P is a finite set, there exists L′ that appears infinite times in
L′2, L

′
3, . . .. Because L′ � L and L is even, we know that L′ must

be even. Hence we have 〈e′1, e′2, . . . 〉 ∈ Ωparity.

Recall that the operation e\e′ on priorities is defined by:

(e\e′) :=


e′ if e < e′ or (e = e′ and (e is odd or 0))
e+ 1 if e > e′ and e is odd
e− 1 if e ≥ e′ and e is even and e > 0.

We prove that this operation surely gives the left-residual.

Lemma 45. e ◦ d � e′ iff d � e\e′.

Proof. By the case analysis.
(Case e < e′) If e′ is even, then we have:

e ◦ d � e′

iff e ◦ d ≥ e′ and e ◦ d is even

iff d ≥ e′ and e ◦ d = d is even

iff d � e′.

If e′ is odd, then we have:

e ◦ d � e′

iff e ◦ d ≤ e′ or e ◦ d is even

iff e ◦ d ≤ e′ or (e ◦ d is even and e ◦ d > e′)

iff d ≤ e′ or (d is even and d > e′)

iff d ≤ e′ or d is even

iff d � e′.



(Case e = e′ and e is odd)

e′ ◦ d � e′

iff e′ ◦ d ≤ e′ or e′ ◦ d is even

iff e′ ◦ d ≤ e′ or (e′ ◦ d is even and e′ ◦ d > e′)

iff d ≤ e′ or (d is even and d > e′)

iff d ≤ e′ or d is even

iff d � e′.

(Case e = e′ = 0) It suffices to prove that 0 ◦ d � 0 iff
d � 0\0 = 0. It is trivial.

(Case e > e′ and e is odd) Assume that d � e\e′ = e + 1.
Since e+ 1 is even, d is even and d ≥ e+ 1. Hence e ◦ d = d. By
d ≥ e+1 and e > e′, we have d ≥ e′ and hence d � e′ as desired.

Assume that e ◦ d � e′. Note that e � e′ by the assumption.
Therefore d > e and d � e′, which implies d � e. These
conditions implies that d is even and d > e. Hence d � e+ 1.

(Case e ≥ e′ and e is even and e > 0) Note that e � e′.
Assume that d � e\e′ = e − 1. Since e − 1 is odd, either (i)

d ≤ e − 1, or (ii) d > e − 1 and d is even. In case (i), we have
e ◦ d = e � e′. In case (ii), we have e ◦ d = d � e � e′.

Assume that e ◦ d � e′. There are three cases:

• d ≤ e: Then e ◦ d = e � e′ always holds. If d = e, we have
d � e− 1 since d is even and e− 1 is odd. If d < e− 1, then
d � e− 1 since e− 1 is odd.
• d > e and d is even: Then e ◦ d = d � e � e′ always holds.

We have d � e− 1 since d is even and e− 1 is odd.
• d > e and d is odd: Then d > e ≥ e′ and d is odd, and hence
d � e′. This contradict to the assumption e ◦ d = d � e′.

A.2 Finite winning condition and ω-regularity
This section studies the connection between winning conditions
based on left-closed ω-monoids and ω-regular languages. Let Σ
be a finite set and L ⊆ Σω is an ω-language. A winning condition
(E,F,Ω) can recognise L when there exists a map h : Σ → E
such that 〈a1, a2, . . . 〉 ∈ L iff π〈h(a1), h(a2), . . . 〉 ∈ Ω. A
finite winning condition coincides with an ω-regular language in
the following sense.

Proposition 46. Let Σ be a finite set andL ⊆ Σω is an ω-language
over Σ. Then L is ω-regular iff L can be recognised by a finite
winning condition (here Ω is not necessarily stable).

Proof. We start from a well-know result for finite partially-ordered
ω-semigroups [17].

Proposition. An ω-language L is ω-regular if and only if it can
be recognised by a finite partially-ordered ω-semigroup (E,F)
equipped with a lower-closed subset Ω ⊆ F.

The right-to-left direction is an immediate consequence of
this proposition, since a finite winning condition is a finite ω-
semigroup.

We prove the left-to-right direction. Assume that L is ω-regular.
By the above proposition, there exists an ω-semigroup (E,F)
equipped with a lower-closed subset Ω ⊆ F and a map h : Σ→ E
such that 〈a1, a2, . . . 〉 ∈ L if and only if π〈h(a1), h(a2), . . . 〉 ∈
Ω. We can assume without loss of generality that E is a monoid.
Otherwise add ε to E and⊥ to Ω. These elements are incomparable
to other elements. Operations for newly added elements are defined
by:

• ε ◦ e = e ◦ ε = e for every e ∈ E ] {ε}.

• ε~ f = f for every f ∈ F.
• e~⊥ = ⊥ for every e ∈ E ] {ε}.
• π〈e1, e2, . . . 〉 is defined by the following rules.

Case that the sequence restricted to E is infinite: Let
〈e′1, e′2, . . . 〉 be the infinite sequence removing all εs from
〈e1, e2, . . . 〉. Then π〈e1, e2, . . . 〉 := π〈e′1, e′2, . . . 〉.
Case that the sequence restricted to E is finite: Then
π〈e1, e2, . . . 〉 := ⊥.

Now we have an ω-monoid (E,F) equipped with a lower-closed
subset Ω ⊆ F and a map h : Σ → E such that 〈a1, a2, . . . 〉 ∈ L
iff π〈h(a1), h(a2), . . . 〉 ∈ Ω. It suffices to prove that E has left-
residuals, but it is not the case in general. We shall define an
extension (E′,F′,Ω′) such that E′ ⊇ E, F′ ⊇ F and Ω′ ⊇ Ω
(in a certain sense) and prove than E′ has left-residuals. They are
defined by:

• E′ = P(E),
• F′ = P(F), and
• Ω′ = {O ∈ P(F) | O ⊆ Ω}.

Here P(A) means the powerset of A, and E′ and F′ are order by
set-inclusion. By identifying an elements e of E to the singleton
set {e} ∈ E′, E can be viewed as a subset of E′. Operations are
defined by:

• ForE1, E2 ∈ E′ (i.e.E1, E2 ⊆ E),E1 ◦E2 := {e1 ◦e2 | e1 ∈
E1, e2 ∈ E2}.
• For E ∈ E′ and F ∈ F′ (i.e. E ⊆ E and F ⊆ F), E ~ F :=
{e~ f | e ∈ E, f ∈ F}.
• For 〈Ai〉i∈ω , π〈Ai〉i∈ω := {π〈ei〉i∈ω | 〈ei〉i∈ω ∈

∏
i∈ω Ai},

where
∏
i∈ω Ai is the set of infinite sequences of E such that

ith element is in Ai for every i ∈ ω.

It is easy to see that E1 ◦ E2 ⊆ E′1 ◦ E′2 if E1 ⊆ E′1 and
E2 ⊆ E′2. The ordered monoid E has all joins defined by the set
union. Furthermore E ◦ ∅ = ∅ ⊆ E′ for every E,E′ ⊆ E. Now
we define the left-residual by

E1\E2 :=
⋃
{E′ ⊆ E | E1 ◦ E′ ⊆ E2}.

It is easy to prove that E1 ◦ E′ ⊆ E2 iff E′ ⊆ E1\E2. The map
h′ : Σ → E′ is defined by h′(a) := {h(a)}. Then (E′,F′,Ω′)
with h′ satisfies all the requirements.

For example, a Muller condition can be viewed as a finite and
stable winning condition.

Example 47. A Muller condition can be considered as a finite
winning condition as follows. Let Q be a finite set and P ⊆ P(Q).
We define E = P(P(Q)) with product e1 ◦ e2 = {A1 ∪ A2 |
A1 ∈ e1 and A2 ∈ e2}. The order is given by e1 � e2 if and only
if e1 ⊆ e2. The left-residuals can be defined by

e1\e2 :=
⋃
{e′ ∈ P(P(Q)) | e1 ◦ e′ ⊆ e2}.

For an infinite sequence 〈Ai〉i∈ω of subsets of Q, we define
inf〈Ai〉i∈ω ⊆ Q by

q ∈ inf〈Ai〉i∈ω iff #{i | q ∈ Ai} =∞.

Now we write 〈Bi〉i∈ω ∈ Ω ⊆ P(P(Q))ω when

∀ϕ : ω → P(Q).(∃i.ϕ(i) /∈ Bi) or (inf〈ϕ(1), ϕ(2), . . . 〉 ∈ P ).

We define F = {t, f} with t ≺ f and Ω = {t}. The infinite prod-
uct is defined as π〈B1, B2, . . . 〉 = t if and only if 〈B1, B2, . . . 〉 ∈
Ω. A state q ∈ Q can be embedded into E = P(P(Q)) by
h : q 7→ { {q} }. This winning condition with the map h recognises
the Muller condition, i.e. 〈q1, q2, . . . 〉 satisfies the Muller condition



determined by P if and only if π〈h(q1), h(q2), . . . 〉 = t. This win-
ning condition is finite and stable.

B. Supplementary Materials for Section 3
B.1 Definition of Böhm trees
This subsection gives the definition of Böhm trees, which are fairly
standard.

We call the simple types kinds in order to avoid confusion with
(intersection) types. The set of kinds is defined by the following
grammar:

κ ::= o | κ→ κ.

The unique ground kind o is the kind of , and κ→ κ′ is the kind of
functions from κ to κ′ as usual.

A Böhm tree is a possibly infinite tree, each node of which
has a label of the form λx1 . . . λxk.y, which we abbreviate to
λx1 . . . xk.y, or λx1 . . . xk.⊥. Böhm trees are co-inductively de-
fined by the grammar:

T ::= ⊥ | xU1 . . . Uk

U ::= λx1 . . . xk.T

where k ≥ 0. We consider only well-kinded Böhm trees in η-long
form. A judgement is of the form ∆ 
 T :: o or ∆ 
 U :: κ. Here

 is used to distinguish between judgements for terms and Böhm
trees. We write ∆(x) = κ if ∆ = ∆0, x :: κ,∆1. The kinding
rules are given by:

∆ 
 ⊥ :: o

∆(x) = κ1 → · · · → κk → o ∀i ≤ k. ∆ � Ui :: κi

∆ 
 xU1 . . . Uk :: o

∆, x1 :: κ1, . . . , xk :: κk 
 T :: o

∆ 
 λx1 . . . xk.T :: κ1 → · · · → κk → o

Here the rules should be interpreted co-inductively, and thus a
derivation tree can be infinite. Note that, even though T may be
an infinite tree having infinitely many lambda abstractions, each
subterm of T is equipped with a finite kind environment.

For the definition of composition, see Appendix B.3.

B.2 Böhm trees are innocent strategies
In this subsection, we give the well-known bijective correspon-
dence between Böhm trees of a given kind and innocent strategies
of the corresponding arena [5, 9]. There is an obvious bijection be-
tween kinds and finite tree arenas. Henceforth we shall use kinds
and arenas interchangeably.

Notation. In the following, we use A,B,C, etc., to range over
kinds. For ease of type-setting, we abbreviate A1 → . . .→ An →
o to (A1, . . . , An, o).

Recall that innocent strategies s can be represented as prefix-
closed, P-deterministic (i.e. whenever P-views p · mO · nP1 and
p ·mO · nP1 ∈ s then nP1 = nP2 ) and O-full (i.e. for every P-view
p ·mO , if p ∈ s then p ·mO ∈ s) sets of even-length P-views (here
p · ⊥ ∈ s is considered as an even-length P-view).

Lemma 48. Let ∆ = z1 : C1, . . . , zm : Cm be a kind envi-
ronment. There is a bijective correspondence between Böhm trees
∆ 
 U :: A and innocent strategies 〈|U |〉 :

∏m
i=1 Ci → A. Fur-

ther there is a bijective correspondence between finite paths (from
the root) of a given Böhm tree U and even-length P-views of the
strategy 〈|U |〉.

First we introduce a naming scheme for moves of a given arena.
Since each move m of an arena A is the root of a unique subarena

C (say), we shall name m by referring to C, and say that m has
kind C.

An arena may be viewed as a graph whose edge-set is the
enabling relation. It follows from the definition that this graph is
a forest, whose roots (which are on level 0) are the initial moves;
further, moves on level 0, 2, 4, etc., are O-moves, and those on
levels 1, 3, 5, etc., are P-moves.

Assume a denumerable set of kinded variables. Fix an arena A.
A P-move ofA of kindC is named by a (kinded) variable x : C. An
O-move of kind (A1, . . . , An, o) is named by an expression of the
form λx1 : A1 . . . xn : An, which we call a lambda, such that its
i-child (in the arena A) is named xi : Ai, for each i ∈ {1, . . . , n}.

To exhibit their correspondence with innocent strategies, we
present Böhm trees in the style of Stirling, as a kind of node-
labelled trees such that nodes on even (respectively odd) levels are
labelled by lambdas (respectively variables). Formally, Böhm trees,
with free variables from a given kind environment ∆, are defined
as well-founded, finitely-branching, ranked trees whose nodes are
labelled according to the following rules.

(i) Nodes on levels 0, 2, 4, etc., are labelled by lambdas, and
nodes on levels 1, 3, 5, etc., are labelled by variables or ⊥.

(ii) If a node has a lambda label λx1 : A1 . . . xn : An, then it
has a unique child which is labelled by either ⊥ or a variable
y : B. If the latter, then either y : B occurs in ∆, or it is bound
by the lambda label of one of its ancestors (where necessary,
the bindee-to-binder relationship is indicated by pointers).

(iii) If a node has a variable label y : (B1, . . . , Bm, o), then it
has m children; for each i ∈ {1, . . . ,m}, its i-child has
a lambda label of the form λx1 : A1 . . . xn : An where
Bi = (A1, . . . , An, o).

(iv) A ⊥-labelled node is a leaf.

Take a Böhm tree ∆ 
 U :: A, and let p be a finite path from the
root

`1 · v1 · `2 · v2 · . . . · `n · vn
where the `i are lambdas, and the vj are variables (except vn may
be a variable or ⊥). Then p corresponds to a P-view of the arena
(
∏m
i=1 Ci)→ Awhere the `i and vj denote O-moves and P-moves

respectively. In this reading, each `i+1 is explicitly justified by vi,
and each variable vj is explicitly justified by the ancestor whose
lambda binds it.

B.3 Böhm tree application is strategy composition
We define a tree T to be a prefix-closed and order-closed subset of
(N+)∗: formally for every s ∈ (N+)∗ and n ≥ 1, if s · n ∈ T
then s ∈ T , and if s · (n + 1) ∈ T then s · n ∈ T . Let Σ be
the set of expressions of the form λx1 . . . xk.y or λx1 . . . xk.⊥
where k ≥ 0. We can represent a Böhm tree U as a function
λU : dom(λU )→ Σ where dom(λU ) is a tree. Given Böhm trees
U and V , we define U v V just if (i) dom(λU ) ⊆ dom(λV ),
and (ii) modulo renaming of bound variables in U , for each α ∈
dom(λU ), either λU (α) = λV (α) or λU (α) = λx1 . . . xk.⊥. It
is straightforward to see that the set of Böhm trees is a complete
partial order with respect to v.

Given Böhm trees ∆ 
 U :: κ → κ′ and ∆ 
 V :: κ, we
define their application

U @ V :=
⊔
{BT(F G) | F,G ∈ BTfin, F v U,G v V }

where BTfin is the set of finite Böhm trees. Note that BT(F G) is
well-defined because finite Böhm trees are just λ⊥-terms (i.e. gen-
erated from a distinguished constant ⊥) in β-normal η-long form.
It is straightforward to prove that for λ⊥-terms M and N , if
M v N and M −→∗ λx1 . . . xn.yP1 . . . Pn then N −→∗



λx1 . . . xn.yP
′
1 . . . P

′
n and Pi v P ′i for each i. Here M v N

on λ⊥-terms is defined by the following rules:

⊥ vM
M vM

λx.M v λx.M ′ if M vM ′

M1 M2 vM ′1 M ′2 if M1 vM ′1 and M2 vM ′2.
For finite λ⊥-terms in β-normal η-long form, the two-definitions
of v coincide. It follows that the set of trees, BT(F G), where F
and G range respectively over finite approximants of U and V , is
directed.

Alternatively, one can defineU@V by appealing to the bijective
correspondence between Böhm trees and innocent strategies. Using
the notation of Section B.2, we simply define ∆ 
 U @ V :: κ′ to
be the composite strategy

n∏
i=1

Ci
〈〈|U|〉,〈|V |〉〉−−−−−−−→ (κ→ κ′)× κ

evκ,κ′−−−−→ κ′.

B.4 Properties of types
Lemma 49. Let α and β be intersection types of the same kind and
e be an effect.

• e\\α � β if and only if α � e~ β.
• α � e~ (e\\α).
• e\\(e~ α) � α.

Similar propositions hold for type environments.

Proof. The second and the third propositions are easy consequence
of the first. We prove the first proposition. Let α =

∧
i∈I〈τi; ei〉

and β =
∧
j∈J〈σj ; dj〉.

Assume e\\α � β. Then, for every j ∈ J , there exists kj ∈ I
such that τkj � σj and e\\ekj � dj . Hence ekj � e ~ dj .
Therefore α � e~ β. The converse can be proved similarly.

B.5 Properties of type-checking games
Lemma 50 (Identity). P wins for x :α � BT(x) :β iff α � β.

Proof. By induction on the kind κ for x.
(Case κ = o): In this case, BT(x) = x. Let α =

∧
i∈I〈qi; ei〉

and β =
∧
j∈J〈pj ; dj〉. Assume that P wins for the game. For each

j ∈ J , O can move to the position x : dj\\α � x : pj . Since P wins
for the game, there exists kj such that pkj (dj\\α) = 〈pj ; e′〉 with
e′ � ε. By definition of dj\\α, we have qkj = pj and dj\\ekj � ε,
which implies ekj � dj . Therefore α � β. The converse can be
proved similarly.

(Case κ = κ1 → · · · → κn → o): In this case,

BT(x) = λy1 . . . yn.xBT(y1) . . . BT(yn).

Let α =
∧
i∈I〈τi; ei〉 and β =

∧
j∈J〈σj ; dj〉. Assume that P wins

for the game. Let j ∈ J and assume σj = δ1 → · · · → δn → q.
Then O can move to the position

x : (dj\\α), y1 : δ1, . . . , yn : δn � xBT(y1) . . . BT(yn) : q.

Since P wins for the game, there exists kj ∈ I such that pkj (dj\\α) =
〈δ′1 → · · · → δ′n → q; e′〉 with e′ � ε. Further P must win for
yi : δi � BT(yi) : δ′i for every i. By the induction hypothesis, we
have δi � δ′i for every i and hence

δ′1 → · · · → δ′n → q � δ1 → · · · → δn → q.

By dj\ekj = e′ � ε, we have ekj � dj . Since this holds for every
j ∈ J , we have α � β as desired. The converse can be proved
similarly.

Lemma 51 (Subtyping). If P wins for Γ � T : q and Γ′ � Γ, then
he wins for Γ′ � T : q. Similarly, if P wins for Γ � (U1, . . . , Uk) :
(α1, . . . , αk) and Γ′ � Γ and αi � α′i for every i ≤ k, then he
wins for Γ′ � (U1, . . . , Uk) : (α′1, . . . , α

′
k).

Proof. For the notational convenience, we write Γ � (Ui)i : (αi)i
for Γ � (U1, . . . , Uk) : (α1, . . . , αk). We write (Γ′ � T : q) S
(Γ � T : q) just if Γ′ � Γ, and (Γ′ � (Ui)i : (α′i)i) S (Γ �
(Ui)i : (αi)i) just if Γ′ � Γ and α′i � αi for every i. The
proposition says that, if P wins for the right-hand-side of S, then
he wins for the left-hand-side.

The key observations are:

• (P-positions): (Γ′ � T : q) S (Γ � T : q) and

(Γ � T : q)
ε7−→ (Ξ � (Ui)i : (αi)i)

implies

(Γ′ � T : q)
ε7−→ (Ξ′ � (Ui)i : (α′i)i)

for some (Ξ′ � (Ui)i : (α′i)i) S (Ξ � (Ui)i : (αi)i).
• (O-positions): (Γ′ � (Ui)i : (α′i)i) S (Γ � (Ui)i : (αi)i) and

(Γ′ � (Ui)i : (α′i)i)
e′7−→ (Ξ′ � T : q)

implies

(Γ � (Ui)i : (αi)i)
e7−→ (Ξ � T : q)

for some Ξ � T : q and e such that (Ξ′ � T : q) S (Ξ � T : q)
and e′ � e.

It follows from these observations that a strategy for the right-hand-
side of S defines a strategy for the left-hand-side. Furthermore the
condition e′ � e in the second observation ensures that, if the
effects for an infinite play for the right-hand-side is 〈e1, e2, . . . 〉,
then the effects for the corresponding infinite play for the left-
hand-side is 〈e′1, e′2, . . . 〉 which satisfies e′i � ei. Therefore the
corresponding strategy for the left-hand-side game is winning if
that for the right-hand-side is winning.

Lemma 52 (Abstraction). Γ � λxλy1 . . . yn.T : α → τ iff
Γ, x : α � λy1 . . . yn.T : τ .

Proof. Assume

τ = β1 → β2 → · · · → βn → q.

Then both O-positions have the same unique successor position,
namely,

Γ, x : α, y1 : β1, . . . , yn : βn � T : q.

Hence the winners of these positions coincide.

The next lemma relies on the stability of Ω.

Lemma 53 (Adjoint). e\\Γ � U : α iff Γ � U : e~ α.

Proof. By the stability of Ω, we have

π〈e1, e2, . . . 〉 ∈ Ω iff π〈e0, e1, e2, . . . 〉 ∈ Ω.

Assume U = λx1 . . . xn.T and

α =
∧
i∈I

〈βi1 → · · · → βin → qi; ei〉.

Then, for each i ∈ I , O can move to ei\\(e\\Γ), x1 : βi1, . . . , xn :
βin � T : qi. Recall that ei\\(e\\Γ) = (e ◦ ei)\\Γ and

e~ α =
∧
i∈I

〈βi1 → · · · → βin → qi; (e ◦ ei)〉.

So the two positions in the statement have the same set of positions
that O can reach by the first move. So there exists a bijective



correspondence between plays from e\\Γ � U : α and plays from
Γ � U : e ~ α. In particular, a strategy for one position can
be viewed as a strategy for the other. It suffices to check that the
bijection preserves the winning condition for infinite plays.

If the effects along an infinite play from e\\Γ � U : α is

〈ei, d1, d2, . . . 〉

(this means that O choose the ith position as the first move), then
the effects along the corresponding play from Γ � U : e~ α is

〈e ◦ ei, d1, d2, . . . 〉.

By the stability of Ω, we have

π〈ei, d1, d2, . . . 〉 ∈ Ω

iff π〈d1, d2, . . . 〉 ∈ Ω

iff π〈e ◦ ei, d1, d2, . . . 〉 ∈ Ω

as desired.

Similarly, the next lemma follows from the stability of Ω.

Lemma 54 (Positive/negative actions).

• Γ � U : α implies e~ Γ � U : e~ Γ.
• Γ � U : α implies e\\Γ � U : e\\Γ.

Proof. Assume that Γ � U : α. Since e\\(e~ Γ) � Γ by
Lemma 49, we have e\\(e~ Γ) � U : α by Lemma 51. By
Lemma 53, we have e~ Γ � U : e~ Γ.

Assume that Γ � U : α. Since α � e ~ (e\\α) by Lemma 49,
we have Γ � U : e~ (e\\α) by Lemma 51. By Lemma 53, we have
e\\Γ � U : e\\α.

B.6 Definitions of extended kinds, types and Böhm trees
An extended kind is defined by the following grammar:

κ̂ ::= o | (
∏
i∈I

κ̂i)→ κ̂,

where I = ∅, ω or {1, 2, . . . , k} for some k ∈ ω. Like intersection
types, we only consider extended kinds that refine a simple kind.
The refinement relation is given by:

o :: o

κ̂i :: κ κ̂′ :: κ′∏
i∈I κ̂i → κ̂′ :: κ→ κ′

The set of extended kinds is formally defined by induction on the
structure of the simple kinds. We write pj(

∏
i∈I κ̂i) = κj if j ∈ I .

The set of extended Böhm trees are defined (co-inductively) by
the following grammar:

T̂ , Ŝ ::= ⊥ | (pix) (
l

i∈I1

Û1
i ) . . . (

l

i∈Ik

Ûki )

Û , V̂ ::= λx1 . . . xk.T

where k ≥ 0. We consider only well-kinded Böhm trees. An
extended kind environment ∆̂ is a finite sequence of bindings of
the form

x1 ::
∏
i∈I1

κ̂1
i , x

2 ::
∏
i∈I2

κ̂2
i , . . . , x

k ::
∏
i∈Ik

κ̂ki .

Kinding rules are given by:

∆̂ 
 ⊥ :: o

∀l ≤ k.∀i ∈ Il. ∆̂ � Û li :: κ̂li
pj(∆̂(x)) =

∏
i∈I1 κ̂

1
i → · · · →

∏
i∈Ik

κ̂ki → o

∆̂ 
 (pjx) (
d
i∈I1 U

1
i ) . . . (

d
i∈Ik

Uki ) :: o

∆̂, x1 ::
∏
i∈I1 κ

1
i , . . . , x

k ::
∏
i∈Ik

κki 
 T :: o

∆̂ 
 λx1 . . . xk.T ::
∏
i∈I1 κ

1
i → · · · →

∏
i∈IK

κki → o

Similar to Böhm trees, well-kinded extended Böhm trees bijec-
tively correspond to innocent strategies of a certain arena. The only
difference is the number of moves in the arena: an arena corre-
sponds to a kind must have finite moves, but an arena correspond-
ing to an extended kind may have infinite moves.

The composition of extended Böhm trees is defined through the
composition of innocent strategies.

The set of extended types is defined by:

τ̂ ::= q | α̂→ τ

α̂ ::=
∏
i∈I

〈τ̂i; ei〉.

Notice that this grammar is the same as that of (usual) types, ex-
pect that the product is used instead of the intersection. It would be
worth emphasising here that extended types do not have intersec-
tion. Similar to types, the set of extended types is formally defined
by induction on the structure of extended kinds (or equivalently, by
induction on the structure of kinds, since extended kinds are defined
by induction on kinds).

q :: o

α̂ ::
∏
i∈I κ̂i τ̂ :: κ̂′

α̂→ τ̂ :: (
∏
i∈I κ̂i)→ κ̂′

∀i ∈ I.τ̂i :: κ̂i∏
i∈I〈τ̂i; ei〉 ::

∏
i∈I κ̂i

For an extended type τ̂ , we write |τ̂ | for the unique extended kind
κ̂ such that τ̂ :: κ̂. Intuitively, | · | forgets ground types and effects.
Similarly, |α̂| =

∏
i∈I κ̂i means that α̂ ::

∏
i∈I κ̂i. The projection

is define by pj(
∏
i∈I〈τ̂i; ei〉) := 〈τ̂j ; ej〉.

The map [ from types to extended types is defined by:

[(α→ τ) = [(α)→ [(τ)

[(
∧
i∈I

〈τi; ei〉) =
∏
i∈I

〈[(τi); ei〉.

An extended type environment Γ̂ is a finite sequence of extended
intersection type bindings of the form:

x1 : α̂1, . . . , xn : α̂n.

The type-checking games can naturally be extended to extended
Böhm trees. A position of an extended game is of the form

Γ̂ � T̂ : q

or

Γ̂ � (
l

i∈I1

Û1
i , . . . ,

l

i∈In

Ûni ) : (
∏
i∈I1

〈τ̂1
i ; e1

i 〉, . . . ,
∏
i∈In

〈τ̂ni ; eni 〉)

where n ≥ 0. The former is a P-position and the latter is an O-
position. We write Γ̂ � (

d
i∈Ik

Ûki )k : (
∏
i∈Ik
〈τ̂ki ; eki 〉)k for the

latter position. Positions must be kind-respecting: for the former,
Γ̂ :: ∆̂ for some ∆̂, and ∆̂ ` T̂ :: o; and for the latter, Γ̂ :: ∆̂ and
∆̂ � Uki :: κ̂ki and τ̂ki :: κ̂ki for every i and k. There are three kinds



of edges. The first kind has the form

(Γ̂ � (pjx) (
l

i∈I1

Û1
i ) . . . (

l

i∈In

Ûni ) : q)

ε7−→ (Γ̂ � (
l

i∈Ik

Ûki )k : (
∏
i∈Ik

〈τ̂ki ; eki 〉)k

where

pj(Γ̂(x)) = 〈
∏
i∈I1

〈τ̂1
i ; e1

i 〉 → · · · →
∏
i∈In

〈τ̂ni ; eni 〉 → q; e〉

with e � ε. Note that the choice of P is completely determined
by the extended Böhm tree, unlike the type-checking game in Sec-
tion 3. This is because the extended types do not have intersection.
The second kind of edges has the form

(Γ̂ � (
l

i∈Ik

Ûki )k : (
∏
i∈Ik

〈τ̂ki ; eki 〉)k
eki7−→ ((e\\Γ̂), x̃ : β̃ � T̂ : q)

where, for some k and i ∈ Ik,

Ûki = λx1 . . . xl.T̂

and τ̂ki = β̂1 → · · · → β̂l → q and x̃ : β̃ means x1 : β̂1, . . . , xl :
β̂l. The third kind of edges is for divergence,

(Γ̂ � ⊥ : q)
ε7−→ (Γ̂ � ⊥ : q).

The winner of an infinite play is determined by the effects of the
path: P wins just if π〈e1, e2, . . . 〉 ∈ Ω, where 〈e1, e2, . . . 〉 is the
sequence of effects along the path. If a finite maximal play ends at
a P-position (resp. O-position) then O (resp. P) wins.

Specifying the initial position determines a game. We employ
the same convention as in the type-checking games, e.g. Γ̂ � T̂ : q
means that P wins for the game starting from Γ̂ � T̂ : q.

B.7 Proof of Lemma 10
Before the proof, we define some notations. The relation V̂ b U
and Ŝ b T is co-inductively defined by the following rules:

• If λx1 . . . xn.Ŝ b λx1 . . . xn′ .T , then

1. n′ = n, and

2. Ŝ b T .
• If ⊥ b T , then

1. T = ⊥.
• If (pjy) (

∏
i∈I1 V̂

1
i ) . . . (

∏
i∈In V̂

n
i ) b y′ U1 . . . Un

′
, then

1. y = y′,

2. n = n′, and

3. V̂ ki b Uk for every k ≤ n and i ∈ Ik.

We write (
∏
i∈Ik

V̂ ki )k I (Γ � (U)k : αk) if V̂ ki b Uk and
[(Γ) � V ki : [(piα

k). Similarly Ŝ I (Γ � T : q) if Ŝ b T and
[(Γ) � Ŝ : q.

Note that, if v0 is a position that P wins and v0v1v2 . . . vn is a
play following a winning strategy, then P wins for vi (for every
i ≤ n). Furthermore a winning strategy for vi is given by the
restriction of the winning strategy for v0. This observation is a
consequence of stability. We implicitly use this observation in the
proof.

First we prove the right-to-left direction. Let U be a Böhm tree
and V̂ be an extended Böhm tree. Assume that V̂ I (Γ � U : α).
We define the strategy of Γ � U : α as follows. Formally it is
defined by induction on the length of the play.

• For O-positions: Assume (
d
i∈Ik

V̂ ki ) I (Γ � (Uk)k : (αk)k).
A move from the position Γ � (Uk)k : (αk)k is defined by a
pair l and j, where αl =

∧
i∈I〈τi; ei〉 and j ∈ I . Suppose that

U l = λx1 . . . xn.T

τj = β1 → · · · → βn → q.

Then the move is illustrated as

(Γ � (Uk)k : (αk)k)
ej7−→

((ej\\Γ), x1 : β1, . . . , xn : βn � T : q.

The strategy after this transition is defined as follows. Since
V kj b U

k, we have

V kj = λx1 . . . xn.Ŝ

with Ŝ b T . By the definition of [(Γ) � (
d
i∈Ik

V̂ ki ) :

([(αk))k, we have

([(Γ) � (
l

i∈Ik

V̂ ki ) : ([(αk))k)
ej7−→

((ei\\[(Γ)), x1 : [(β1), . . . , xn : [(βn) � Ŝ : q.

By the assumption, the right-hand-side position is P-winning.
Hence

Ŝ I ((ei\\Γ), x1 : β1, . . . , xn : βn � T : q).

The strategy for the following plays is determined by Ŝ.

• For P-positions: Assume Ŝ I (Γ � T : q). If Ŝ = ⊥, then we
have T = ⊥, in which case P has a unique strategy. Otherwise
we have

Ŝ = (pjx) (
l

i∈I1

V̂ 1
i ) . . . (

l

i∈In

V̂ ni )

T = xU1 . . . Un.

Because [(Γ) � Ŝ : q, we have

pj(Γ(x)) = 〈β1 → · · · → βn → q; e〉
for some e � ε and

[(Γ) � (
l

i∈Ik

V̂ ki )k : ([(βk))k.

So P can move to

Γ � T : q
ε7−→ Γ � (Uk)k : (βk)k.

Since Ŝ b T , we have V̂ ki b Uk for every k and i ∈ Ik, and
hence

(
l

i∈Ik

V̂ ki )k I (Γ � (Uk)k : (βk)k).

The strategy following the P-move is defined by (
d
i∈Ik

V̂ ki )k.

It is easy to see that P does not get stuck since [(Γ) � Ŝ : q in
every P-positions. The effects for an infinite play of Γ � T : q is
the same as those of [(Γ) � Ŝ : q. Since the latter is P-winning, we
know that every infinite play following the strategy defined above
is P-winning.

We prove the left-to-right direction. For a pair of a position and
a winning strategy, we define an extended Böhm tree (or a tuple of
extended Böhm trees) as follows.

• O-positions: Assume a winning strategy for Γ � (Uk)k :
(
∧
i∈Ik
〈τki ; eki 〉)k. For each k and i ∈ Ik, we define an ex-

tended Böhm tree V̂ ki as follows. Suppose

Uk = λx1 . . . xn.T



and
τki = β1 → · · · → βn → qki ,

then we have

(Γ � (Uk)k : (αk)k)
eki7−→

((eki \\Γ), x1 : β1, . . . , xn : βn � T : qki .

Now we have a winning strategy for the right-hand-side posi-
tion. Set Ŝki be the extended Böhm tree corresponding the win-
ning strategy. Then we have ((eki \\[(Γ)), x1 : [(β1), . . . , xn :

[(βn) � Ŝki : qki . Let V̂ ki = λx1 . . . xn.Ŝki . Then we have
(
d
i∈Ik

V̂ ki )k I (Γ � (Uk)k : (αk)k as desired.

• P-positions: For the game Γ � ⊥ : q, the corresponding
Böhm tree is ⊥. Assume a winning strategy of the position
Γ � xU1 . . . Un : q. The winning condition determines a
move

Γ � xU1 . . . Un : q
ε7−→ Γ � (Uk)k : (βk)k.

Then, for some j, we have pj(Γ(x)) = 〈β1 → · · · → βn → q; e〉
with q � ε. Since P wins for the right-hand-side position, we
have

(
l

i∈I

V̂ ki )k I (Γ � (Uk)k : (βk)k.

Then we define

Ŝ = (pjx) (
l

i∈I1

V̂ 1
i ) . . . (

l

i∈In

V̂ ni ).

Then Ŝ I (Γ � T : q).

C. Supplementary Materials for Section 4
C.1 Definition of λY-calculus and Böhm trees
This subsection gives definitions of λY-calculus and of the Böhm
tree of a λY-term, which are fairly standard.

C.1.1 λY-calculus
The syntax of terms is given by:

M,N ::= x |MM | λx.M | Yκ.

We allow tacit renaming of bound variables and identify α-
equivalent terms. The kind κ of Yκ is often omitted.

The calculus is simply typed. A kind environment is a finite
sequence of bindings of the form x :: κ. A kind environment can
have at most one type binding for each variable. We use ∆,∆′,∆i,
etc., to denote kind environments. A kind judgement is of the form
∆ `M :: κ. The kinding rules are given by:

∆, x :: κ,∆′ ` x :: κ

∆ `M :: κ′ → κ ∆ `M ′ :: κ′

∆ `MM ′ :: κ

∆, x :: κ `M :: κ′

∆ ` λx.M :: κ→ κ′

∆ ` Yκ :: (κ→ κ)→ κ

Hereafter we assume that terms are equipped with their kind deriva-
tions. Therefore all terms (including variables) are assumed to have
their kinds.

The calculus has three rewriting rules: β-reduction, η-expansion
and expanding the fixed-point combinator. Any subterm can be
rewritten without depending on its context. Formally the (small
step) rewriting relation M −→ M ′ is defined as the smallest
relation that satisfies the following rules:

• (λx.M)N −→ M [N/x], where M [N/x] is the standard
capture-avoiding substitution.
• M −→ λx.M x if M has a function kind and x is a fresh

variable.
• YM −→M (YM).
• M N −→M ′N if M −→M ′.
• M N −→M N ′ if N −→ N ′.
• λx.M −→ λx.M ′ if M −→M ′.

We write −→∗ for the reflexive and transitive closure of −→.

C.1.2 Böhm trees and value trees
A term M with ∆ ` M :: κ is associated with a Böhm tree
U = BT(M) with ∆ 
 U :: κ as below. Term M is head-
normalisable just if M −→∗ λx1 . . . xk.y N1 . . . Nl. The map
BT(−) is defined by the following rules.

• If M is not head-normalisable then BT(M) = λx1 . . . xk.⊥
where k is the arity of κ, i.e. κ = κ1 → · · · → κk → o.
• Assume M −→∗ λx1 . . . xk.y N1 . . . Nl. We can assume

without loss of generality that y :: κ1 → · · · → κl → o (other-
wise apply η-expansion). Then BT(M) = λx1 . . . xk.y U1 . . . Ul
where each Ui = BT(Ni).

This is an extension of the notion of value trees of recursion
schemes. From this viewpoint, a tree constructor (or terminal sym-

bol) of arity k is just a free variable of kind
k︷ ︸︸ ︷

o→ · · · → o → o,
which we shall abbreviate as ok → o; thus a ranked alphabet is just
an order-1 kind environment.3 Given an order-1 kind environment
∆ = (a1 :: oar1 → o, . . . ,ak :: oark → o), a possibly-infinite
∆⊥-labelled tree (i.e. ranked tree with node labels taken from the
set ∆⊥ consisting of⊥ and the symbols from ∆) is just a Böhm tree
T with ∆ 
 T :: o. For the purpose of generating possibly-infinite
∆⊥-labelled trees, deterministic recursion schemes are equivalent
to order-2 terms, and the value tree of such a term is just its Böhm
tree.

C.2 Basic properties of the type system
The subtyping rule for prime effect judgements, which is omitted
in the main text, is given by:

Γ′ � Γ Γ `M : 〈τ ; e〉
Γ′ `M : 〈τ ; e〉

Lemma 55. The following rules are admissible:

Γ′ � Γ Γ `M : 〈τ ; e〉 〈τ ; e〉 � 〈τ ′; e′〉
Γ′ `M : 〈τ ′; e′〉

and
Γ′ � Γ Γ `M : α α � α′

Γ′ `M : α .

Proof. Easy.

3 The order of kind is defined by: order(o) = 0 and order(κ1 → · · · →
κk → o) = 1 + max{order(κi) | 1 ≤ i ≤ k}. The order of kind
environment is given by order(∆) = max{order(κ) | x :: κ ∈ ∆}.



The next lemma is used in the (sketch of) the proof of Theo-
rem 18.

Lemma 56 (Inversion).

1. If Γ ` x : τ , then there exists an index k such that pk(Γ(x)) =
〈σ; e〉 and σ � τ and e � ε.

2. If Γ ` M1 M2 : τ , then Γ ` M1 : α→ τ and Γ ` M2 : α for
some α.

3. If Γ ` λx.M : α→ τ , then Γ, x : α `M : τ .
4. If Γ `M :

∧
i∈I〈τi; ei〉, then Γ `M : 〈τi; ei〉 for every i.

5. If Γ `M : 〈τ ; e〉, then e\\Γ `M : τ .

Proof. By induction on the structure of the derivation.
(Proof of 1) If the last rule used to derive Γ ` x : τ is the

rule for variables, then the claim is trivial. Assume that the last
rule is the subtyping rule. Then we have Γ′ ` x : τ ′ for some
Γ � Γ′ and τ ′ � τ . By the induction hypothesis, there exists k′

such that pk′(Γ′(x)) = 〈σ′; e′〉 and σ′ � τ ′ and e′ � ε. We
have Γ(x) � Γ′(x) by the subtyping rule for type environments,
and hence there exists k such that pk(Γ(x)) � pk′(Γ

′(x)). Let
pk(Γ(x)) = 〈σ; e〉. Then we have σ � σ′ and e � e′, hence
σ � τ and e � ε as desired.

(Proof of 2) If the last rule used to derive Γ ` M1 M2 : τ is
the rule for applications, then the claim is trivial. Assume that the
last rule is the subtyping rule. Then we have Γ′ ` M1 M2 : τ ′ for
some Γ � Γ′ and τ ′ � τ . By the induction hypothesis, we have
Γ′ ` M1 : α → τ ′ and Γ′ ` M2 : α for some α. By applying
subtyping rule and Lemma 55, we have Γ ` M1 : α → τ and
Γ `M2 : α as required.

(Proof of 3) If the last rule used to derive Γ ` λx.M : α → τ
is the rule for abstraction, then the claim is trivial. If the last rule is
the subtyping rule, then we can prove the claim by a way similar to
the above case.

(Proof of 4) If the last rule used to derive Γ `M :
∧
i∈I〈τi; ei〉

is the rule for intersection, the claim is trivial. Notice that the other
rule cannot conclude the judgement.

(Proof of 5) If the last rule used to derive Γ ` M : 〈τ ; e〉 is
the rule for positive actions, the claim is trivial. Assume that the
last rule is the subtyping rule. Then we have Γ′ ` M : 〈τ ; e〉 and
Γ � Γ′. By the induction hypothesis, we have e\\Γ′ ` M : τ .
Since e\\Γ � e\\Γ′, we have e\\Γ `M : τ as required.

The inversion for Γ ` x : τ can be described as Γ(x) � 〈τ ; ε〉.

C.3 Proof of Lemma 15
Assume that κ = κ1 → · · · → κn → o and let U =
BT(Y(κ→κ)→κ). Then U is given by

U = λf.V

V = λx1 . . . xn.f V BT(x1) . . . BT(xn),

where U is a Böhm tree of kind (κ → κ) → κ and V is a Böhm
tree of kind κ (with the free variable f : κ → κ. Recall that
x : α � BT(x) : β if and only if α � β (Lemma 50). The game
� U : α0 → τ0, which is equivalent to f : α0 � V : τ0, has the
following edges. An edge from a P-position is

(f : α, x1 : β1, . . . , xn : βn � f V BT(x1) . . .BT(xn) : q)
ε7−→

(f : α � (V,BT(x1), . . . ,BT(xn)) : (γ, β′1, . . . , β
′
n))

whenever pi(α) = 〈γ → β′1 → · · · → β′n → q; e〉 with e � ε. To
win this position, P must have a winning strategy for xk : βk �
BT(xk) : β′k for each k. Hence βk � β′k is required to win. This
implies that

β′1 → · · · → β′n → q � β1 → · · · → βn → q.

This edge corresponds to the edge in G(α0 → τ0)

α �P β1 → · · · → βn → q
ε7−→

α �O γ.

There is an obvious correspondence between edges from O-
positions. Therefore P wins for � f : α0 � V : τ0 if and only
if he wins for G(α0 → τ0).

C.4 Proof of Theorem 18
We prove:

• Γ `M : τ iff Γ � BT(M) : τ , and
• Γ `M : α iff Γ � BT(M) : α.

Recall that Γ � BT(M) : τ is an abbreviation for Γ � BT(M) :
〈τ ; ε〉.

Assume that Γ ` M : τ . We prove Γ � BT(M) : τ by
induction on the structure of the derivation. We do case analysis
on the last rule used in the derivation.

• Variable rule: It follows from Lemma 50 and Lemma 51.
• Abstraction rule: Then we have M = λx1.M0 and

τ = α1 → α2 → · · · → αn → q

and
Γ, x1 : α1 `M0 : α2 → · · · → αn → q.

Assume that BT(M0) = λx2 . . . xn.T . Then BT(M) =
λx1 . . . xn.T . From the induction hypothesis, we have Γ, x1 :
α1 � λx2 . . . xn.T : α2 → · · · → αn → q. By Lemma 52, we
have Γ � λx1λx2 . . . xn.T : α1 → α2 → · · · → αn → q as
desired.
• Application rule: Then we have M = M0 M1, Γ ` M0 :
α→ τ and Γ ` M1 : α. By the induction hypothesis, we have
Γ � BT(M0) : α → τ and Γ � BT(M1) : α. By Theorem 8,
we have Γ � BT(M0) @ BT(M1) : τ . By Proposition 12, we
have Γ � BT(M0 M1) : τ as required.
• Subtyping rule: A consequence of Lemma 51 and the induction

hypothesis.
• Positive action rule: A consequence of Lemma 54.
• Intersection rule: Easy.
• Recursion: Trivial from the typing rule.

We prove the converse. Assume Γ � BT(M) : τ or Γ �
BT(M) : α. We prove the corresponding type judgement by
induction on M . Here the latter style judgements are considered
“bigger” than the former style if the subjects are the same. First
consider the former style judgements.

• Case M = x: It follows from Lemma 50 and the subtyping
rule.
• Case M = M0 M1: By Proposition 12, BT(M0 M1) =

BT(M0)@BT(M1). So we have Γ � BT(M0)@BT(M1) : τ .
By Theorem 8, we have Γ � BT(M0) : α → τ and
Γ � BT(M1) : α for some α. By the induction hypothesis,
we have Γ `M0 : α→ τ and Γ `M1 : α. By the application
rule, we have Γ `M0 M1 : τ .
• CaseM = λx.M0: Assume BT(M0) = λy1 . . . yn.T and τ =
α→ σ. Then BT(M) = λxy1 . . . yn.T . By Lemma 52 and the
assumption, we know that P wins for Γ, x : α � λy1 . . . yn.T :
σ. By the induction hypothesis, we have Γ, x : α `M0 : σ. By
applying the application rule, we have Γ ` λx.M0 : σ.
• Case M = Y: Trivial from the typing rule.



Assume that Γ � BT(M) : α. We prove that Γ ` M : α.
Note that we can use the induction hypothesis for judgements
of the form Γ � BT(M) : τ . Let α =

∧
i∈I〈τi; ei〉. Since

Γ � BT(M) : α is an O-position, we know that P wins for
ei\\Γ � BT(M) : τi for all i ∈ I . By the induction hypothesis,
we have ei\\Γ ` M : τi for every i ∈ I . By applying the positive
action rule, we have ei ~ (ei\\Γ) ` M : 〈τi; ei〉 for every i. By
Lemma 49, we have Γ � ei~(ei\\Γ). So by the subtyping rule, we
have Γ ` M : 〈τi; ei〉 for all i ∈ I . By applying the intersection
rule, we have Γ `M :

∧
i∈I〈τi; ei〉.

C.5 Rules for term representation and proof of Theorem 20
This subsection defines the representation D of a derivation, where
D is a term of λY-calculus extended to have products. The syntax
of the extended calculus is given by:

D,E, F ::= pix | λx.D | D (
l

i∈I

Di) | Y.

Here I is a finite set. The construction
∏
i∈{1}Di is simply written

as D1. Similarly, if the kind of x is
∏
i∈{1} κ̂i (i.e. a 1-tuple), the

projection p1x is simply written as x. We also write
d
i∈I pix as x.

Remark 57. Note that the extended λY-calculus (with finite prod-
ucts) is just a reformulation of λY-calculus. The following table
(informally) shows the correspondence.

Extended term Term
λx ←→ λx1x2 . . . xn
pix ←→ xi
D (

d
i≤I Ei) ←→ DE1 E2 . . . En

(where I = {1, 2, . . . , n})

Henceforth, by λY-representation, we means a representation by
an extended λY-term.

First we give the rules of the representations of subtyping judge-
ments.

λx.xB (q � q)

D0 B (τ � τ ′)
(
d
i∈I Ei) B (

∧
j∈J〈δj ; dj〉 �

∧
i∈I〈σi; ei〉)

(λf.λx.D(f(
d
i∈I(Ei(

d
j∈J pjx)))))

B(
∧
i∈I〈σi; ei〉 → τ �

∧
j∈J〈δj ; dj〉 → τ ′)

∃ϕ : J → I.∀j ∈ J.
Dj B (τϕ(i) � σj) and ei � dj

(
d
j∈J Dj(pϕ(j)x))B

∧
i∈I〈τi; ei〉 �

∧
j∈J〈σj ; dj〉

Lemma 58. If D B (τ � σ), then BT(D) I (� BT(λx.x) :
〈τ ; ε〉 → σ). If

d
i∈I Di B (α �

∧
i∈I〈τ ; ei〉), then BT(Di) I

(� BT(λx.x) : (e\\α)→ τ).

Proof. By easy induction on the structure of the kind of types. Note
that to prove � BT(D) : 〈τ ; ε〉 → σ, we can appeal to the
type system by Theorem 18, that means, it suffices to prove that
` D : 〈τ ; ε〉 → σ.

The representation of a type derivation is defined by the follow-
ing rules.

〈τ ; e〉 = pi(Γ(x)) for some i and e � ε
pixB (Γ ` x : τ)

D B (Γ, x : α `M : τ)

λx.D B (Γ ` λx.M : α→ τ)

D B (Γ `M : α→ τ)
d
i∈I Ei B (Γ ` N : α)

D (
d
i∈I Ei)B (Γ `M N : τ)

Γ = x1 : α1, . . . , xn : αn
Γ′ = x1 : α′1, . . . , xn : α′nd

j∈Ji E
j
i B (α′i � αi) for each i ≤ n

D B (Γ `M : τ) F B (τ � τ ′)

F
(

(λx1 . . . λxn.D) (
d
j∈J1 E

j
1x1)) . . . (

d
j∈Jn E

j
nxn)

)
B(Γ′ `M : τ ′)

Γ = x1 : α1, . . . , xn : αn
Γ′ = x1 : α′1, . . . , xn : α′nd

j∈Ji E
j
i B (α′i � αi) for each i ≤ n
D B (Γ `M : 〈τ ; e〉)

(λx1 . . . λxn.D) (
d
j∈J1 E

j
1x1)) . . . (

d
j∈Jn E

j
nxn)

B(Γ′ `M : 〈τ ; e〉)
D B (Γ `M : τ)

D B (e~ Γ `M : 〈τ ; e〉)
∀i ∈ I. Di B (Γ `M : 〈τi; ei〉)d
i∈I Di B (Γ `M :

∧
i∈I〈τi; ei〉)

BT(D) I (∅ � BT(Y) : τ)

D B (Γ ` Y : τ)

The following lemma is useful to prove Theorem 20.

Lemma 59. V̂1 b U1 and V̂2 b U2 implies (V̂1 @ V̂2) b
(U1 @ U2).

Proof. It follows from the game-semantic counterpart of this result.
That is:

s1 ⊂ t1 and s2 ⊂ t2 implies (s1; s2) ⊂ (t1; t2).

It is also possible to prove this lemma syntactically.

Lemma 60.
• If D B (Γ `M : τ), then BT(D) I (Γ � BT(M) : τ).
• If

d
i∈I Di B (Γ ` M : α), then

d
i∈I BT(Di) I (Γ `

BT(M) : α).

Proof. By (mutual) induction on the derivation ofDB(Γ `M : τ)
and

d
i∈I Di B (Γ `M : α).

(Variable rule) Trivial.
(Abstraction rule) By the induction hypothesis, we have

BT(D) I (Γ, x : α � BT(M) : τ). Hence BT(D) b BT(M)
and [(Γ), x : [(α) � BT(D) : [(τ). Hence BT(λx.D) =
λx.BT(D) b λx.BT(M) = BT(λx.M) and [(Γ) � λx.BT(D) :
[(α)→ [(τ) as desired.

(Subtyping for prime types) By the induction hypothesis, we
have BT(D) I (Γ � BT(M) : τ), and hence BT(D) b BT(M)
and [(Γ) � BT(D) : [(τ). By Lemma 58, we have BT(Eji ) b
BT(λz.z) for every i and j. Hence by Lemma 59,

BT(Eji xi) b BT((λz.z)xi) = BT(xi).

Since BT(λx1 . . . xn.D) b BT(λx1 . . . xn.M), we have

BT((λx1 . . . λxn.D) (
l

j∈J1

Ej1x1)) . . . (
l

j∈Jn

Ejnxn))

bBT((λx1 . . . xn.M)x1 . . . xn)

=BT(M)



by Lemma 59. Because BT(F ) b BT(λz.z), we obtain the
expectedb-judgement. To prove that the strategy given by the term
is winning, we can appeal to the type system.

(Subtyping for intersection types) Similar to the above case.
(Positive action) By the induction hypothesis, we have BT(D) I

(Γ � BT(M) : τ). Hence BT(D) b BT(M) and [(Γ) �
BT(D) : [(τ). It suffices to prove that e ~ [(Γ) � BT(D) :
〈[(τ); e〉. It follows from the proof-relevant version of Lemma 54,
which is easy to prove.

(Intersection rule) Trivial.
(Y) Trivial.

Theorem 20 is a consequence of the above lemma.

C.6 Proof of Lemma 21
Fix a kind κ. Since the winning condition is assume to be finite,
there exists finitely many equivalence classes of (prime) types of
kind κ. We assume a set K = {τ1, τ2, . . . , τn} of representatives.
With out loss of generality, we can assume that τi is finite for every
i.

Definition 61 (Alternative game for Y). Given a prime type τ
of kind (κ → κ) → κ, we define the game H(τ) as follows.
Here types are considered modulo the equivalence ≈ induced by
the subtyping relation. A P-position has the form α �P σ, where
α :: κ → κ and σ :: κ, and an O-position has the form α �O β,
where α :: κ → κ and β :: κ. Recall that σ, τ (resp. α, β) range
over prime (resp. intersection) types. Edges are defined by:

(α �P τ)
ε7−→ (α �O β),

whenever pk(α) = 〈β → τ ; e〉 with e � ε for some k, and

(α �O β)
e7−→ (e\\α �P τ)

whenever pk(β) = 〈τ ; e〉 for some k. The initial position of
H(α→ τ) is α �P τ . The winner of an infinite play is determined
by the (infinite sequence of) effects along the play.

The difference between G(−) and H(−) is the moves from P-
positions. The gameG(−) requires that pk(α) = 〈β → τ ′; e〉with
e � ε and τ ′ � τ for some k, but the game H(−) further requires
that τ = τ ′. Hence P-strategies for H(−) is more restrictive than
those for G(−).

If P wins for H(τ), then he wins for G(τ) by definition. The
converse holds in the following sense.

Lemma 62. P wins for G(τ) if and only if P wins for H(τ ′) for
some τ ′ � τ .

Proof. We first define τ ′. Let

τ = (
∧
i∈I

〈(αi → σi); ei〉)→ τ0.

We can assume without loss of generality that σi ∈ K for every i.
Then τ ′ is defined by:

τ ′ =
(∧
{〈(αi → σ′); ei〉 | i ∈ I and σ � σ′}

)
→ τ0.

(Note that the intersection of a set of types is uniquely determined
modulo the equivalence of the subtyping relation.) Then τ ′ � τ .

Notice that a P-position ofG(τ) that is reachable from the initial
position has the form∧

i∈I

〈αi → σi; e
′
i〉 �P δ.

The game H(τ ′) has a corresponding position, say,∧
{〈αi → σ′; e′i〉 | i ∈ I and σi � σ′} � δ.

So every strategy forG(τ) has a corresponding strategy forH(τ ′).

Lemma 63. Let τ be a finite prime type of kind (κ → κ) → κ.
Assume that P wins for H(τ). Then one can effectively construct a
λY-term D such that BT(D) I (∅ ` Y : τ).

Proof. Let

τ = (
∧
i∈I

〈
∧
j∈Ji

〈δi,j ; di,j〉 → σi; ei〉)→ τ0.

We can assume without loss of generality that τ0, σi (for every
i ∈ I) and δi,j (for every i ∈ I and j ∈ Ji) are elements of K.

Every position of H(τ) reachable from the initial position is of
the form:

d\\

∧
i∈I

〈
∧
j∈Ji

〈δi,j ; di,j〉 → σi; ei〉

 �P δi,j
or

d\\

∧
i∈I

〈
∧
j∈Ji

〈δi,j ; di,j〉 → σi; ei〉

 �O ∧
j∈Ji

〈δi,j ; di,j〉

or the initial node

d\\

∧
i∈I

〈
∧
j∈Ji

〈δi,j ; di,j〉 → σi; ei〉

 �P τ0.
Hence a P-position (except for the initial position) can be repre-
sented by (d, i, j) where d ∈ E, i ∈ I and j ∈ J .

Since H(τ) is an ω-regular game over a finite graph, one can
effectively construct a finite memory strategy for the game. Since
an edge from a P-position can be specified by i ∈ I , the winning
strategy can be expressed by the pair of functions:

w : (d, i, j, a) 7−→ i′ ∈ I
v : (d, i, j, a) 7−→ a′ ∈ A

together with the decision on the initial position, say i0 ∈ I and
a0 ∈ A.

The expected term D is defined using mutual recursion on
variables x(d,i,j,a), where (d, i, j) indicates a P-position (expect for
the initial position) and a ∈ A is the memory the winning strategy
uses. Note that mutual recursion can be implemented by the unary
recursion.

D =λf :
∏
i∈I

〈
∏
j∈Ji

〈δi,j ; di,j〉 → σi; ei〉.

let rec ∀d ∈ E, i ∈ I, j ∈ Ji, a ∈ A

x(d,i,j,a) = (pi′f)

 ∏
j′∈Ji′

x(di′,j′◦d, i′,j′,a′)


where i′ = w(d, i, j, a) and a′ = v(d, i, j, a)

in

(pi0f)(
∏
j∈Ji0

x(di0,j ,i0,j,a0)).

Then BT(D) I (∅ � Y : τ).

Now we assume that ∅ � Y : τ . Then by Lemma 15, we know
that P wins for G(τ). Then by Lemma 62, P wins for H(τ ′) for
some τ ′ � τ . By Lemma 63, one can effectively construct D1

such that BT(D1) I (∅ � Y : τ ′). Since τ ′ � τ , one can
effectively construct D0 such that BT(D0) I (∅ � BT(λx.x) :



〈τ ′; ε〉 → τ) by Lemma 58. Let D = D0 D1. By Theorem 11 and
Proposition 12, we have BT(D) I (∅ � Y : τ) as desired.

D. Supplementary Materials for Section 5
D.1 Definitions of products and exponentials
Assume arenasA = (MA, λA,`A, ϑA, EA) andB = (MB , λB ,`B
, ϑB , EB).

D.1.1 Product
A×B = (M, λ,`, ϑ, E) is defined by:

• M =MA +MB .

• λ(m) =

{
λA(m) (if m ∈MA)
λB(m) (if m ∈MB).

• m ` m′ just if m `A m′ or m `B m′.

• ϑ(m) =

{
ϑA(m) (if m ∈MA)
ϑB(m) (if m ∈MB).

• E(m) =

{
EA(m) (if m ∈MA)
EB(m) (if m ∈MB).

D.1.2 Exponential
A⇒ B = (M, λ,`, ϑ, E) is defined by:

• M =Minit
B ×MA +MB .

• λ(m) =

{
λA(m1) (if m = (m0,m1) ∈Minit

B ×MA)
λB(m) (if m ∈MB).

• The enabling relation ` is defined by the following rules.

If m `B n, then m ` n.

If m ∈Minit
B and n ∈Minit

A , then m ` (m,n).

If m ∈Minit
B and n `A n′, then (m,n) ` (m,n′).

• ϑ(m) =

{
ϑA(m1) (if m = (m0,m1) ∈Minit

B ×MA)
ϑB(m) (if m ∈MB).

• E(m) =



EB(m0)\EA(m1)

(if m = (m0,m1) and m1 ∈Minit
A )

EA(m1)

(if m = (m0,m1) and m1 /∈Minit
A )

EB(m)

(if m ∈MB).

D.2 Proof of Lemma 28
Let A be an effect arena and assume that A is accepted. Consider
the arena A ⇒ A. Given a move m of A, we write ml (resp. mr)
for the corresponding move in the left (resp. right) component of
A⇒ A.

Every (possibly infinite) P-view p ∈ idA : Al ⇒ Ar is of the
form

mr
1 · (mr

1,m
l
1) · (mr

1,m
l
2) · mr

2 · mr
3 · · · · ·

mr
2n−1 · (mr

1,m
l
2n−1) · (mr

1,m
l
2n) · mr

2n · · · · ,

where mr
2n+1 and ml

2n are O-moves, mr
n+1 is justified by mr

n and
ml
n+1 is justified by ml

n. (All the moves from the left component
are associated with the initial move of the right component.) It is
easy to see that p has correct summary. Note that, for every initial
A-move m, we have

ε � EA(m)\EA(m) = EAl⇒Ar ( (m,m) ).

To prove that p satisfies the winning condition, it suffices to
show that

π〈EA⇒A(mr
1), . . . , EA⇒A(mr

2n−1), EA⇒A( (mr
1,m

l
2n) ), . . . 〉 ∈ Ω.

By the definition of the effect assignment for A ⇒ A, the above
sequence is equivalent to

π〈EA(m1), EA(m2), . . . , EA(m2n−1), EA(m2n), . . . 〉 ∈ Ω.

This condition holds because m1 `A m2 `A m3 `A · · · and A
satisfies Ω.

It is easy to prove that idA is ground-type reflecting.

D.3 Proof of Lemma 31
Our starting point is the following result proved by Clairambault
and Harmer [3]. An innocent strategy s is said to be total if s·⊥ /∈ s
for every s, and Noetherian just if it has no infinite view.

Lemma 64 (Clairambault and Harmer [3]). Let s : |A| ⇒ |B|
and t : |B| ⇒ |C| be innocent strategies. If s and t are total and
Noetherian, then so is (s; t) : |A| ⇒ |C|.

Assume that s = m1 ·m2 · · · ·. We first construct a “linearised”
version of arenas, strategies and the interaction sequence. LetA′ be
the arena having as moves the set of all occurrences of A-moves in
s, formally defined by:

MA′ = {i ∈ ω | mi ∈MA}.

For every i, j ∈ MA′ , i ` j if and only if mj points to mi in s.
The arena B′ and C′ are define similarly, e.g. sets of moves are

MB′ = {i ∈ ω | mi ∈MB} MC′ = {i ∈ ω | mi ∈MC}.

By abuse of notation, for every i ∈ MB′ , we also write i for the
move (j, i) in (A′ ⇒ B′)⇒ C′ = Int(A′, B′, C′), where j is the
unique initial C′ move. Similarly, for every i ∈ MA′ , we write i
for the move (j, (k, i)) in (A′ ⇒ B′)⇒ C′, where j is the unique
initial C′ move and k is the index of the unique initial B move
mk that hereditary justifies mi. Then for every n ∈ ω, we have
1 ·2 · . . . ·n ∈ Int(A′, B′, C′), where j points to i just ifmj points
to mi in s. So s′ = 1 · 2 · · · · · n · · · · is a well-defined infinite
interaction sequence. Consider the minimum strategies such that
their interaction sequence contains s′, which is defined by:

s′ = {p(1 · 2 · . . . · k) � A′ ⇒ B′q | k ∈ ω}
t′ = {p(1 · 2 · . . . · k) � B′ ⇒ C′q | k ∈ ω}.

Then s′ = 1 · 2 · · · · ∈ Int(s′, t′) as expected. Since s � A⇒ C ∈
(s; t), s; t is non-Noetherian (if s generates an infinite P-view) or
non-total (if s is an infinite chattering). Hence by Lemma 64 and
totality of s′ and t′, either s′ or t′ has an infinite P-view, say

i1 · i2 · · · · · ij · · · · .

Thenmi1mi2mi3 · · ·mij · · · is a subsequence of s that is a P-view
in the strategy. Furthermore, by definition of the strategies, we have
i2k+2 = 1 + i2k+1 for every k. So the sequence is actually a sub-
view.

D.4 Proof of Lemma 29
By induction on the length of s2. We do the case analysis on m.

If m is an O-move of A ⇒ C, then s2 must be the empty play
since s�A⇒C is a P-view. In this case, the equation trivially holds.

Assume otherwise. Then m is a P-move of A ⇒ B or of
B ⇒ C. Assume that m is a P-move of A ⇒ B. Note that
s�A⇒B ∈ s.

• Case s2 = ε: Then (s1 ·n ·m)�A⇒B = (s1�A⇒B) ·n ·m ∈ s.
Because s has correct summary and m points to n, we have



E∗(ε) = ε � EA⇒B(m). Because m is not an initial A ⇒ B
move, EA⇒B(m) = E(A⇒B)⇒C(m). Therefore we have

E∗(A⇒B)⇒C((s2 ·m)�OA⇒C) = ε � E(A⇒B)⇒C(m)

as desired.
• Case s2 is not empty: Let s′ = s1 · n · s2 ·m and assume

s′ = s1 · n 1 · n 2 · t2 · n 3 · · . . . · n 2l · t2l · n 2l+1 · m.

Here for every k ≤ l, n2k+1 is an O-move of A ⇒ B and
n2k is a P-move of A ⇒ B (and n1 = n). The P-view of the
A⇒ B component of s′ (that is, ps′�A⇒Bq) is given by:

ps1�A⇒Bq · n1 · n2 · n3 · . . . · n2l · n2l+1 ·m.

Because s has correct summary and m points to n, we have

E∗A⇒B(n3 · n5 · . . . · n2l+1) � EA⇒B(m).

Now we have

E∗A⇒B(n3 · . . . · n2l+1)

= EA⇒B(n3) ◦ · · · ◦ EA⇒B(n2l+1)

= E(A⇒B)⇒C(n3) ◦ · · · ◦ E(A⇒B)⇒C(n2l+1)

� E∗(A⇒B)⇒C((t2 · n3)�OA⇒C) ◦ . . .
◦ E∗(A⇒B)⇒C((t2l · n2l+1)�OA⇒C)

= E∗(A⇒B)⇒C((n2 · t2 · n3)�OA⇒C) ◦ . . .
◦ E∗(A⇒B)⇒C((n2l · t2l · n2l+1)�OA⇒C)

= E∗(A⇒B)⇒C(s2�
O
A⇒C)

= E∗(A⇒B)⇒C((s2 ·m)�OA⇒C).

For the second equation, note that n2k+1 (for k > 0) is
not an initial move of A ⇒ B and thus EA⇒B(n2k+1) =
E(A⇒B)⇒C(n2k+1). The inequation in the fourth line come
from the induction hypothesis. Other equations are conse-
quences of the fact that m and n2k (for k ≤ l) are not O-moves
of A⇒ C. In summary, we have

E∗(A⇒B)⇒C((s2 ·m)�OA⇒C) � E∗A⇒B(n3 · . . . · n2l+1)

� EA⇒B(m) = E(A⇒B)⇒C(m)

as required.

The other case can be proved by a similar way. Note thatEB⇒C(m) =
E(A⇒B)⇒C(m) for every move m in the component B ⇒ C.

D.5 Proof of corollary 30
Assume effect arenasA,B andC and summarising innocent strate-
gies s : A ⇒ B and t : B ⇒ C. Let p ∈ (s; t) be a P-view and
assume

p = p0 · n · p1 · m.

It suffices to prove that E∗A⇒C(p1�O) � EA⇒C(m).
Let s ∈ Int(s, t) be the interaction sequence that generates p,

i.e. p = s�A⇒C . Let

s = s0 · n ′ · s1 · m.

Ifm is not an initial move ofA, then n′ = n and p1 = s1�A⇒C .
By Lemma 29, we have

E∗(A⇒B)⇒C( (s1 ·m)�OA⇒C) � E(A⇒B)⇒C(m).

Sincem and moves in (s1 ·m)�OA⇒C are not initialB- orA-moves,
we have

E∗(A⇒B)⇒C( (s1 ·m)�OA⇒C) = E∗A⇒C( (s1 ·m)�OA⇒C)

= E∗A⇒C(p1�
O)

and

E(A⇒B)⇒C(m) = EA⇒C(m).

Hence E∗A⇒C(p1�O) � EA⇒C(m) as required.
Ifm is an initialA-move, then p0 is the empty and n is an initial

C-move. Then we have

p = n · p1 · m

s = n · s′0 · n ′ · s1 · m,

where n · s′0 = s0 and n′ is an initial B-move. By Lemma 29, we
have

E∗(A⇒B)⇒C( (s′0 · n′)�OA⇒C) � E(A⇒B)⇒C(n′)

E∗(A⇒B)⇒C( (s1 ·m)�OA⇒C) � E(A⇒B)⇒C(m).

By definition of E(A⇒B)⇒C , we have

E(A⇒B)⇒C(n′) = EC(n)\EB(n′)

E(A⇒B)⇒C(m) = EB(n′)\EA(m).

Here we identify an A-move and a move in the A-component of
(A⇒ B)⇒ C and so on. Therefore

EC(n) ◦ E∗(A⇒B)⇒C( (s′0 · n′)�OA⇒C) � EB(n′)

EB(n′) ◦ E∗(A⇒B)⇒C( (s1 ·m)�OA⇒C) � EA(m).

By monotonicity of ◦ and the definition of E∗, we have

EC(n) ◦ E∗(A⇒B)⇒C( (s′0 · n′ · s1 ·m)�OA⇒C) � EA(m)

and hence

E∗(A⇒B)⇒C( (s′0 · n′ · s1 ·m)�OA⇒C) � (EC(n)\EA(m)).

Since (s′0 · n′ · s1 ·m)�OA⇒C dose not contain any initial A-move
nor initial B-move,

E∗(A⇒B)⇒C( (s′0 · n′ · s1 ·m)�OA⇒C)

= E∗A⇒C( (s′0 · n′ · s1 ·m)�OA⇒C) = E∗A⇒C(p1�
O).

Hence E∗A⇒C(p1�O) � EA⇒C(m) as desired.

D.6 Proof of Lemma 32
Firstly we check that the winning condition for infinite P-views. Let
p ∈ (s; t) be an infinite P-view in the composite, and s ∈ Int(s, t)
be the interaction sequence generating p. By Lemma 31, s has an
infinite P-view of s or t as its sub-view. Consider the case that it is
an infinite P-view q of s. The other case can be proved similarly.
Assume that

s = m1 ·m2 · · · · and q = n1 · n2 · · · · .

Since q is a sub-view of s, we have

s = m 1 · s1 · n 1 · n 2 · s3 · n 3 · n 4 · s5 · n 5 · n6 · . . . .

Note that n2k cannot be an O-move of A⇒ C and hence

(p�O) = m1 · ((s1 · n1) �OA⇒C) · ((s3 · n3) �OA⇒C) · · · · .

Let us define t2k+1 = (s2k+1 · n2k+1) �OA⇒C . By Lemma 29, for
every k, we have

E∗(A⇒B)⇒C(t2k+1) � E(A⇒B)⇒C(n2k+1).



By definition of E(A⇒B)⇒C(n1),

E(A⇒B)⇒C(n1) = EC(m1)\EA⇒B(n1).

Therefore

EC(m1) ◦ E(A⇒B)⇒C(n1) � EA⇒B(n1).

Now we have

π〈EA⇒B(n1), EA⇒B(n3), EA⇒B(n5), . . . 〉
= π〈EA⇒B(n1), E(A⇒B)⇒C(n3), E(A⇒B)⇒C(n5), . . . 〉
� π〈EC(m1) ◦ E(A⇒B)⇒C(n1), E(A⇒B)⇒C(n3), . . . 〉
� π〈EC(m1) ◦ E∗(A⇒B)⇒C(t1), E∗(A⇒B)⇒C(t3), . . . 〉

Because π〈EA⇒B(n1), EA⇒B(n3), EA⇒B(n5), . . . 〉 ∈ Ω by
the assumption and Ω is lower-closed, we have π〈EC(m1) ◦
E∗(A⇒B)⇒C(t1), E∗(A⇒B)⇒C(t3), . . . 〉 ∈ Ω. By the property of
the infinite product and EC(m1) = E(A⇒B)⇒C(m1), this is
equivalent to Eω(A⇒B)⇒C(p �O) ∈ Ω. Observe that p�O does
not contain any initial A-move that must be a P-move of A ⇒ C.
Hence EωA⇒C(p�O) = Eω(A⇒B)⇒C(p�O) ∈ Ω.

Now we check the winning condition for infinite chattering.
Since p·⊥ ∈ (s; t), the interaction of s and t either goes into infinite
chattering or reaches an unanswered play of s or t. For the farmer
case, an argument similar to above proves the claim. A point is that
there exists l ∈ ω such that l < k implies emptiness of t2k+1. The
latter case can be easily proved.

D.7 Proofs of claims in Section 5.4
To prove A × B is a product, it suffices to give a natural bijec-
tion G (C,A × B) ∼= G (C,A) × G (C,B). Recall that we have
a natural bijection ϕ : Inn(|C|, |A| × |B|) ∼= Inn(|C|, |A|) ×
Inn(|C|, |B|). It is easy to prove that ϕ maps a consistent strat-
egy to a pair of consistent strategies and vice versa. Similarly,
we can prove that the natural bijection Inn(|A| × |B|, |C|) ∼=
Inn(|A|, |B| ⇒ |C|) maps a consistent strategy of G (A× B,C)
to a consistent strategy of G (A,B ⇒ C) and vice versa. Therefore
G is a CCC.

To prove − ~ − is a bifunctor, it suffices to prove that id |A| :
e ~ A −→ e′ ~ A is consistent for every e � e′. First we check
the winning condition for infinite plays. Assume an infinite P-view
s = m1 ·m2 · · · · ∈ id |A|. Since A satisfies Ω, we have

π〈EA⇒A(m1), EA⇒A(m3), EA⇒A(m5), . . . 〉 ∈ Ω.

By definition of e~A⇒ e′ ~A, we have

π〈Ee~A⇒e′~A(m1), Ee~A⇒e′~A(m3), Ee~A⇒e′~A(m5), . . . 〉
= π〈e′ ◦ EA⇒A(m1), EA⇒A(m3), EA⇒A(m5), . . . 〉
= π〈e′, EA⇒A(m1), EA⇒A(m3), EA⇒A(m5), . . . 〉.

Since Ω is stable, we have π〈e′, EA⇒A(m1), EA⇒A(m3), EA⇒A(m5), . . . 〉 ∈
Ω from π〈EA⇒A(m1), EA⇒A(m3), EA⇒A(m5), . . . 〉 ∈ Ω. Sec-
ond we prove that id |A| is summarising. The only problematic
case is m · (m,m) ∈ id |A| for m ∈ Minit

|A| , which requires
Ee~A⇒e′~A( (m,m) ) � ε. We have

Ee~A⇒e′~A( (m,m) ) = Ee′~A(m)\Ee~A(m)

= (e′ ◦ EA(m))\(e ◦ EA(m)).

Since e′ � e, we have e′ ◦ EA(m) � e ◦ EA(m) and hence
ε � (e′ ◦ EA(m))\(e ◦ EA(m)) as desired.

The fact that −\\− is a bifunctor E × G −→ G can be proved
similarly.

To prove that−\\− and−~− form an E-parametrised adjunc-
tion, it suffices to prove that (e\\−) a (e ~ −) for every e ∈ E.
We proves that the identity map Inn(|A|, |B|) ∼= Inn(|A|, |B|)

maps a consistent strategy G (e\\A,B) to a consistent strategy
G (A, e~B) and vice versa. The preservation of the winning condi-
tion is a consequence of the stability of Ω as above. We prove that
the preservation of the correctness of summary. Assume a sum-
marising strategy s : (e\\A) ⇒ B. The only problematic case is
the effect of the initial A move, i.e.,

s = m · s0 · (m,n)

wherem is an initialB move and n is an initialAmove (and hence
(m,n) is a move of (e\\A)⇒ B). Since s is summarising, we have

E(e\\A)⇒B(s0�
O) � E(e\\A)⇒B( (m,n) ) = EB(m)\Ee\\A(n).

Since s0�O cannot contain any initial A-move nor initial B-move,
we have

E(e\\A)⇒B(s0�
O) = EA⇒B(s0�

O) = EA⇒(e~B)(s0�
O).

We write this effect as d. Now we have

d � EB(m)\Ee\\A(n)

iff EB(m) ◦ d � Ee\\A(n)

iff EB(m) ◦ d � e\EA(n)

iff e ◦ EB(m) ◦ d � EA(n)

iff Ee~B(m) ◦ d � EA(n)

iff d � Ee~B(m)\EA(n)

iff d � EA⇒(e~B)( (m,n) ).

E. Supplementary Materials for Section 6
E.1 Proof of Lemma 39
(s1; s2) ⊂ (t1; t2) follows from s1 ⊂ t1 and s2 ⊂ t2 (by induction
on the length of the interaction sequence). Consistency of s1; s2

follows from Theorem 33. To prove relative totality, a key fact is
that s · ⊥ ∈ (s1; s2) means that one reaches an unanswered play
of s1 or s2 or infinite chattering. For the former case one reaches
the corresponding an unanswered play of s1 or s2 and for the latter
case one find infinite chattering of t1 and t2.

E.2 Proof of Lemma 40
Let (s::t) : (A ::I) −→ (C ::K) and assume that

I
t−→ K = I

t1−→ J
t2−→ K.

First we construct B :: J from analysis of the interaction
sequence Int(t1, t2). Effect arena B = (M,`, λ, ϑ,E) is defined
as follows.

• M =
{(

p
u

) ∣∣∣ u ∈ Int(t1, t2), u ends with a J-move
p ∈ s, ppq = p, $(p) = u�I⇒K

}
•
(
p
u

)
`
(
p′

u′

)
iff

1. p is a prefix of p′,

2. u is a prefix of u′, and

3. the last move of u′ is explicitly justified by the last move of
u.

• λ(
(
p
u

)
) = λJ(m) where m is the last move of u.

• ϑ(
(
p
u

)
) := ϑA⇒C(m) where m is the last move of p.

• E(
(
p
u

)
) will be defined below.

If
(
p
u

)
, then each move m in the (I ⇒ K)-component of u has

an unique corresponding move in A ⇒ C, say m′. We define
E(m) = EA⇒C(m′). The effect for

(
p
u

)
is defined by:



• If the last move of u is an initial J-move, then EB(
(
p
u

)
) :=

E∗(u�OI⇒K) = E∗A⇒C(p).
• Otherwise. Let

u = u1 · n · u2 · m,

then EB(
(
p
u

)
) := E∗(u2�OI⇒K).

Intuitively the effect assignments is defined so that it satisfies
Lemma 29. However, note that

(
p
u

)
is a move, not an interaction

sequence.
Second we define “interaction sequences”. Let p be a P-view

of A ⇒ C and u ∈ Int(I, J,K) be an interaction sequence
and assume that $(p) = u�I⇒K . We define a justified sequence
(A⇒ B)⇒ C by:

• If u = u0 ·m with m ∈ J , then [u0 ·m | p] = [u0 | p] ·m.
• Otherwise m is in the (I ⇒ K)-component. Then p = p0 ·
m′ such that $(m′) = m. We define [u0 ·m | p0 ·m′] =
[u0 | p0] ·m′.

Notice that [u | p] has the same length as u. The pointing structure
of [u | p] inherits from that of u.

Lemma 65. Let p be a P-view of A ⇒ C and u ∈ Int(I, J,K)
be an interaction sequence and assume that $(p) = u�I⇒K . Then
[u | p] ∈ Int(A,B,C).

Proof. By induction on the length of u.

We define I ⊆ Int(A,B,C) by

I =

{
[u | p]

∣∣∣∣∣ u ∈ Int(t1, t2), p ∈ s,

ppq = p, $(p) = u�I⇒K

}
.

This should be the set of all interactions between s1 and s2.
Now we define strategies. Let f1 be an view function of the

arena A ⇒ B determined by the set of P-views {ps�A⇒Bq | s ∈
I} and f2 be a view function of an arena B ⇒ C determined by
{ps�B⇒Cq | s ∈ I}. The strategy s1 is induced from f1 and s2

from f2.
We show that s1 and s2 are well-defined. We need an auxiliary

lemma.

Lemma 66. Let p be a P-view of I ⇒ K and u ∈ Int(I, J,K) be
an interaction sequence and assume that $(p) = u�I⇒K .

(i) If u ends with an O-move of I ⇒ J , then [u | p] can be
determined by p[u | p]�A⇒Bq.

(ii) If u ends with an O-move of J ⇒ K, [u | p] can be deter-
mined by p[u | p]�B⇒Cq.

Proof. We prove (i). (ii) is shown by a similar way. We prove the
claim by induction on the length of u.

If u ends with a move of J , then the last move contains as much
information as the pair (u, p). Assume that u ends with a move of
I . The last move of u is an O-move of I ⇒ J , and hence an O-
move of I ⇒ K. By the assumption, (I ⇒ K)-component of u is
a P-view. So u is of the form

u = u′m P
1 · m O

2 .

(Note that mO
2 cannot be an initial I-move.) Since

$(p) = u�I⇒K = (u′�I⇒K) ·mP
1 ·mO

2 ,

there are some moves nP1 , nO2 ∈ MA⇒C and a P-view p′ of
A ⇒ C such that p = p′ · nP1 · nO2 and $(nP1 ) = mP

1 and
$(nO2 ) = mO

2 . Therefore we have

[u | p] = [u′ | p′] · nP1 · nO2 .

Since nO2 is an O-move of A,

p[u | p]q = p[u′ | p′] · nP1 · nO2 q = p[u′ | p′]q ·mP
1 ·mO

2 .

By the induction hypothesis, we can compute [u′ | p′] from p[u′ | p′]q.
Thus (i) holds.

Lemma 67. f1 and f2 are well-defined view functions.

Proof. We prove that f1 is well-defined. Well-definedness of f2 is
shown by the same way.

Let s ∈ f1 be an play ending with an O-move. It suffices to
show that:

If s ·m ∈ ϕ1 and s ·m′ ∈ ϕ1, then s ·m = s ·m′.

Assume that s ·m ∈ f1 and s ·m′ ∈ f1. By definition of f1, we
have u ·m, u′ ·m′ ∈ I such that

s ·m = p(u ·m)�A⇒Bq

s ·m′ = p(u′ ·m′)�A⇒Bq.
Since s ends with an O-move of A ⇒ B, by Lemma 66, s
completely determines u and u′. Thus u = u′ and u ·m′ ∈ f1. By
determinacy of s, t1 and t2, we have u ·m = u ·m′ as required.

Hence f1 and f2 define innocent strategies s1 and s2 of effect
arenasA⇒ B andB ⇒ C. We now prove that s1 :: t1 and s2 :: t2
are winning. Trivially, $(s1) ⊂ t1 and $(s2) ⊂ t2. It is easy to
see that s1 and s2 are Ground-Type Reflecting.

Lemma 68. s1 and s2 are summarising.

Proof. Assume a P-view of s1 ending with a P-move. By definition,
it is of the form p[u ·m | p]�A⇒Bq. Let u be

u0 · n0 · m0 ·s1 · n1 · m2 ·s2 · n2 · · · · · mk ·sk · nk · m,

where m and mi are P-moves and ni is an O-move (of I ⇒
J). Since this interaction sequence is associated with p such that
$(p) = u�I⇒K , an effect is assigned for each move.

Then we have

E(ni) = E∗((si · ni)�OI⇒K) (for every i)

E(m) = E∗((m0 · s1 · n1 · · · · · nk ·m)�OI⇒K).

So
E(n1) ◦ · · · ◦ E(nk) = E(m)

as desired. So s1 is summarising.
Assume a P-view of s2. Then we have an interaction sequence

u similar to the above case. Ifm is not an initial J-move, we obtain
the expected result by the same argument as above. Assume that m
is an initial J-move and hence u0 is empty. Then

E(ni) = E∗((si · ni)�OI⇒K) (for every i)

EB(m) = E∗((n0 ·m0 · s1 · n1 · · · · · nk ·m)�OI⇒K)

and hence

E(n1) ◦ · · · ◦ E(nk) � E(n0)\EB(m).

By the definition of the effect assignment for the exponent, we have

EB⇒C(m) = EC(n0)\EB(m),

which implies

E(n1) ◦ · · · ◦ E(nk) � EB⇒C
as expected.



Lemma 69. s1 and s2 satisfies Ω.

Proof. We prove that s1 satisfies Ω. Assume an infinite P-view
of p = s1. By the definition of B and s1, we have an infinite
interaction sequence u ∈ Int(t1, t2) such that $(p) = u�I⇒K .
Hence $(p) is a sub-view of u, i.e.,

u = m 1 · s1 · n1 · n2 · s3 · n3 · n4 · s5 · n5 · n6 · · · · ,
where$(p) = n1 ·n2 · · · ·. Note that n2k+1 is an O-move and n2k

is a P-move (of J ⇒ K). Since u is associated with p, each move
in u can be considered as having its effect. It suffices to prove that

π〈E(n1), E(n3), . . . 〉 ∈ Ω.

By definition,

E(n1) = E∗( (m1 · s1 · n1)�OI⇒K)

E(n3) = E∗( (s3 · n3)�OI⇒K)

E(n5) = E∗( (s5 · n5)�OI⇒K)

...

Since s satisfies Ω, we have

π〈E∗( (m1 · s1 · n1)�OI⇒K), E∗( (s3 · n3)�OI⇒K), . . . 〉 ∈ Ω.

Hence we obtain the claim.

Lemma 70. (s1; s2) = s.

Proof. We first prove that s ⊆ (s1; s2). Since s is innocent, it
suffices to show that s1; s2 contains every P-view p ∈ s. Let
p ∈ s be a P-view. Then $(p) ∈ t = (t1; t2). Thus there
is u ∈ Int(t1, t2) such that $(p) = u�I⇒K . By definition,
[u | p] ∈ I . We can prove [u | p] ∈ Int(s1, s2) by induction on
the length of u. So p = [u | p]�A⇒C ∈ (s1; s2).

Second we prove that (s1; s2) ⊆ s. It suffices to show that p ∈ s
for every P-view p ∈ (s1; s2). Since p ∈ (s1; s2), we have its
uncovering u ∈ Int(s1, s2) (so p = u�A⇒C ). Then by induction
on the length of u, we can prove that u�A⇒C ∈ s.

Lemmas above prove that the strategies s1 and s2 satisfy all the
requirements.

E.3 Proof of Lemma 41
First we give a game semantics of extended types. Since extended
types do not have intersections, they can be viewed as effect arenas.

〈|q|〉E = Aq

〈|α̂→ τ |〉E = 〈|α̂|〉E ⇒ 〈|τ̂ |〉E
〈|
∏
i∈I

〈τ̂i; ei〉|〉E =
∏
i∈I

ei ~ 〈|τ̂i|〉E

where Aq is the arena consisting of the unique O-move of ground-
type q and of effect ε. Notice that, since the unique initial move
of 〈|τ̂ |〉E has effect ε, the effect assignment for 〈|α̂→ τ̂ |〉E =
〈|α̂|〉E ⇒ 〈|τ̂ |〉E is simply written as:

E〈|α̂→τ̂ |〉E (m) = E〈|τ̂ |〉(m) if m ∈M〈|τ̂ |〉E
E〈|α̂→τ̂ |〉E ( (m,n) ) = E〈|α̂|〉(n) if (m,n) ∈Minit

〈|τ̂ |〉 ×M〈|α̂|〉E
The game semantics of extended kinds is defined by:

〈|o|〉 = |A|o
〈|α̂→ τ |〉 = 〈|α̂|〉 ⇒ 〈|τ̂ |〉

〈|
∏
i∈I

〈τ̂i; ei〉|〉 =
∏
i∈I

ei ~ 〈|τ̂i|〉

where |A|o is the arena consisting of the unique O-move. Then we
have

|〈|τ̂ |〉E | = 〈||τ̂ ||〉
where | · | in the left-hand-side is the forgetful functor and | · | is the
map from extended types to their kinds.

Assume a Böhm tree ∆ 
 U :: κ, a type environment Γ :: ∆,
a prime type τ :: κ and an extended Böhm tree |[(Γ)| 
 V̂ ::
|[(τ)|. The game semantics for extended types gives the effect
arena component of the two-level arena semantics of types.

Lemma 71.
• [[τ ]] = (〈|[(τ)|〉E , $, 〈|κ|〉) for some $.
• [[Γ]] = (〈|[(Γ)|〉E , $′, 〈|∆|〉) for some $′.

Proof. The first claim can be proved by induction on the structure
of κ. The second claim follows from the first one.

Lemma 41 is a consequence of the following lemmas.

Lemma 72. V̂ b U iff 〈|V̂ |〉 ⊂ 〈|U |〉.

Lemma 73. Let Û0 be an extended Böhm tree. Then Γ̂ � Û0 : τ̂ iff
〈|Û0|〉 is a consistent strategy of 〈|Γ̂|〉E ⇒ 〈|τ̂ |〉E .

Proof. We first prove that, if P does not get stuck in the game
Γ̂ � Û0 : τ̂ , then 〈|Û0|〉 is ground-type reflecting and summarising,
by defining a bijective correspondence between plays (i.e. finite
sequences of P/O-positions) of Γ̂ � Û0 : τ̂ and finite P-views in
〈|Û0|〉 that is ground-type reflecting and summarising.

Let Û0 = λx1 . . . xl.T̂ . Then the initial P-position is

(Γ, x1 : β1, . . . , xl : βl � T : q0)

which corresponds to the P-view consisting of the initial move of
the effect arena.

Suppose the play s ·u corresponds to the P-view p ·m. We con-
sider, by a case analysis, the correspondence between the respective
extensions s · u · v and p ·m · n.
• Suppose u 7−→ v is the following Type-1 transition

(Γ̂ � (pjx) (
l

i∈I1

Û1
i ) . . . (

l

i∈IK

Uki ) : q)

ε7−→ (Γ̂ � (
l

i∈Il

U li )l : (αl)l)

where pj(Γ̂(x)) = 〈α1 → · · · → αk → q; e〉 and ε � e; fur-
ther Γ̂ = d\Γ̂′, x1 : β1, . . . , xl : βl (as given by the transi-
tion preceding u 7−→ v). The O-move mO of the effect arena
that corresponds to u is 〈β1 → . . .→ βl → q; d〉, which lies
over the lambda-move λx1 : β1 . . . xm : βl of the subtree
λx1 . . . xm.(pjx) (

d
i∈I1 Û

1
i ) . . . (

d
i∈Ik

Ûki ) of Û0 (here we ap-
peal to the correspondence between Böhm trees and innocent
strategies as set out in Appendix B.2).
Suppose the variable x (via binding x :

∏
i∈I〈τ̂i; gi〉) was intro-

duced to the environment Γ̂1 of the P-position u1 = (Γ̂1 � T̂1 : q1)
in s; by the induction hypothesis, letmO

1 = 〈. . .→
∏
i∈I〈τ̂i; gi〉 → . . .→ q′; g〉

be the O-move in p that corresponds to u1. Then the P-move nP

that corresponds to the O-node v is 〈τ̂j ; gj〉, which lies over the
variable-move x of the subtree (pjx) (

∏
i∈I1 Û

1
i ) . . . (

∏
i∈Ik

Ûki )

of Û0. Notice that nP is explicitly justified by the O-move mO
1 in

p.
We need to show that the effect of the P-move 〈τj ; gj〉 is a correct
summary. Suppose the effects of the O-moves of the P-view p
after mO

1 are e1, . . . , en respectively. By the induction hypothesis,
they correspond to the respective effects of the Type-2 transitions



of s after the P-node u1. Thanks to the cummulative effects of
the Type-2 transitions, we have Γ̂(x) = en\. . .\e1\Γ̂1(x) =d
i∈I〈τi; en\. . .\e1\gi〉, and so, e = en\. . .\e1\gj . Since ε � e

by assumption, we have ε � en\. . .\e1\gj . Since each ei\− is a
left-residual, we have e1 ◦ . . . ◦ en � gj as desired.
It is easy to prove that the P-move reflects the gourd-type.
• Suppose u 7−→ v is the following Type-2 transition

(Γ̂ � (
l

i∈Ik

Ûki )k : (α̂k)k)

e7−→ ((e\Γ̂), x1 : β̂1, . . . , xl : β̂l � T̂ : q)

where, for some k and i ∈ Ik, Ûki = λx1. . . . .λxl.T̂ and
pi(αk) = 〈β1 → · · · → βl → q; e〉. Suppose the O-node u cor-
responds to the P-move mP = 〈α1 → . . .→ αk → q1; f〉 which
lies over the variable x of the subtree (pjx) (

d
i∈Ik

Û1
i ) . . . (

d
i∈Ik

Ûki ).
Then the P-position v corresponds to the O-move nO = 〈β1 → · · · → βl → q; e〉,
which lies over the lambda-move λx1 . . . xl of the subtree Ûki =
λx1 . . . xl.T̂ of Û0. Notice that nO is explicitly justified by the
preceding move mP , extending the P-view p ·mP .
• In the case of Type-3 transitions

(Γ � ⊥ : q)
ε7−→ (Γ � ⊥ : q)

suppose the P-node of the last Type-2 transition in s·u is (e\Γ̂, x1 :

β̂1, . . . , xl : β̂l � T̂ : q), and let mO = λx1 . . . xl be the O-
move of the arena-with-effects corresponding to it. Then the Type-
3 transition corresponds to the P-view p ·mO ·⊥ which extends the
P-view p ·mO .

It remains to observe that the (unique) P-strategy of Γ̂ � Û0 : τ̂
is winning if and only if the corresponding innocent strategy 〈|Û2|〉
satisfies Ω. This is obvious because the above bijection of plays
maps

v2
ε7→ v3

e37→ v4
ε7→ v5

e57→ · · ·
to a P-view

m1 ·m2 ·m3 ·m4 ·m5 · · · ·
such that E(m2k+3) = e2k+3 (notice that E(m1) = ε).

F. Unstable winning conditions
This section discuss the case in which Ω is not stable. Fix an ω-
monoid (E,F) equipped with left-residuals.

F.1 The set of all lower closed set
We write I for the set of all lower-closed subsets of F (stands for
order Ideals). It is ordered by set-inclusion. An element of I is
written as Ω. The positive action to I is defined by:

e~ Ω := {e~ f | f ∈ Ω}�,

where A� is the lower closure of A. It is easy to see that e ~
(e′ ~ Ω) = (e ◦ e′)~ Ω.

Negative action is defined by:

e\\Ω := {f ∈ F | e~ f ∈ Ω}.
Another (perhaps more suggestive) definition of the negative action
is:

e\\Ω := {(e\e′)~ f | e′ ~ f ∈ Ω}�.
Proposition 74. The two definitions of the negative action are
equivalent.

Proof. Suppose that f ∈ e\\Ω in the first definition. Then e ~ f ∈
Ω. So (e\e) ~ f ∈ e\\Ω in the second definition. Note that
f = ε ~ f � (e\e) ~ f by ε � e\e and the monotonicity of

the action. Since e\\Ω in the second definition is lower-closed by
its definition, we have f ∈ e\\Ω in the definition, as desired.

Suppose that f ∈ e\\Ω in the second definition. Then f �
(e\e′)~ f ′ and e′ ~ f ′ ∈ Ω for some e′ ∈ E and f ′ ∈ F. Now we
have

e~ f = e~ ((e\e′)~ f ′)
= (e ◦ (e\e′))~ f ′

� e′ ~ f ′

since e ◦ (e\e′) � e′. Because Ω is lower-closed and e′ ~ f ′ ∈ Ω,
we have e~ f ∈ Ω. So f ∈ e\\Ω in the first definition.

Stability can be characterised by using positive and negative
actions: Ω is stable just if

• e~ Ω ⊆ Ω for every e ∈ E, and
• e\\Ω ⊆ Ω for every e ∈ E.

Lemma 75. e~ Ω1 ⊆ Ω2 if and only if Ω1 ⊆ e\\Ω2.

Proof. (⇒) Assume e~ Ω1 ⊆ Ω2 and f ∈ Ω1. Then e~ f ∈ Ω2.
So by the definition of the negative action, f ∈ e\\Ω2.

(⇐) Assume Ω1 ⊆ e\\Ω2 and f ∈ e~Ω1. Then f = e~f ′ for
some f ′ ∈ Ω1. Then f ′ ∈ e\\Ω2. By the definition of the negative
action, we know that e~ f ′ ∈ Ω2, as required.

Ω ∈ I is stable if and only if e ~ Ω ⊆ Ω and e\\Ω ⊆ Ω for
every e ∈ E.

F.2 Type-checking games
There is no change in the definition of the game graph of type-
checking games. A game is now determined by a pair of a position
and a winning condition Ω ∈ I. We write Γ �Ω U : α for the game
starting from Γ � U : α whose winning condition is Ω.

In the case that Ω is stable, we have

Γ �Ω U : e~ α iff e\\Γ �Ω U : α.

This proposition is used in the proof of Theorem 18 to prove
soundness of the effect action rule. This proposition is no longer
true if Ω is not stable. Instead, we have:

Γ �e~Ω U : e~ α iff e\\Γ �Ω U : α.

As we will see, the category G(E,F,Ω) can be defined even if Ω
is not an idea of the monoid action. So by the same argument as in
Section 6.2, we have the following compositinality result.

Theorem 76.

• V̂1 I (Γ �Ω U1 : α → τ) and V̂2 I (Γ �Ω U2 : α) implies
(V̂1@V̂2) I (Γ `Ω U1 @ U2 : τ).
• Ŵ I (Γ `Ω U1 @ U2 : τ) implies V̂1N(Γ `Ω U1 : α → τ)

and V̂2 I (Γ `Ω U2 : α) and Ŵ = V̂1 @ V̂2 for some α, V̂1

and V̂2.

F.3 Type system
The sets of types and type environments are the same as in Sec-
tion 3. A type judgement is explicitly annotated by Ω, like Γ `Ω

M : τ . The typing rules are listed as follows. Notice that the posi-
tive action rule changes the winning condition Ω.



〈τ ; e〉 = pi(Γ(x)) for some i and e � ε
Γ `Ω x : τ

Γ, x : α `Ω M : τ

Γ `Ω λx.M : α→ τ

Γ `Ω M : α→ τ Γ `Ω N : α

Γ `Ω M N : τ

Γ′ � Γ Γ `Ω M : τ τ � τ ′

Γ′ `Ω M : τ ′

Γ `Ω M : τ

e ~ Γ `e~Ω M : 〈τ ; e〉
∀i ∈ I. Γ `M : 〈τi; ei〉
Γ `M :

∧
i∈I〈τi; ei〉

�Ω BT(Y) : τ

Γ `Ω Y : τ

Transfer theorem for the extended type system can be proved by
the same way as that for the plain type system.

Theorem 77. Γ �Ω M : α iff Γ `Ω BT(M) : α.

Assume that E and F are finite. Then I is finite. Hence, for every
M , the judgements for M is finite. So inductive enumeration of all
derivable judgements provides a decision procedure.

Theorem 78. If (E,F) is finite, then Γ `Ω M : τ is decidable.

By the same way as in the plain type system, the representation
of a finite derivation can be defined. The next result can be proved
by the same way as in the plain system.

Theorem 79. D B (Γ `Ω M : τ) implies BT(D) I (Γ �Ω

BT(M) : τ).

F.4 Game model
Notice that the definition of the game model in Section 5 does not
rely on the fact that Ω is stable. Hence, for every Ω ∈ I, we have an
arena game model G(E,F,Ω). We abbreviate it to GΩ. The two-level
construction works well for this setting.

The effect action is no longer be an endofunctor if Ω is not
stable. Instead, it defined a functor

e~− : GΩ −→ Ge~Ω.

Similarly, the negative action is a functor

e\\− : GΩ −→ Ge\\Ω.

Assume an effect arena A and Ω1,Ω2 ∈ I. Let s be a strategy
of |A|. If s satisfies Ω1 and Ω1 ⊆ Ω2, then s also satisfies Ω2.
This means that there is an inclusion GΩ1 −→ GΩ2 if Ω1 ⊆ Ω2.
This defines a functor I −→ Cat, where Cat is the category of
categories.

G. A remark on transfer theorem
A order-n transfer theorem for a set C of properties asserts the ex-
istence of an effective transformation T on C such that for every
order-n tree-generator M and property ϕ, BT(M) satisfies prop-
erty ϕ iff M (or some representation thereof) satisfies T (ϕ). Thus,
such a theorem says that the C-definable properties of order-n λY-
definable Böhm trees are effectively the C-definable properties of
the term-generators themselves.

More formally an order-n transfer theorem for a simply-kinded
language L w.r.t. a set C of properties is an assertion of the follow-
ing kind. Let ϕ range over C.

There is an effective transformation on C, TC , such that for
every order-n term-in-context of L (i.e. kinding judgement)
Γ `M :: κ, and for every ϕ in C, we have:

Γ � BT (M) : ϕ ⇐⇒ Γ �′ GM : TC(ϕ)

where GM is a suitable representation (e.g. the abstract
syntax graph) of the term M .

Sylvain and Walukiewicz [20] have proved an order-2 transfer
theorem where L is the infinitary λY-calculus (definable using

a bounded set of kinds) and C is the set of MSO formulas (or
alternating parity automata).

Our result (Theorem 18) is an order-n transfer theorem where
L is the λY-calculus, and C is the set of intersection types; the
transformation TC is the identity operation and GM = M .

G.1 Typing is MSO-definable
Let us fix a finite set of (kinded) variables as in [20], say

X = {z1 :: ι1, z2 :: ι2, . . . , zn :: ιn},
and consider λY-terms with concrete variable names (i.e. terms
λz1.z1 and λz2.z2 are considered as different terms, even if ι1 =
ι2). We further assume a finite set of kinds K and requires that
all kinds in a term should be in K. In this setting, a term can be
considered as a tree over the alphabet

Σ(X ,K) = {x | x ∈ X}
∪ {λx | x ∈ X}
∪ {@κ1,κ2 | κ1 → κ2 ∈ K}
∪ {Yκ | (κ→ κ)→ κ ∈ K},

where x and Yκ are of arity 0 (i.e. they are leaves of a tree), λx is
of arity 1 and @κ1,κ2 is of arity 2. The first branch of @κ1,κ2 is a
tree representing a term of kind κ1 → κ2 and the second branch if
of kind κ1, and the tree rooted by @κ1,κ2 represents a term of kind
κ2. Let T (X ,K) be the set of λY-terms in this signature.

As observed in [20], T (X ,K) is not closed under reduction
since capture-avoiding substitution may require a fresh variable.
The set T (X ,K) is a proper subset of that considered in [20],
since (i) we only focus on the finite λY-terms, whereas [20] studies
the infinite λY-calculus, and (ii) [20] assumes infinite supply of
Y-variables, variables introduced by recursion, but we do not
distinguish them from usual variables (as our syntax suggests).

This subsection proves the following result. Note that, since
M ∈ T (X ,K) is just a tree in this setting, we have an established
notion of MSO formulas and the satisfaction relation.

Proposition 80. Assume a finite set of kinded variables X and a
finite set of kinds K. Given a type δ, the set {M ∈ T (X ,K) |
` M : δ} is effectively MSO-definable, i.e., one can effectively
compute a MSO-formula ϕδ such that ` M : δ coincides with
M |= ϕδ .

Since M is a tree over a finite ranked alphabet, we can appeal
to (effective) equivalence between MSOL and alternating parity
tree automata. So our goal is to construct an alternating parity tree
automata Aδ such that `M : δ ⇐⇒M ∈ L(Aδ), where L(A) is
the language recognised by A.

Assume a finite set Q of ground types and a finite and stable
winning condition (E,F,Ω) as in Section 4. In this subsection, we
consider types modulo ≈. Therefore, for every κ ∈ K, the set
{τ | τ :: κ} is viewed as a finite set. We regard X = {z1 ::
ι1, . . . , zn :: ιn} as a kind environment. Then the set of types
environments {Γ | Γ :: X} (modulo ≈) is also a finite set.

Let Γ = (z1 : α1, . . . , zn : αn) :: X , x = zi ∈ X and α′i :: ιi.
We write Γ[zi 7→ α] for the type environment

z1 : α1, . . . , zi−1 : αi−1, zi : α
′
i, zi+1 : αi+1, . . . , zn : αn.

The family of alternating parity tree automata Aδ parametrised
on δ share the same set of states and the same transition relation. In
other words, they differ only on the initial states. In the following,
we define an alternating parity tree automatonA without the initial
state.

The set of states is:

J :=
⋃
κ∈K

{(Γ, τ) | Γ :: X and τ :: κ}.



We write Γ ` � : τ for the state (Γ, τ). Note that J is a finite set.
We write A(Γ ` � : τ) for the alternating parity tree automaton
with the initial state Γ ` � : τ that has the same states and
transition relation is A.

For the notational convenience, we regard α :: κ as a subset of
{τ | τ :: κ} × E and write 〈τ ; e〉 ∈ α if pk(α) = 〈τ ; e〉 for some
k.

We define the transition relation R ⊆ P(Σ × J × P(J ×
{1, 2})), where P(A) means the powerset of A and {1, 2} is the
set of directions.

• (zi, (Γ ` � : τ), ∅) ∈ R iff Γ(zi) � 〈τ ; ε〉.
• (Yκ, (Γ ` � : τ), ∅) ∈ R iff ` Y : τ .
• (λzi, (Γ ` � : α → τ), {(Γ[zi 7→ α] ` � : τ, 1)}) ∈ R for

every zi, Γ, α and τ .
• (@κ1,κ2 , (Γ ` � : τ), {(Γ ` � : α→ τ, 1)}∪

⋃
{(e\\Γ ` � :

σ, 2) | 〈σ; e〉 ∈ α}) ∈ R for every Γ, τ , and α :: κ1.

Lemma 81. Let M ∈ T (X ,K). Then Γ ` M : τ if and only if
M ∈ L(A(Γ ` � : τ)).

Proof. By induction on the structure of M , using Lemma 56.

By the above lemma, we know that {M ∈ T (X ,K) | `M : τ}
is the language accepted by Aδ := A(Γ ` � : δ). By effective
equivalence between alternating parity tree automata and MSO-
formulas, we have Proposition 80.
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