
On Computability of Logical Approaches to
Branching-Time Property Verification of Programs

Takeshi Tsukada
The University of Tokyo

Japan
tsukada@kb.is.s.u-tokyo.ac.jp

Abstract
This paper studies the hardness of branching-time property
verification of Turing-complete programming languages, as
well as logical approaches to the verification problem. As
these approaches reduce the verification problem to logical
problems, e.g. the satisfiability problem of Horn clauses with
certain extensions, it is natural to ask whether the logical
problems are as hard as the verification problem or strictly
harder. This paper reveals that logical problems used in most
approaches are far more difficult than the verification prob-
lem; the only exception is the validity problem of first-order
arithmetic with fixed-point operators. We also answers some
other natural questions, for example, whether the extensions
of Horn clauses are necessarily.

Keywords: program verification, branching-time property,
computability, fixed-point logic, constrained Horn clause,
analytical hierarchy

1 Introduction
A fundamental question for a decision problem is how hard
it is. Given a decision problem of interest, it is natural to
ask whether the problem is decidable, whether there exists a
polynomial-time algorithm and so on; they are about upper
bounds of the hardness of the problem. Lower bounds would
also be useful: if the problem is EXPSPACE-hard, one has to
give up trying to reduce the problem to SAT.
This paper studies the hardness of program verification

problems. The hardness of a verification problem depends
on the programming language and the class of properties.
Let us fix a sufficiently expressive programming language,
say Rust, of which details are not significant in this paper.

Let us briefly review known results on the hardness of the
verification problems for some classes.

The halting problem, of which the class of properties is sin-
gleton, is perhaps the most famous verification problem. This

LICS ’20, July 8–11, 2020, Saarbrücken, Germany
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS ’20), July 8–11, 2020, Saarbrücken, Germany, https://doi.org/10.
1145/3373718.3394766.

problem is Σ0
1-complete. A slightly more general problem is

the reachability problem, asking whether the evaluation of a
given program reaches a certain state. It is also Σ0

1-complete.
Another important class of properties is safety, saying

that something bad will never happen. This is the dual of
reachability and hence Π0

1-complete. Because of its practical
importance, many verification methods have been devel-
oped. Commonly used tools are decision procedures for the
satisfiability problem of Horn clauses (see, e.g., [3] for the
use of Horn clauses in this context), which is as hard as the
verification problem (i.e. Π0

1-complete).
Harel [9] studied the fair termination problem of nonde-

terministic programs. A program is fairly terminating if it
has no infinite execution except for “unfair” ones. The fair
termination problem is Π1

1-complete, i.e. the hardest problem
in those described by formulas in second-order arithmetic
of the form ∀X ⊆ N.φ where φ has no second-order quanti-
fier. The Π1

1-completeness result can be extended to a fairly
general class of linear-time properties: whether all execution
paths of a given program satisfies a given property is Π1

1,
provided that the property is in a certain class containing all
ω-regular word properties [9, 21].

This paper focuses on branching-time property verification
of programs. So we are interested in the tree consisting of
all execution paths of a given program, and the verification
problem asks whether the execution tree satisfies a given ω-
regular tree property. Let us write Verif for this verification
problem. Several logical approaches have been proposed for
the problem and sub-problems [1–4, 15, 20, 24].

The aim of this paper is to examine these approaches from
the view point of computability. The logical problems used
in these approaches are:

• the satisfiability problem of
– constrained Horn clauses with some extensions, and

• the validity problems of
– second-order arithmetic,
– first-order arithmeticwith fixed-point operators, and
– higher-order arithmetic with fixed-point operators.

The results of this paper are summarised in Fig. 1 and Fig. 2.
We explain the meanings and consequences of the results,

examining one-by-one problems listed above.
1

https://doi.org/10.1145/3373718.3394766
https://doi.org/10.1145/3373718.3394766

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Takeshi Tsukada

Figure 1. Verification and logical problems placed in the analytical hierarchy (CHC = constrained Horn clauses, HFA =
higher-order fixed-point arithmetic). For each problem, the lowest level in the hierarchy that contains the problem is shown.
For example, Verif belongs to ∆1

2 and higher levels, such as Σ1
2 and Π1

2, but not to Σ1
1 nor Π

1
1.

Verif ≡m µ-arith ≡m HFA1 <m HFA2 <m . . . <m HFAn <m HFAn+1 <m . . . <m HFA

Figure 2. Comparison of the problems in ∆1
2. HFAn is the restriction of HFA to order n.

1.1 First-order fixed-point arithmetic
(First-order) fixed-point arithmetic [17] (or µ-arithmetic) is
first-order arithmetic with least and greatest fixed-points,
i.e. an arithmetic variant of the µ-calculus. Let µ-arith be the
validity problem of µ-arithmetic.

Bradfield [4] proved, in effect, that Verif ≡m µ-arith,
i.e. the two problems are many-one reducible to each other.1
This remarkable result, however, is rarely mentioned in the
literature of program verification. In fact the above statement
differs from the original statement, and this paper might be
the first one writing Bradfield’s result in the above form. (See
Section 1.5 for more information.)

The characterisation of the verification problem in terms
of µ-arithmetic has some interesting consequences. For ex-
ample, Verif ∈ ∆1

2 since µ-arith ∈ ∆1
2 (Proposition 7). In

particular, the verification problem is far easier than the
validity problem of second-order arithmetic.

1.2 Higher-Order Fixed-Point Arithmetic
Watanabe et al. [24] gave a reduction of the branching-time
property verification problem to the validity problem of
higher-order fixed-point arithmetic (HFA for short), extending
the result in [15] for linear-time properties. HFA is an arith-
metic variant of higher-order modal fixed-point logic [22],
a higher-order variant of the modal µ-calculus. We write
HFA (resp. HFAn) for the validity problem of HFA (resp. the
order-n fragment of HFA).
This paper proves two results:

HFA ∈ ∆1
2 and ∀n. HFAn <m HFAn+1.

1Actually polynomial-time reductions exist.

The first result may be surprising: despite the higher-order
nature of HFA, it is far easier than second-order arithmetic.
This is because HFA limits use of negation. In particular
it prohibits negating a predicate variable, and thus every
occurrence of a predicate variable is positive.

The second result also has a remarkable consequence:

(order-n program verification) <m HFAn (n > 1).

Note that order-n programs can be translated into order-
1 programs by coding programs by natural numbers; this
translation together with HFA1 <m HFAn gives the claim.

This is remarkable because the situation is quite different
from the finite case. Here the finite case means the variant
in which both the programming language and logic deal
with only finite data (such as booleans), instead of natu-
ral numbers. In the finite case, Kobayashi et al. [11] gave
polynomial-time reductions between the order-n program
verification and the model-checking problem for order-n
fixed-point logic. However the translation from the logical
model-checking problem to the verification problem is some-
what unnatural; Walukiewicz asked whether there is a more
natural translation [23, Section VIII]. This paper gives an evi-
dence that this unnaturality is inevitable: there is no “natural”
translation that is applicable to the infinite case as well.

1.3 Extensions of Constrained Horn Clauses
Beyene et al. [1] proposed an approach applicable to branching-
time property verification, based on an extension of Horn

2

On Computability of Logical Approaches to Program Verification LICS ’20, July 8–11, 2020, Saarbrücken, Germany

clauses [2]. Let us consider four kinds of “clauses”:

(Base) φ ∧ H1(®x1) ∧ · · · ∧ Hn(®xn) → G(®y)

(∨) φ ∧ H1(®x1) ∧ · · · ∧ Hn(®xn) → G1(®y1) ∨G2(®y2)

(∃) φ ∧ H1(®x1) ∧ · · · ∧ Hn(®xn) → ∃z.G(z, ®y)
(wf) wf (H)

Here H1, . . . ,Hn ,G,G1,G2 are predicate variables, H is a
predicate variable of arity 2, and a φ comes from a constraint
language; in this paper, it is quantifier-free linear arithmetic.
(Base) is the standard constrained Horn clause, and (∨) and
(∃) are extensions allowing ∨ and ∃ at the head (i.e. the right-
hand-side of→); wf (H) requires that the binary predicate H
is well-founded, i.e. there is no infinite sequence a0a1a2 . . .
such that all adjacent pairs of elements are related by H . Let
us write CHC[∃,wf] for the satisfiability problem for finite
sets of (∃)- and (wf)-clauses in addition to (Base)-clauses.
Beyene et al. [1] gave a reduction of the verification problem
to CHC[∃,wf].

We show that CHC[∃,wf] is Σ1
2-complete, which implies

Verif <m CHC[∃,wf]. Then we sought sub-problems that
is strictly easier than CHC[∃,wf] but expressive enough to
deal with the verification problem. Unfortunately we cannot
find such a sub-problem: all sub-problems that we checked
are equiv-expressive to CHC[∃,wf] or too weak to handle
Verif . Therefore CHC[∃,wf] seems an minimal extension
for the purpose, although it is far harder than Verif .

1.4 Contributions
The contributions of this paper can be summarised as follows.

• We point out importance of first-order fixed-point
arithmetic in branching-time verification. To the best
of our knowledge, it is the unique logical problem that
is as hard as branching-time property verification.

• We prove basic results about the hardness of higher-
order fixed-point arithmetic. Despite its higher-order
nature, its validity problem is relatively easy among
logical problems used in branching-time verification.

• We show that CHC[∃,wf] is harder than Verif , but it
is a minimum extension to deal with Verif . We also
make clear the hardness of its sub-problems.

At the end, we note that this theoretical analysis of logical
problems does not immediately decide which approach is
better, particularly from a practical perspective. Nevertheless,
we think that the results motivate an extensive study of first-
order fixed-point arithmetic in program verification.

1.5 Related Work
Bradfield [4] showed the strictness of the alternation hierar-
chy of the (propositional) modal µ-calculus. The idea is to
transfer the alternation hierarchy of µ-arithmetic, which had
been proved to be strict by Lubarsky [17]. To this end, he
identified a class, sayK , of Kripke structures such that modal
µ-calculus model-checking of K is equivalent to the validity

problem µ-arith in a certain sense [4, Theorems 4 and 5].
Since the correspondence preserves the alternation depth of
formulas, the equivalence result together with the strictness
of the alternation hierarchy of µ-arithmetic implies the strict-
ness of the alternation hierarchy of the modal µ-calculus.
The equivalence result of Bradfield [4] is relevant to our

work since the class K consists of effectively describable
Kripke structures, which can be identified with transition
graphs of programs. Hencemodal µ-calculusmodel-checking
of an effectively describable Kripke structure can be seen as
modal µ-calculus model-checking of a program, i.e. an in-
stance of branching-time property verification of programs.
His proofs are constructive, and it is easy to see that they
induce (polynomial-time) reductions in both directions. In
this way, Bradfield [4] in effect proved that Verif ≡m µ-arith.
Bradfield [5] further studied the µ-arithmetic and gave

a simple characterisation of the µ-arithmetic hierarchy in
terms of the game quantifier.

Kobayashi et al. [12] gave a program verification method
based on µ-arithmetic and proposed a way to solve the va-
lidity problem µ-arith.

Walukiewicz [23] studied a variant of λY -calculus having
both least and greatest fixed points. A significant difference
from higher-order fixed-point logics in [11, 15, 24] based on
higher-order modal fixed-point logic [22] is that, in [23], a
way of mixing least and greatest fixed points is controlled by
a type system, an intersection-free variant of Kobayashi and
Ong’s system [13]. This type-based restriction simplifies a
complicated winning criterion for higher-order fixed-point
logic [6, 7] to the parity condition. The same technique is
applicable to characterise a fragment HFA′ of HFA that con-
tains the image of the reductions of verification problems
in [15, 24] and whose validity problem is as hard as the
verification problem (i.e. Verif ≡m HFA′ <m HFA).

Unno et al. [20] and Nanjo et al. [18] discussed other logi-
cal approaches to temporal verification of programs. Their
approaches reduce the verification problem to the validity
problems of certain logics via type systems. The logics are
quite expressive and the validity problems are far harder than
Verif , despite that their methods focused on subproblems of
Verif . Unno et al. [20] used second-order arithmetic; the logic
in Nanjo et al. [18] is a kind of fixed-point logic, but it has
quantifiers over infinite sequences by which second-order
quantifiers can be coded.

2 Preliminaries
This section introduces basic notions and notations used in
the sequel.

Given a setX , we writeX ∗ for the set of all finite sequences
over X . A sequence is written as ⟨x1, . . . ,xn⟩. The set of
natural numbers including 0 is written asN. WewriteN>0 for
the set of positive integers. We write P(X) for the powerset
of the set X .

3

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Takeshi Tsukada

2.1 Computable Functions and Reductions
We assume the notion of computable functions on natural
numbers; see, e.g., [16, 19].

A decision problem is a subset of natural numbers. We shall
sometimes consider decision problems on a countable set X
other thanN via (implicit) coding.A ismany-one reducible to
B, writtenA ≤m B, if there exists a total computable function
f : N → N such that n ∈ A ⇔ f (n) ∈ B. If A ≤m B and
B ≤m A, then A and B are many-one equivalent (written
A ≡m B). We write A <m B if A ≤m B but not B ≤m A.

Remark 1. Many results of this paper are about many-one
reducibility or irreducibility. One can strengthen some re-
sults by inspecting the proofs. Some reducibility results in
fact give polynomial-time reductions, and some irreducibility
results says that a problem A is even not arithmetical in an-
other problem B (that means, there is no function f : N→ N
such that n ∈ A ⇔ f (n) ∈ B and the graph of f can be
defined by an arithmetic formula). □

We assume a computable pairing function ⟨−,−⟩ : N ×

N → N with computable projections π1,π2 : N → N such
that πi (⟨n1,n2⟩) = ni , fixed in the sequel. The pairing func-
tion is assume to be bijective. The function can be extended
to k-tuples by ⟨n1⟩ := n1 for k = 1 and ⟨n1, . . . ,nk ⟩ :=
⟨n1, ⟨n2, . . . ,nk ⟩⟩ for k > 2. The corresponding projections
are written as πki , 1 ≤ i ≤ k . The function [−] : N+ → N
from non-empty lists of natural numbers to natural numbers
is defined by [n1, . . . ,nk] := ⟨⟨n1, . . . ,nk ⟩,k⟩.

2.2 Second-Order Arithmetic
We need some notions of second-order arithmetic because
decision problems studied in this paper are far more difficult
than first-order arithmetic.

Assume a countably infinite set of term variables, ranging
over natural numbers. The set of terms is defined by the
following grammar:

t ,u ::= x | z | S(t) | t + u | t × u .

We define n by 0 := z and n + 1 := Sn.
Assume a countably infinite set of predicate variables, rang-

ing over sets of natural numbers. The set of formulas of
second-order arithmetic is given by

φ,ψ ::= t = u | t , u | X t | φ ∧ψ | φ ∨ψ

| ∀x ≤ t .φ | ∃x ≤ t .φ | ∀x .φ | ∃x .φ | ∀X .φ | ∃X .φ.
There are three kinds of quantifiers: bounded quantifiers
(∀x ≤ t and ∃x ≤ t) on natural numbers, first-order quan-
tifiers (∀x and ∃x) and second-order quantifiers (∀X and
∃X).2 The meaning should be obvious. We sometimes write

2 The domain of second-order quantifiers are sets in this paper, but replacing
them with quantifiers over functions on natural numbers do not change
anything in this paper. Note that function quantifiers are “definable” by
using set quantifiers and first-order quantifiers.

∀x ∈ N.φ or ∀xN.φ for ∀x .φ and so on, emphasising the
domain of the quantification.

The semantics of formulas is standard. A valuation ϱ maps
term variables to natural numbers and predicate variables to
sets of natural numbers. We write ϱ[n/x] for the valuation
defined by ϱ[n/x](x) = n and ϱ[n/x](y) = ϱ(y) (if x , y). We
also write [n/x] for ϱ0[n/x] where ϱ0 maps every term vari-
able to 0 and every predicate variable to the empty set. A pair
(φ, ϱ) of a formula and a valuation determines a truth value
b ∈ {⊥,⊤}, which we write as [[φ]]ϱ ; we omit its definition.
We write ϱ |= φ if [[φ]]ϱ = ⊤.

A formula is bounded or ∆0
0 if it does not have first-order

nor second-order quantifiers. A formula is Σ0
n if it is of the

form ∃x1.∀x2.∃x3.Qxn .φ0 where φ0 is bounded (Q = ∀
if n is even and otherwise Q = ∃). Similarly a formula
of the form ∀x1.∃x2.∀x3.Qxn .φ0 with bounded φ0 is
called a Π0

n-formula. A formula is Σ1
n if it is of the form

∃X1.∀X2. . . .QXn .φ0 where φ0 is a formula with no second-
order quantifier; Π1

n-formulas are defined similarly.
Let φ = φ(x) be a formula with a distinguished variable x .

It defines a subset of natural numbers {n ∈ N | [n/x] |= φ }.
A subset A ⊆ N of natural numbers is analytical if it is
defined by a formula of second-order arithmetic. For i = 0, 1
and n ∈ N, a set is Σin (resp. Πi

n) if it is defined by a Σin-
formula (resp. Πi

n-formula), and it is ∆i
n if it is both Σin and

Πi
n . A set is ∆0

1 if and only if it is computable (or decidable,
recursive); a set is Σ0

1 if and only if it is computably enumerable
(or recursively enumerable).

The classes of Σ1
n-, Π1

n- and ∆1
n-sets form a strict hierarchy,

known as the analytical hierarchy:

Σ1
n ⊋ ∆1

n ⊊ Π1
n Σ1

n ⊊ ∆1
n+1 ⊋ Π1

n

where Σ1
n denotes the class of Σ1

n-sets and so on. Any ana-
lytical set belongs to Σ1

n for some n.
A set A ⊆ N is Σin-hard if B ≤m A for every Σin-set B.

A Σin-hard set A is Σin-complete if it is Σin . Πi
n-hardness and

Πi
n-completeness are defined similarly.
There is an important Π1

1-complete set, closely related to
verification. Let V be a set and R ⊆ V × V be a relation
on V . An infinite path from v0 ∈ V is an infinite sequence
⟨v0,v1, . . . ⟩ ∈ Vω such that (vi ,vi+1) ∈ R for every i . The
relation R is well-founded from v0 if R has no infinite path
from v0. LetWF be the set of (code of) Σ0

1-formulas φ(x ,y)
such that { (n,m) | [n/x ,m/y] |= φ } is well-founded from 0.
By regarding φ as a description of a nondeterministic small-
step reduction relation, well-foundedness corresponds to
must-termination from the initial term represented by 0.

Proposition 2. WF is Π1
1-complete.

Proof. This is a minor modification of a famous theorem (see,
e.g., [19, Theorem XX, §16.4, p.396]). □

4

On Computability of Logical Approaches to Program Verification LICS ’20, July 8–11, 2020, Saarbrücken, Germany

2.3 Games
Some proofs in this paper uses notions from game theory.
This subsection briefly introduces notions used in the proofs.

Formally a game is a tuple G = (V0,V1,v0,E,W) where:
• V0 and V1 are disjoint sets of 0-nodes and 1-nodes, re-
spectively. Let V := V0 ∪V1.

• v0 ∈ V is an initial node.
• E ⊆ V ×V is a set of (directed) edges.
• W ⊆ Vω is a subset of infinite sequences overV , called
the winning condition.

It is a two-player game, of which players are called 0 and 1.
There is a token on a node, which is initially on v0. In each
turn, the token is moved a node connected by an edge from
the current node. If the token is on an i-node, then the next
node is chosen by Player i . If the play reaches a dead-end,
i.e. a node with no outgoing edge, then the owner of the
node loses. If the play continues indefinitely, the winner is
determined byW : Player 0 wins when the play is inW , and
Player 1 wins if it is not.
A strategy is a function V ∗ → V . A pair (f0, f1) of strate-

gies determines an infinite sequence ⟨f0 | f1⟩ = v0v1 . . .
of nodes, which starts from the initial node v0, by vk+1 :=
fi (v0 . . .vk) if vk ∈ Vi . A strategy f0 is a winning strategy of
Player 0 if ∀f1. ⟨f0 | f1⟩ ∈W ∪ Ē, where

Ē :=
{
(vi)i ∈ω

���� ∃k . (∀i < k .(vi ,vi+1) ∈ E)
∧(vk ,vk+1) < E ∧vk ∈ V1

) }
is the set of infinite plays in which Player 1 first violates
the rule E. A winning strategy of Player 1 can be defined
similarly. Player i wins the game G if a winning strategy of
Player i exists. A game G is determined if Player 0 or Player
1 wins.

The dual game is obtained by switching the roles of Player
0 and Player 1. For a game G = (V0,V1,v0,E,W), its dual G⊥

is (V1,V0,v0,E, (V
ω \W)). Obviously Player i wins G if and

only if Player (1 − i) wins G⊥.
A parity game is a game of which the winning condition

is the parity condition. It is equipped with a function Ω :
V → {0, . . . ,k}, assigning the priority to each node. Given
v ∈ Vω , let InfΩ(v) ⊆ {0, . . . ,k} be the set of numbers ℓ
such that {i | Ω(vi) = ℓ} is infinite. Then v ∈ Vω satisfies
the parity condition if max{InfΩ(v)} is even. Every parity
game is determined.

3 Branching-Time Property Verification
This section gives a formal definition of the branching-time
property verification of programs and briefly reviews basic
properties. The verification problem is intuitively defined
as the modal µ-calculus model-checking problem of Kripke
structures induced by programs (although the actual defini-
tion does not refer to any programming languages).

Assume a finite set of propositional variables PV . A Kripke
structure S is a tuple (S, s0,R,L) where S is a set of states,

s0 ∈ S is an initial state, R ⊆ S × S is a transition relation, and
L : PV → P(S) is a labelling function.

Usually a verification problem is defined as amodel-checking
problem of the Kripke structure induced by a program. A pro-
gram induces a Kripke structure, of which a state represents
a state of a computer and the transition relation is given by
stepwise execution of the program. Our definition relies on
an abstract characterisation of induced Kripke structure.

Definition 3 (Effective Kripke structure). An effective Kripke
structure is a tuple ®φ = (φR (x ,y), (φa(x))a∈PV) of Σ0

1-formulas
(with no free variables other than indicated ones). An effec-
tive Kripke structure represents a Kripke structure S ®φ =

(N, 0,R,L) where (n,m) ∈ R
def
⇔ [n/x ,m/y] |= φR and n ∈

L(a)
def
⇔ [n/x] |= φa . □

Weassume that the reader is familiar withmodal µ-calculus
(see, e.g., [8] for an exposition).

The branching-time property verification problem (or sim-
ply verification problem), written Verif , is a variant of the
modal µ-calculus model-checking problem taking an effec-
tive Kripke structure instead of a Kripke structure.

Remark 4. One can replace Σ0
1-formulas in the definition of

effective Kripke structures to primitive recursive formulas
and to arithmetic formulas; the former is an restriction, and
the latter is an extension. These changes do not affect the
verification problem Verif in the sense that all variants are
many-one reducible to each other. It is also equivalent to
solvingω-regular games over infinite but computable graphs.
This robustness justifies the definition. □

Let us informally discuss the relationship between Verif
and branching-time property verification of programs.

Every Kripke structure induced by a program can be seen
as an effective Kripke structure. The transition relation must
be Σ0

1 since stepwise execution must be done by an actual
computer, and atomic propositions are usually decidable
properties on states of a computer. So every pair of a program
and a µ-calculus formula can be seen as an instance of Verif .
Conversely, a given pair of an effective Kripke structure

®φ and a modal µ-calculus formula ψ can be translated to a
pair of a program P ®φ and another formulaψ ′. The program
P ®φ calculates φR and φa ; then the transition relation R of
the Kripke structure induced by P ®φ can be divided into two
parts R = R0 ∪ R1, namely, R0 that corresponds to φR and
R1 that describes intermediate steps computing φR . The new
formulaψ ′ behaves as the original formulaψ except thatψ ′

ignores the intermediate steps.
As mentioned in Sections 1.1 and 1.5, Bradfield proved

that Verif is many-one equivalent to the validity problem of
µ-arithmetic (that shall be formally defined in Section 4).

Theorem 5 (Bradfield [4]). Verif ≡m µ-arith.

Actually the reductions runs in polynomial-time.
5

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Takeshi Tsukada

We shall give two results on computability of Verif . The
first result is straightforward but proved for self-containdness.

Proposition 6. Verif is Π1
1-hard and Σ1

1-hard. So Verif <
Π1

1 ∪ Σ1
1.

Proof. For every Kripke structure S = (S, s0,R,L), R is well-
founded from s0 if and only if S |= µX .□X . This shows
that Verif is Π1

1-hard by Proposition 2. Since the negation
of a given µ-calculus formula is computable, Verif is Σ1

1-
hard as well. By the strictness of the analytical hierarchy,
no Σ1

1-hard problem is Π1
1; hence Verif is not Π1

1. Similarly
Verif < Σ1

1. □

The second result is a corollary of Theorem 5 and Theo-
rem 19 proved in the next section.

Proposition 7. Verif ∈ ∆1
2.

Remark 8. Lubarsky [17] proved that the sets of natural
numbers definable by µ-arithmetic formulas are ∆1

2-sets. We
note that µ-arith ∈ ∆1

2 is stronger than Lubarsky’s result. □

4 Higher-Order Fixed-Point Arithmetic
Higher-order modal fixed-point logic [22] is an extension of
the modal µ-calculus by higher-order features. Its arithmetic
version, which we call higher-order fixed-point arithmetic
(HFA for short), has been studied recently in Kobayashi et
al. [15] and Watanabe et al. [24] and applied to temporal
verification of higher-order programs.

This section proves two results:

HFA ∈ ∆1
2 and ∀n. HFAn <m HFAn+1.

HereHFA (resp.HFAn) is the validity problem ofHFA (resp. the
order-n fragment of HFA).
This section is organised as follows. The logic is defined

in Section 4.1. We prove the former result in Section 4.2 and
the latter result in Section 4.3.

4.1 Definition of Higher-Order Fixed-Point
Arithmetic

Higher-order fixed-point arithmetic is a simply-typed calcu-
lus. The syntax of types is given by:

complete types τ ,σ ::= Prop | ϑ → τ

argument types ϑ ::= τ | Nat.

Note that Nat cannot be a result of a function, and this is the
only difference between Nat and other types. The order of a
type is inductively defined as follows:

order(Prop) := 1 order(Nat) := 0
order(ϑ → τ) := max(order(ϑ) + 1, order(τ)).

The syntax of terms and formulas is given by:

t ,u ::= x | z | S(t) | t + u | t × u

φ,ψ ::= t = u | t , u | φ ∧ψ | φ ∨ψ | ∀xNat.φ | ∃xNat.φ
| x | λxϑ .φ | φψ | φ t

| µxτ .φ | νxτ .φ.

The connectives from first-order arithmetic are listed in
the first line. The second line consists of constructors of
the simply-typed lambda calculus; since this syntax distin-
guishes terms from formulas, we need two kinds of applica-
tions. The least and greatest fixed-point operators are listed
in the third line. We shall often omit the type annotations.

Remark 9. One can remove summation t + u, multiplication
t ×u and inequality t , u without sacrificing the expressive-
ness; see Example 10. □

Free and bound variables are defined in the standard way.
The binders are ∀x , ∃x , λx , µx and νx . We shall identify
α-equivalent formulas.

Only well-typed terms and formulas are of interest. A type
environment Γ is a finite list of type bindings of the form x : ϑ
in which each variable occur at most once. A type judgement
is of the form Γ ⊢ φ : τ or Γ ⊢ t : Nat. We show examples of
typing rules:

Γ ⊢ φ : Prop Γ ⊢ ψ : Prop
Γ ⊢ φ ∧ψ : Prop

Γ,x : Nat ⊢ φ : Prop
Γ ⊢ ∀xNat.φ : Prop

Γ,x : τ ⊢ φ : τ
Γ ⊢ µxτ .φ : τ

.

A typed formula is a formula φ with a derivation Γ ⊢ φ : τ .
All formulas appearing in the sequel are typed, and hence
we simply call them formulas. A typed formula Γ ⊢ φ : τ is
closed if the environment Γ is empty. A sentence is a closed
formula of type Prop.
We define the semantics of types and formulas.
Each type denotes a poset.
• [[Prop]] := Ω, the poset of truth values, i.e. Ω = {⊥,⊤}
ordered by ⊥ <Prop ⊤.

• [[Nat]] := Nwith the discrete order, i.e. n ≤Nat m if and
only if n =m.

• [[ϑ → τ]] is the set of allmonotone functions from [[ϑ]]
to [[τ]] with the point-wise ordering, i.e. f ≤ϑ→τ д if
and only if ∀x ∈ [[ϑ]]. f (x) ≤τ д(x).

Note that the denotation [[τ]] of a complete type τ is a com-
plete lattice.

For a type environment Γ = (x1 : ϑ1, . . . ,xn : ϑn), its inter-
pretation is the set of mappings ϱ with domain {x1, . . . ,xn}
such that ϱ(xi) ∈ [[ϑi]] for every i . They are ordered by the
point-wise ordering. An element of [[Γ]] is called a valuation.
A formula Γ ⊢ φ : τ is interpreted as a function from [[Γ]]

to [[τ]], of which the value at ϱ ∈ [[Γ]] is written as [[φ]]ϱ . The
6

On Computability of Logical Approaches to Program Verification LICS ’20, July 8–11, 2020, Saarbrücken, Germany

semantics is defined by induction on φ. The most important
rules are

[[µxτ .φ]]ϱ :=
∧

{v ∈ [[τ]] | [[φ]]ϱ[x 7→v] ≤τ v }

[[νxτ .φ]]ϱ :=
∨

{v ∈ [[τ]] | v ≤ [[φ]]ϱ[x 7→v] }.

Here
∨

and
∧

are the join and meet of sets, which exist
since [[τ]] is complete. Knaster-Tarski fixed-point theorem
ensures that [[µxτ .φ]]ϱ and [[νxτ .φ]]ϱ are indeed the least and
greatest fixed points of the mapping v 7→ [[φ]]ϱ[x 7→v] since
the mapping is monotone.
Another definition of the least fixed-point would also be

useful. Let f : A → A be a monotone function on a complete
lattice A. For each ordinal γ , we define f γ (x) by f 0(x) := x ,
f γ+1(x) = f (f γ (x)) and, for a limit ordinal γ ,

f γ (x) :=
∨
γ ′<γ

f γ
′

(x).

Then (f γ (⊥))γ is an increasing sequence that is constant for
sufficiently large ordinals. This constant is the least fixed-
point of f .

Example 10. Let plus be a formula

µplus.λa.λb .λc .

(b = z ∧ a = c) ∨ (∃b ′c ′.b = S(b ′) ∧ c = S(c ′) ∧ plus a b ′ c ′).

This formula can be seen as the definition of summation
since [[plus s t u]]ϱ = [[s + t = u]]ϱ . Let lt be a formula

µlt.λa.λb .(S(a) = b) ∨ lt (S(a))b .

This formula is equivalent to < in an appropriate sense. Then
s , t can be defined as lt s t ∨ lt t s .3 □

Remark 11. HFAn-formulas are not closed under negation;
free higher-order variables are problematic. However, re-
stricted to “first-order predicates”, i.e. formulas of the form
x1 : Nat, . . . ,xn : Nat ⊢ φ : Prop, the negation is a definable
operation. It is obtained by simply replacing each logical
connective to its De Morgan daul:

∨ ↭ ∧, =↭ ,, ∃ ↭ ∀, and ν ↭ µ .

We shall write ¬φ for the negation of φ. □

Given a typed formula Γ ⊢ φ : Prop and a valuation ϱ ∈

[[Γ]], we write ϱ |= φ if and only if [[φ]]ϱ = ⊤.
Let HFA be the set of (code of) true sentences φ, i.e.,

HFA := { ⌞φ⌟ | ∅ |= φ }.

We write HFAn , n ≥ 1, for the restriction of HFA to order-n
sentences (i.e. the set of (code of) true order-n sentences,
where the order of a formula is the maximum order of types
that appear in the typing derivation). We often say φ ∈ HFA
to mean ⌞φ⌟ ∈ HFA.

3The author is grateful to Mayuko Kori who pointed out this encoding of ,.

4.2 Operational Game Semantics
This subsection proves that HFA is in ∆1

2. The basic idea is to
express the evaluation of a given formula in terms a game
of which the underlying graph represents the small-step
operational semantics. A similar construction is well-known
for modal µ-calculus as well as (first-order) µ-arithmetic. A
significant difference from the first-order cases can be found
in the winning condition: the game of this subsection is
no longer a parity game, but a game with an uncommon
winning criterion as in [6, 7, 15, 24].4

The “operational semantics” of formulas is defined as fol-
lows. We annotate a label to each fixed-point operators in a
formula, in order to track the caller-callee relation: the label
ℓ of a fixed-point operator µℓx .φ indicates the name of the
parent. The set of labels can be arbitrary infinite sets, and
we use the set of natural numbers. An configuration is of the
form ⟨φ⟩ℓT , where φ is a sentence, T ⊆ N × {µ,ν } × N is a
finite edge-labelled tree, and ℓ is the maximum of the labels
that have been used.

⟨(µℓx .φ) ®ψ ⟩ℓ
′

T −→ ⟨(φ{(µℓ
′+1x .φ)/x}) ®ψ ⟩ℓ

′+1
T∪(ℓ,µ, ℓ′+1)

⟨(ν ℓx .φ) ®ψ ⟩ℓ
′

T −→ ⟨(φ{(ν ℓ
′+1x .φ)/x}) ®ψ ⟩ℓ

′+1
T∪(ℓ,ν, ℓ′+1)

⟨(λx .φ)φ ′ ®ψ ⟩ℓT −→ ⟨(φ{φ ′/x}) ®ψ ⟩ℓT

⟨φ1 ∧ φ2⟩
ℓ
T −→ ⟨φi ⟩

ℓ
T , i = 1, 2

⟨φ1 ∨ φ2⟩
ℓ
T −→ ⟨φi ⟩

ℓ
T , i = 1, 2

⟨∀x .φ⟩ℓT −→ ⟨φ[n/x]⟩ℓT , n ∈ N,

⟨∃x .φ⟩ℓT −→ ⟨φ[n/x]⟩ℓT , n ∈ N,

where unlabelled fixed-point operators µX .φ and νX .φ ′ are
regarded as those labelled by 0. Ignoring ℓ and T , most rules
are the standard call-by-name operational semantics. The
last two rules can be understood as nondeterministic choice
of a natural number.

We explain the key rule, namely the first and second rules.
Consider the case that the head is µℓx .φ, where ℓ is the
name of the parent of this fixed-point operator. One first
generates a fresh label ℓ′+1, which is the name of this µ, and
then records the parent-children correspondence (ℓ, µ, ℓ′ +
1). After that, the fixed-point operator is expanded; newly
created µ’s are labelled by ℓ′ + 1, the name of the current µ.

Definition 12. Assume an infinite reduction sequence

⟨φ⟩0
∅
= ⟨φ0⟩

ℓ0
T0

−→ ⟨ψ1⟩
ℓ1
T1

−→ · · · −→ ⟨ψn⟩
ℓn
Tn

−→ · · · .

The edge-labelled treeT :=
⋃

i ∈ω Ti is called the call tree. For
every path of T , all edges have the same label; a path is a
µ-path (resp. ν-path) if the label on edges is µ (resp. ν).

4 The introduction of an uncommon winning criterion is inevitable. Since
Verif ≡m HFA1 <m HFAn for n > 1, parity games on computable graphs
(which are instances ofVerif) are tooweak to precisely capture the semantics
of order-n formulas (n > 1).

7

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Takeshi Tsukada

Example 13. Let φ andψ be HFA formulas given by

φ := νF .λд.λx .д x (F д (S(x)))
ψ := µG .λy.λp.(y = z ∧ p) ∨ (∃y ′.y = S(y ′) ∧G y ′p)

where F : (Nat → Prop → Prop) → Nat → Prop and
G : Nat → Prop → Prop. It is not difficult to see that φψ n
is valid for every closed term n : Nat.

Consider the following strategies of Player 0 and Player 1
for the game for φψ z:

• Player 0 chooses the left-branch of ∨ if the value as-
signed to y is z; otherwise Player 0 chooses the right
branch and set y ′ to y − 1.

• Player 1 always chooses the right-branch of ∧.
The resulting infinite play is

⟨φψ 0⟩0
∅
−→∗ ⟨ψ 0 (φ(1)ψ 1)⟩1

T1

−→∗ ⟨(0 = 0 ∧ (φ(1)ψ 1)) ∨ (· · ·ψ (2) · · ·)⟩2
T2

−→∗ ⟨φ(1)ψ 1⟩2
T2

−→∗ ⟨ψ 1 (φ(3)ψ 2)⟩3
T3

−→∗ ⟨(· · ·) ∨ (∃y ′.1 = S(y ′) ∧ψ (4) y ′ (φ(3)ψ 2))⟩4
T4

−→∗ ⟨ψ (4) 0 (φ(3)ψ 2)⟩4
T4

−→∗ ⟨(0 = 0 ∧ (φ(3)ψ 2)) ∨ (· · ·ψ (5) · · ·)⟩5
T5

−→∗ ⟨φ(3)ψ 2⟩5
T5

−→∗ ⟨ψ 2 (φ(6)ψ 3)⟩6
T6

−→ . . .

where

φ(i) := ν (i)F and ψ (i) := µ(i)G

are labelled versions of φ andψ . Occurrences of φ generated
by the first expansion of νF are labelled by (1), and those
by the second expansion are (3). The unique occurrence
of ψ generated by the first expansion of µG is labelled by
(2) and immediately discarded; the labelled formulaψ (4) is
obtained by the second expansion of µG, one of which is
further expanded, generatingψ (5). The tree T6 is

1 // 3 // 6

0

77

//

''
2

4 // 5

.

The associated call tree T =
⋃

i Ti has a unique infinite path
starting from 1. □

The following is the key lemma. This is essentially the
same as [6, Lemma 6] and [14, Lemma 26, Appendix E.2],
and we omit the proof.

Lemma 14. For every HFA sentence ⊢ φ : Prop and every
infinite reduction sequence starting from ⟨φ⟩∅, the associated
call tree has a unique infinite path.

Definition 15. The operational game G(φ) of a given HFA
sentence ⊢ φ : Prop is defined by the following data:

• the game graph is defined by the reduction relation
−→; the initial node is ⟨φ⟩0

∅
;

• the owner of ⟨φ1 ∨ φ2⟩
ℓ
T and ⟨∃x .φ⟩ℓT is Player 0; the

owner of ⟨φ1 ∧ φ2⟩
ℓ
T and ⟨∀x .φ⟩ℓT is Player 1; the owner

of true (resp. false) atomic formulas is Player 1 (resp. 0);
the owner of other nodes does not matter (because
other nodes have unique successor) but for definiteness
we set the owner Player 0;

• an infinite play is winning if the unique infinite path
of the associated call tree is a ν-path.

We prove the correctness of the game semantics.

Lemma 16. Let ⊢ φ : Prop be an HFA sentence. If |= φ, then
Player 0 wins the operational game G(φ).

Proof. Let φ0 be an HFA sentence. We describe a winning
strategy of G(φ0). During the play, Player 0 annotates each
labelled µ-binders µℓx .ψ of type τ with an ordinal γ ; we
write µℓγx .ψ for the annotation. The semantics of µγx .ψ is
[[λx .ψ]]γ (⊥), the γ -th stage of the iteration calculating the
least fixed-point.
Player 0 ensures during the play that [[φ]] = ⊤ where

⟨φ⟩ℓT is the current node. The initial formula φ0 satisfies the
condition by the assumption. If the current formula isφ1∨φ2,
then [[φ1 ∨ φ2]] = ⊤; Proponent chooses the branch i such
that [[φi]] = ⊤. Assume that the current formula is (µℓγx .φ) ®ψ .
Then the formula in the next step is φ{(µℓ′γ ′x .φ)/x} ®ψ for
some γ ′. We define γ ′ as the minimum ordinal such that

[[λx .φ0]]
γ ′+1(⊥)(

−−→
[[ψ]]) = ⊤;

such an ordinal exists since [[(µℓγX .φ) ®ψ]] = ⊤.

Claim. γ ′ < γ .

Proof. If γ is a successor ordinal, i.e. γ = γ0 + 1, obviously
γ ′ ≤ γ0 < γ . Assume that γ is a limit ordinal. Then∨

γ0<γ

[[λx .φ]]γ0 (⊥)(
−−→
[[ψ]]) = [[(µℓγ .φ) ®ψ]] = ⊤.

Hence [[λx .φ]]γ0 (⊥)(
−−→
[[ψ]]) = ⊤ for some γ0 < γ , which im-

plies [[λx .φ]]γ0+1(⊥)(
−−→
[[ψ]]) = ⊤. □

Unlabelled µ-formulas (µx .φ) ®ψ can be treated similarly.
Assume an infinite play following the above strategy. By

the definition of the strategy, each µ-label in the call tree T
is associated with an ordinal. By construction, (ℓ, µ, ℓ′) ∈ T
(ℓ , 0) implies γ > γ ′, where γ and γ ′ are ordinals associated
to ℓ and ℓ′, respectively. Hence the call tree has no infinite
µ-path. This means that the strategy is winning. □

Theorem 17. Player 0 wins G(φ) if and only if |= φ.
8

On Computability of Logical Approaches to Program Verification LICS ’20, July 8–11, 2020, Saarbrücken, Germany

Proof. If |= φ, then Player 0 wins the game by Lemma 16. As-
sume otherwise. Then |= ¬φ and thus Player 0winsG(¬φ) by
Lemma 16. Since G(¬φ) is essentially the dual game G(φ)⊥,
Player 1 wins G(φ). □

Corollary 18. The game G(φ) is determined.

We are ready to prove the main result.

Theorem 19. HFA is ∆1
2.

Proof. Each node ⟨ψ ⟩ℓT of the operational game has only finite
information and thus can be coded by natural numbers. The
coding system can be chosen so that the game graph is com-
putable. Then a strategy is represented by a function ω → ω
on natural numbers. Given a play, the unique infinite path
in the call tree is an infinite sequence of natural numbers,
which can be naturally represented by a function ω → ω.
The predicate IsPath(f ,д, s, ⌞φ⌟) that checks if s : ω → ω
is the infinite path of the call tree of the play generated by
the strategies f and д and started from ⟨φ⟩0

∅
is arithmetic:

∀n.∃m.“(s(n), _, s(n + 1)) ∈ Tm(f ,д, ⌞φ⌟)”, whereTm(f ,д, ⌞φ⌟)
is theT -component of them-th node in the play determined
by f , д and ⟨φ⟩0

∅
, which is obviously computable. Hence

Player 0 wins the game G(φ) if and only if

∃f .∀д.∀s . “д first violates the rule when starting from ⟨φ⟩0
∅
”

∨IsPath(f , g, s, ⌞φ⌟) ⇒ ∃m.“(s(0),ν , s(1)) ∈ Tm(f ,д, ⌞φ⌟)”

This shows that HFA is Σ1
2.

Since the game is determined, we can exchange the quanti-
fiers ∃f and ∀д without changing the meaning. Furthermore,
since the infinite path of a call tree is unique, one can exis-
tentially quantify the path s . Hence

∀д.∃f .∃s . “д first violates the rule when starting from ⟨φ⟩0
∅
”

∨

(
IsPath(f , g, s, ⌞φ⌟) ∧ ∃m.“(s(0),ν , s(1)) ∈ Tm(f ,д, ⌞φ⌟)”

)
is another characterisation of thewinning region ofG. Hence
HFA is Π1

2. □

4.3 Strictness of the Hierarchy
This subsection proves the strictness of the hierarchy {HFAn}n .
The key observation is that there exists an order-(n+ 1) HFA
formula that defines the set of (codes of) true order-n HFA
sentences. Then the strictness of the hierarchy follows from
Tarski’s undefinability theorem.

Let us fix a coding function ⌞−⌟, which maps each syntac-
tic objects (such as formulas, types, type environments and
type judgements) to natural numbers. We assume that ⌞−⌟ is
injective and that each syntactic construction is computable
(e.g. there exists a computable function app : N × N → N
such that app(⌞φ⌟, ⌞ψ ⌟) = ⌞φψ ⌟). We shall construct an
order-(n + 1) formula that defines the set

HFAn := { ⌞φ⌟ | |= φ, order(φ) ≤ n }.

Let us first recall the semantics of formulas. Given a for-
mula Γ ⊢ φ : τ , we have defined a (monotone) mapping
[[Γ]] ∋ ϱ 7→ [[φ]]ϱ ∈ [[τ]]; hence the semantic interpretation
induces a family of functions IΓ,τ : N→ [[Γ]] → [[τ]],

IΓ,τ (i, ϱ) :=

{
[[φ]]ϱ (if i = ⌞φ⌟ for some Γ ⊢ φ : τ)
⊤[[τ]] (otherwise),

parameterised by Γ and τ . The reference to the semantics
[[−]]− in the above definition can be removed, by unfolding
the definition of [[−]]− and invoking IΓ′,τ ′ of appropriate types
if necessarily. Hence the family (IΓ,τ)Γ,τ can be defined by
mutual induction.

This inductive definition is almost satisfactory: the induc-
tive definition could be directly describable in HFA, if the
family (IΓ,τ)Γ,τ were a finite family. The set of order-n types
is, however, countably infinite, as well as the set of order-n
type environments. This is the problem.

To overcome the problem, we introduce a “generic” type ϑ
and a “generic” type environment Θ in which every order-n
formula Γ ⊢ φ : τ can be interpreted. That means, we give
an alternative interpretation for order-n formulas

(|Γ ⊢ φ : τ |)nϵ ∈ [[ϑ]], for each ϵ ∈ [[Θ]],

which induces a function In : N→ [[Θ]] → [[θ]] such that

In(⌞Γ ⊢ φ : τ ⌟)(ϵ) = (|Γ ⊢ φ : τ |)nϵ .

Since the type of (|Γ ⊢ φ : τ |)n is independent of Γ and τ , the
new interpretation does not suffer from the above problem
of infinity. In fact, it is not difficult to see that In is definable
by an order-(n + 1) formula, once the interpretation (|−|)n is
given.

We formalise the above idea.

Remark 20. We need some complicated definitions of ele-
ments in the semantics domain. For simplicity of the presen-
tation, we use λ-calculus notations such as λy.(

∧
i ∈I xi)y,

which are justified by the fact that the category of posets and
monotone functions is a CCC, i.e. it supports all λ-calculus
constructs. Although we use the same symbols for syntactic
constructs of HFA and meta-theoretic λ-calculus notations,
the meaning should be clear from the context. □

The “generic” order-n type [n] is defined as follows:5

[1] := Nat → Prop

[n] := Nat × [n − 1] → Prop, n ≥ 2.

There is an isomorphism ⟨−,−⟩[n] : [[[n]]] × [[[n]]] → [[[n]]]
defined for n ≥ 2 by

⟨x ,y⟩[n] (k, z) :=

{
x (k ′, z) (if k = 2k ′)
y (k ′, z) (if k = 2k ′ + 1),

5 We slightly extend the logic by products/pairs in argument positions,
which can be removed by Currying (A × B → C) � (A → B → C).

9

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Takeshi Tsukada

which is induced from

(N × [[[n − 1]]] → Ω) × (N × [[[n − 1]]] → Ω)

�
(
(N × [[[n − 1]]]) + (N × [[[n − 1]]])

)
→ Ω

� (N + N) × [[[n − 1]]] → Ω

� N→ [[[n − 1]]] → Ω;

the definition of ⟨−,−⟩[1] is similar. Then a finite list of ele-
ments in [[[n]]] can also be embedded into [[[n]]]:

⟨x1;x2; . . . ;xk ⟩[n] := ⟨x1, ⟨x2, . . . ⟨xk ,Nil[n]⟩[n] . . . ⟩[n]⟩[n],

where Nil[n] = ⊥.
The “generic” type environment for order-n formulas is

Θn = (e1 : Nat, e2 : [n]). Hence [[Θn]] � [[Nat]] × [[[n]]]. One
can code a finite list of elements in [[Nat]]+ [[[n]]]. Form ∈ N,
v ∈ [[[n]]] and (ϵ1, ϵ2) ∈ N × [[[n]]], let

m
Nat:: (ϵ1, ϵ2) := (⟨m, ϵ1⟩Nat, ϵ2)

v
[n]
:: (ϵ1, ϵ2) := (ϵ1, ⟨v, ϵ2⟩[n]),

where ⟨−,−⟩Nat : N×N→ N is a computable bijection. Then
a finite list (vi)1≤i≤k ∈

∏
1≤i≤k [[ϑi]], where ϑi = Nat or [n],

defines an element of N × [[[n]]] by

⟨v1; . . . ;vk ⟩Nat×[n] := v1
ϑ1:: (v2

ϑ2:: (. . . (vk
ϑk:: NilNat×[n]) . . .)),

where NilNat×[n] := (0,⊥).
We define a logical relation (∼n

τ) ⊆ [[τ]] × [[[n]]] parame-
terised by τ and n such that order(τ) ≤ n:6

x ∼n
Prop y

def
⇔ x = y (0,⊥)

x ∼n
ϑ→τ y

def
⇔ x v ∼n

τ (λeN×[n−1].y (w
ϑ:: e)) for every v ≈n−1

ϑ w

where (
ϑ::) = (

[n−1]
::) for every ϑ , Nat7 and the relation

(≈n
ϑ) ⊆ [[ϑ]] × (N + [[[n]]]) is defined by

m ≈n
Nat w

def
⇔ m = w ∈ N

v ≈n
τ w

def
⇔ v ∼n

τ w ∈ [[[n]]].

In particular, for τ = ϑ1 → · · · → ϑk → Prop, we have
x ∼n

τ y if and only if vi ≈n−1
ϑi

wi (i = 1, . . . ,k) implies

x v1 . . . vk = y ⟨w1; . . . ;wk ⟩Nat×[n].

This relation is closed under limits.

Lemma 21. Assume a set I and xi ∼n
τ yi for every i ∈ I . Then(∧

i ∈I

xi
)
∼n
τ

(∧
i ∈I

yi
)

and
(∨
i ∈I

xi
)
∼n
τ

(∨
i ∈I

yi
)
.

6 Here we assume that n ≥ 2. The definition for n = 1 sightly differs since
ϑ must be Nat in this case.
7 Strictly speaking, ϑ:: is ambiguous if ϑ coincides with [m] for somem < n,
but the appropriate meaning should be clear from the context.

Proof. By induction on τ . We prove the former. Note that the
limit of functions is the point-wise limit, i.e. (

∧
i ∈I xi)v =∧

i ∈I (xi v). (Since the proof only relies on this fact, the latter
case can be proved similarly.)

• Case Prop: By the assumption, xi = yi 0⊥ for each
i ∈ I . Hence (

∧
i ∈I yi) 0⊥ =

∧
i ∈I (yi 0⊥) =

∧
i ∈I xi .

• Case σ → τ (σ , Nat): By the assumption, we have
(xi v) ∼

n
τ (λmz.yim ⟨w, z⟩[n−1]) for each i ∈ I andv,w

such that v ∼n−1
σ w . For eachm and z,(∧

i ∈I

(λmz.yim ⟨w, z⟩[n−1])
)
mz

=
∧
i ∈I

(
(λmz.yim ⟨w, z⟩[n−1])mz

)
=

∧
i ∈I

(yim ⟨w, z⟩[n−1])

=
(∧
i ∈I

yi
)
m ⟨w, z⟩[n−1]

=

(
λmz.

(∧
i ∈I

yi
)
m ⟨w, z⟩[n−1]

)
mz.

By extensionality,∧
i ∈I

(λmz.yim ⟨w, z⟩[n−1]) = λmz.(
∧
i ∈I

yi)m ⟨w, z⟩[n−1].

Hence, by the induction hypothesis,

(
∧
i ∈I

xi)v =
∧
i ∈I

(xi v) ∼
n
τ

∧
i ∈I

(λmz.yim ⟨w, z⟩[n−1])

= λmz.(
∧
i ∈I

yi)m ⟨w, z⟩[n−1].

Since (v,w) is an arbitrary pair such that v ∼n−1
σ w ,

we have
∧

i ∈I xi ∼
n
σ→τ (

∧
i ∈I yi).

• Case Nat → τ : Similar to the above case.
□

The relation ≈n
ϑ can naturally be extended to sequences,

i.e. (∼n
Γ) ⊆ [[Γ]] × ([[Nat]] × [[[n]]]) parameterised by order-n

type environments Γ: for Γ = (x1 : ϑ1, . . . ,xk : ϑk),

ϱ ≈n
Γ ϵ

def
⇔ ϵ = ⟨wk ; . . . ;w1⟩Nat×[n] and ϱ(xi) ≈n

ϑ wi for all i .

We can now formally state the requirement for the alter-
native interpretation (|Γ ⊢ φ : τ |)n : N × [[[n]]] → [[[n]]]:

[[Γ ⊢ φ : τ]]ϱ ∼n
τ (|Γ ⊢ φ : τ |)nϵ for every ϱ ≈n

Γ ϵ .

The definition of (|−|)n is rather straightforward. For nota-
tional convenience, we abbreviate (|Γ ⊢ φ : τ |)n as (|φ |)n . The
definition uses the order-shifting functions

⇓n : [[[n + 1]]] → [[[n]]] ⇑n : [[[n]]] → [[[n + 1]]]

that satisfies
• ⇓n (⇑n x) = x ,
• v ∼n

τ w implies v ∼n+1
τ (⇑n w), and

• v ∼n+1
τ w and order(τ) ≤ n implies v ∼n

τ (⇓n w).
10

On Computability of Logical Approaches to Program Verification LICS ’20, July 8–11, 2020, Saarbrücken, Germany

Such operations can be defined for n ≥ 2 by

⇑n(v) := λ(a1,a2)
N×[n].v (a1, (⇓n−1 a2))

⇓n(v) := λ(a1,a2)
N×[n−1].v (a1, (⇑n−1 a2))

and similarly for n = 1. The definition includes the rules

(|φ1 φ
ϑ
2 |)

n
ϵ (a) := (|φ1 |)

n
ϵ ((⇓n−1(|φ2 |)

n
ϵ)

ϑ:: a)
(|φ1 ∧ φ2 |)

n
ϵ (a) := (|φ1 |)

n
ϵ (a) ∧ (|φ2 |)

n
ϵ (a)

(|λxϑ .φ |)nϵ (a0
ϑ:: a) := (|φ |)n

(⇑n−1 a0)
ϑ::ϵ
(a)

(|µX τ .φ |)nϵ (a) :=
(
lfp λY [[[n]]].(|φ |)n

Y
τ::ϵ

)
(a).

Lemma 22. For every order-n formula Γ ⊢ φ : τ , we have
[[φ]]ϱ ∼n

τ (|φ |)nϵ for every ϱ ≈n
Γ ϵ .

Proof. By induction on φ. Assume ϱ ≈n
Γ ϵ .

Assume φ = φ1 φ2. Then Γ ⊢ φ1 : ϑ → τ and Γ ⊢

φ2 : ϑ for some ϑ . Consider, for example, the case that
ϑ , Nat. Then, by the induction hypothesis, [[φ2]]ϱ ∼n

ϑ (|φ2 |)
n
ϵ .

Since order(ϑ) < n, we have [[φ2]]ϱ ∼n−1
ϑ ⇓n−1(|φ2 |)

n
ϵ . As

[[φ1]]ϱ ∼n
ϑ→τ (|φ1 |)

n
ϵ by the induction hypothesis, we have

[[φ1]]ϱ ([[φ2]]ϱ) ∼
n
τ λa.(|φ1 |)

n
ϵ ((⇓n−1 (|φ2 |)

n
ϵ)

ϑ:: a). Thin means
[[φ1 φ2]]ϱ ∼n

τ (|φ1 φ2 |)
n
ϵ .

Assume φ = λxϑ .ψ . Then τ = ϑ → σ and Γ,x : ϑ ⊢

ψ : σ for some σ . By definition, it suffices to show that
[[λxϑ .ψ]]ϱ (v) ∼

n
σ (λz.(|λxϑ .ψ |)ϵ (w

ϑ:: z)) for every v ≈n−1
ϑ w .

By calculating both sides, this is equivalent to [[ψ]]ϱ[v/x] ∼n
σ

λz.(|ψ |)n
(⇑n−1 w)

ϑ:: ϵ
z = (|ψ |)n

(⇑n−1 w)
ϑ:: e
, which follows from the

induction hypothesis.
Assume φ = µX τ .ψ . Then Γ,X : τ ⊢ ψ : τ . Let f =

[[λX .ψ : τ → τ]]ϱ : [[τ]] → [[τ]] and д = λY [[[n]]].(|ψ |)n
Y
τ::e

:
[[[n]]] → [[[n]]]. Then [[φ]]ϱ = lfp f and (|φ |)nϵ = lfpд. It suf-
fices to show that f γ (⊥) ∼n

τ д
γ (⊥) for every ordinal number

γ . The base case is ⊥ ∼n
τ ⊥, which is easy. The case of limit

ordinals follows from Lemma 21. We prove that v ∼n
τ w

implies f (v) ∼n
τ д(w). Ifv ∼n

τ w , then ϱ[v/X] ≈n
Γ,X :τ (w

τ:: ϵ).
Hence, by the induction hypothesis, f (v) = [[ψ]]ϱ[v/X] ∼

n
Γ,X :τ

(|ψ |)n
w
τ::e
= д(w) as required.

Other cases are similar. □

Corollary 23. [[φ]]∅ = (|φ |)nNilNat×[n] (NilNat×[n−1]) for every
order-n sentence ∅ ⊢ φ : Prop.

Therefore it suffices to show that (|−|)n is definable by
an order-(n + 1) HFA formula In : Nat → Nat → [n] →

[n]. This formula is obtained from the definition of (|−|)n by
replacing (|φ |)nϵ with In ⌞φ⌟ ϵ , because operations appearing
in the definition such as ⇑n−1 and ⇓n−1 are definable by order-
(n + 1) formulas.

Theorem 24. HFAn is definable by an order-(n + 1) formula.

No order-n formula defines HFAn by Tarski’s undefinabil-
ity theorem.8 Hence the set of order-(n + 1) formulas is
strictly more expressive than that of order-n formulas. The
main theorem of this subsection is a direct consequence of
this argument.

Theorem 25. HFAn <m HFAn+1.

Proof. Trivially HFAn ≤m HFAn+1. We prove that HFAn+1 is
not many-one reducible to HFAn . Assume for contradiction
that HFAn+1 is reducible to HFAn . Then there exists a Σ0

1-
formula φ(x ,y) such that, for every order-(n + 1) sentence ξ ,
we have |= ξ if and only if there exists an order-n sentence ζ
such that |= ζ and |= φ(⌞ξ ⌟, ⌞ζ ⌟). LettingT n be the formula
in Theorem 24, the order-(n + 1) formula ∃y.T n(y) ∧ φ(x ,y)
defines HFAn+1, which contradicts to Tarski’s undefinability
theorem. □

Remark 26. A slight modification of the above argument
shows that HFAn <T HFAn+1 (i.e. HFAn+1 is not Turing re-
ducible to HFAn) and even that HFAn+1 is not arithmetical
in HFAn . □

5 Extensions of Constrained Horn Clauses
This section studies some extensions of the satisfiability
problem for constrained Horn clauses (CHCs for short) that
have been studied in the context of program verification [1–
3].

5.1 Constrained Horn Clauses
The theory of constrained Horn clauses is usually parame-
terised by the background theory, but we fix the background
theory to the quantifier-free linear arithmetic. It is a fairly
weak and commonly used theory. We would like to show
that generalised CHC are hard even for a weak background
theory.

We shall consider following forms of “clauses”:

(Base) φ ∧ H1(®x1) ∧ · · · ∧ Hn(®xn) → G(®y)

(∨) φ ∧ H1(®x1) ∧ · · · ∧ Hn(®xn) → G1(®y1) ∨G2(®y2)

(∃) φ ∧ H1(®x1) ∧ · · · ∧ Hn(®xn) → ∃z.G(z, ®y)
(wf) wf (H)

Here H1, . . . ,Hn are predicate variables, G is a predicate
variable or ⊥ and H is a predicate variable of arity 2. (Base)
is the standard constrained Horn clause, and (∨) and (∃)
are extensions allowing ∨ and ∃ at the head (i.e. the right-
hand-side of→); wf (H) requires that the binary predicate H
is well-founded, i.e. there is no infinite sequence a0a1a2 . . .
such that all adjacent pairs of elements are related by H .
The meaning of each clause should be clear. The satisfi-

ability problem asks, given a finite set of clauses, whether
8 One has to check that HFAn satisfies the requirements of the theorem. The
diagonal argument applies to HFAn since it contains first-order arithmetic.
For closure under negation, see Remark 11.

11

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Takeshi Tsukada

there is a valuation to predicate variables that satisfies all
the clauses.

Let us write CHC[∃,wf] for the satisfiability problem for
finite sets of (∃)- and (wf)-clauses in addition to (Base)-
clauses. The meaning of CHC[∨] and others should be clear.
In this notation, the problem used in Beyene et al. [1] is
CHC[∃,wf].
5.2 Σ1

2-completeness of CHC[∃,wf]
We show both CHC[∃,wf] and CHC[∨,wf] are Σ1

2-complete.
Hence they are strictly harder than Verif . Since a (∨)-clause
can be expressed by using a (∃)-clause, CHC[∨,wf] ≤m
CHC[∃,wf]. We show that

1. CHC[∃,wf] is Σ1
2, and

2. CHC[∨,wf] is Σ1
2-hard.

As a consequence CHC[∨,wf] ≡m CHC[∃,wf].
The former claim is obvious. A finite set of clauses in

CHC[∃,wf], say C = {Φ1, . . . ,Φn}∪{wf (H1), . . . ,wf (Hm)}

with free predicate variables ®P , is satisfiable if and only if
the Σ1

2-formula

∃ ®P .
(∧

1≤i≤n
∀®xi .Φi

)
∧

(∧
1≤j≤m

∀f Nat→Nat.∃xNat.¬Hj (f (x), f (x + 1))

)
is true. Since the set of codes of true Σ1

2-formulas is a Σ1
2-

set and the above translation is computable, we conclude
CHC[∃,wf] ∈ Σ1

2.
We prove the harder part.

Lemma 27. CHC[∨,wf] is Σ1
2-hard.

Proof. Consider the following decision problem:{
⌞φ⌟

���� φ(x ,y,Z) : Σ0
1-formula

[[λxy.φ]][A/Z] is well-founded for some A ⊆ N

}
.

Here x and y are natural number variables, Z is a unary
predicate variable, and φ has no other free variable. This
problem is Σ1

2-complete [19, Theorem XXXVII, §16.4, p.416].
We reduce this problem to CHC[∨,wf].

Logical constructs in Σ0
1-formulas can be “simulated” by

CHCs. We construct a finite set of CHCs Cψ with distin-
guished predicate symbols Z and Pψ that satisfies the follow-
ing conditions:

• For every A ⊆ N, there exists a solution ϱ of Cψ such
that ϱ(Z) = A and ϱ(Pψ) = [[ψ]][A/Z].

• Every solution ϱ of Cψ satisfies [[ψ]][ϱ(Z)/Z] ⊆ ϱ(Pψ).
We define Cψ by induction onψ . We can assume without

loss of generality that ψ is in negation normal form. The
most important case isψ (x) = ¬Z (x), where C¬Z (x) is

{ true → P¬Z (x)(x) ∨ Z (x), P¬Z (x)(x) ∧ Z (x) → false }.

The other cases are rather straightforward. For example,
Cψ1∨ψ2 consists of the rules in Cψ1 and in Cψ2 with the fol-
lowing additional rules:

Pψ1 (®x) → Pψ1∨ψ2 (®x) Pψ2 (®x) → Pψ1∨ψ2 (®x).

For another example, the representation of a bounded quan-
tifier ∀y ≤ t .ψ is given by

Pψ (®x , 0) → H (®x , 0)
y = S(y ′) ∧ Pψ (®x ,y) ∧ H (®x ,y ′) → H (®x ,y)

H (®x , t) → P∀y≤t .ψ (®x)

in addition to Cψ . Finally ∃x .ψ can be coded by

Pψ (x , ®y) → P∃x .ψ (®y).

It is easy to see that this construction satisfies the require-
ments.

Then

Cφ ∪ {wf (Pφ)} is satisfiable
⇔∃A ⊆ N.∃B ⊆ N2. [[λxy.φ]][A/Z] ⊆ B and B is well-founded
⇔∃A ⊆ N. [[λxy.φ]][A/Z] is well-founded.

For the second equivalence, note that B ⊆ N2 is well-founded
and B′ ⊆ B implies B′ is well-founded.

Obviously ⌞φ⌟ 7→ (Cφ ∪ {wf (Pφ))} is effective. This com-
pletes the proof of the lemma. □

Theorem 28. CHC[∃,wf] and CHC[∨,wf] are Σ1
2-complete.

A consequence is thatCHC[∃,wf] ≡m CHC[∨,wf], i.e. one
can effectively remove (∃)-clauses by using (∨)-clauses pre-
serving the satisfiability. As CHC[∨,wf] is superficially eas-
ier, whether there exists a practical translation could be of
practical interest. (Unfortunately the translation given by
the proofs are complicated.)

Remark 29. So far we have considered the satisfiability with
respect to the standard model N of natural numbers but the
proof is applicable to satisfiability modulo weaker theories
as well. The proof only requires that the theory contains a
function symbol S and a constant z and the following axioms:

(∀x .z , S(x)) ∧ (∀xy.S(x) = S(y) ⇒ x = y).

The constraint language suffices to contain t = t ′ and t , t ′,
where t , t ′ ::= z | x | S(t). This condition would be satisfied
bymany background theories that deal with infinite data. □

Remark 30. The disjunctive well-foundedness predicate dwf
is sometimes used instead of wf (e.g. [1]). A relation H is
disjunctively well-founded if H =

∨k
i=1 Hi for some well-

founded relationsHi . The satisfaction problem CHC[∨, dwf]
is Σ1

2-complete since CHC[∨, dwf] and CHC[∨,wf] are re-
ducible to each other. Since wf (H) ⇔ dwf (H+) (where H+
is the transitive closure of H) [?], CHC[∨,wf] can be eas-
ily reduced to CHC[∨, dwf]. The other direction is a conse-
quence of the Σ1

2-hardness of CHC[∨,wf]: for a relation H
12

On Computability of Logical Approaches to Program Verification LICS ’20, July 8–11, 2020, Saarbrücken, Germany

on natural numbers, it is not difficult to express dwf (H) by
a Σ1

2-formula. □

5.3 Hardness of Subproblems
We have proved that CHC[∨,wf], the problem studied in
[1–3], is strictly more difficult than the verification problem.
How about natural subproblems CHC[∨] and CHC[wf]?

Theorem 31. CHC[∨] <m Verif and CHC[wf] <m Verif .

Proof. A consequence of Lemmas 32 and 33, which shall be
proved below. Recall that Verif is Π1

1-hard and Σ1
1-hard and

thus not in Π1
1 ∪ Σ1

1 (Proposition 6). □

Lemma 32. CHC[∨] and CHC[∃] are Σ1
1.

Proof. They are Σ1
1 because {Φ1, . . . ,Φn} is satisfiable if and

only if ∃ ®P .Φ1 ∧ · · · ∧ Φn . □

Lemma 33. CHC[wf] is Π1
1-complete.

Proof. Hardness follows from Proposition 2 since a given Σ0
1-

formula can be simulated by (Base)-constraints (cf. Turing-
completeness of the core of prolog).

We show that CHC[wf] is Π1
1. Let

C = {Φ1, . . . ,Φn ,Ψ1, . . . ,Ψm ,wf (H1), . . . ,wf (Hk) }

be a given set of CHC[wf]-clauses. Here Φi is of the form
· · · → H (®xi) and Ψj is of the form · · · → ⊥. The constraint
Ψj as well as wf (Hℓ) is monotone in the sense that, if the
valuation ϱ satisfies Ψj and ϱ ′ is less than ϱ, then ϱ ′ also sat-
isfies Ψj . So the problem is whether the minimum solution
to {Φ1, . . . ,Φn} satisfies other constraints. It is well-known
that the minimum solution exists and can be expressed by
Σ0

1-formulas; furthermore the mapping from ®Φ to formulas is
computable. By substituting the obtained Σ0

1-formulas, what
we need to do is the validity checking of Π0

1-formulas (corre-
sponding to Ψ-constraints) and well-foundedness checking
of Σ0

1-formulas (corresponding to wf (Hℓ)). Hence CHC[wf]
is Π1

1. □

6 Conclusion
We have studied the hardness of branching-time property
verification of Turing-complete programs, as well as logical
problems used in verification methods.
We pointed out that the verification problem was, in ef-

fect, been studied by Bradfield [4] of which the proofs in-
duce polynomial-time reductions between the verification
problem and the validity problem of (first-order) fixed-point
arithmetic. This is a remarkable result as all other logical
problems studied in this paper are strictly harder than the
verification problem. We expect that this result would moti-
vate an extensive study of first-order fixed-point arithmetic
in program verification.

The satisfiability problem of constrained Horn clauses
with extensions [1–3] is also strictly harder than the verifi-
cation problem, but it seems a minimal extension to which
the verification problem is reducible.
Higher-order fixed-point arithmetic used in [15, 24] are

strictly harder than the verification problem, but far easier
than the validity problem of second-order arithmetic and
the satisfiability problem of extensions of constrained Horn
clauses [1–3], at least theoretically. We also showed that the
hierarchy (HFAn)n is strict by giving an order-(n+1) formula
that defines the set of true order-n sentences. As a conse-
quence, formulas of higher-order fixed-point logic cannot be
“naturally” transformed into programs nor the priority-typed
fragment (i.e. the λY -calculus with priorities [23]). We think
this answers the question posed by Walukiewicz [23].

The strictness of the HFA hierarchy and the mismatch to
the higher-order verification problem poses a natural ques-
tion: is there any natural characterisation of the classes?
Bradfield [5] established a beautiful connection between the
alternation hierarchy of µ-arithmetic and the difference hi-
erarchy over Σ0

2 using the game quantifier. This approach
seems promising. We conjecture that HFAn is related to the
difference hierarchy over Σ0

n+1. Actually higher-order com-
putability, namely Kolmogorov’s R operator, has been shown
to be relevant to the games over Σ0

3 [10].

Acknowledgments
We would like to thank Naoki Kobayashi and Hiroshi Unno
for discussions, and anonymous referees for valuable com-
ments.

References
[1] Tewodros Beyene, Swarat Chaudhuri, Corneliu Popeea, and Andrey

Rybalchenko. 2014. A constraint-based approach to solving games
on infinite graphs. Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages - POPL ’14 (2014),
221–233. https://doi.org/10.1145/2535838.2535860

[2] Tewodros A. Beyene, Corneliu Popeea, and Andrey Rybalchenko.
2013. Solving existentially quantified Horn clauses. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics) 8044 LNCS (2013), 869–882.
https://doi.org/10.1007/978-3-642-39799-8_61

[3] Nikolaj Bjørner, Arie Gurfinkel, Ken McMillan, and Andrey Ry-
balchenko. 2015. Horn clause solvers for program verification. In
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 9300.
24–51. https://doi.org/10.1007/978-3-319-23534-9_2

[4] J. C. Bradfield. 1998. The modal mu-calculus alternation hierarchy
is strict. Theoretical Computer Science 195, 2 (1998), 133–153. https:
//doi.org/10.1016/S0304-3975(97)00217-X

[5] Julian C Bradfield. 1999. Fixpoint Alternation and the Game Quantifier.
Proceedings of the 8th Annual Conference of the Europan Association for
Computer Science Logic, CSL∼’99 1683 (1999), 350–361.

[6] Florian Bruse. 2014. Alternating Parity Krivine Automata. MFCS
259267 (2014), 111–122. https://doi.org/10.1007/978-3-662-44522-8_10

[7] Florian Bruse. 2016. Alternation Is Strict For Higher-Order Modal
Fixpoint Logic. (2016), 105–119. https://doi.org/10.4204/EPTCS.226.8

13

https://doi.org/10.1145/2535838.2535860
https://doi.org/10.1007/978-3-642-39799-8_61
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1016/S0304-3975(97)00217-X
https://doi.org/10.1016/S0304-3975(97)00217-X
https://doi.org/10.1007/978-3-662-44522-8_10
https://doi.org/10.4204/EPTCS.226.8

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Takeshi Tsukada

[8] Erich Grädel, Wolfgang Thomas, and Thomas Wilke (Eds.). 2002.
Automata Logics, and Infinite Games. Lecture Notes in Computer
Science, Vol. 2500. Springer Berlin Heidelberg, Berlin, Heidelberg.
https://doi.org/10.1007/3-540-36387-4

[9] David Harel. 1986. Effective transformations on infinite trees, with
applications to high undecidability, dominoes, and fairness. J. ACM
33, 1 (1986), 224–248. https://doi.org/10.1145/4904.4993

[10] Thomas John. 1986. Recursion in Kolmogorov’s R -operator and the
ordinal σ 3. Journal of Symbolic Logic 51, 1 (mar 1986), 1–11. https:
//doi.org/10.2307/2273936

[11] Naoki Kobayashi, Étienne Lozes, and Florian Bruse. 2017. On the
relationship between higher-order recursion schemes and higher-order
fixpoint logic. Conference Record of the Annual ACM Symposium on
Principles of Programming Languages (2017), 246–259. https://doi.org/
10.1145/3009837.3009854

[12] Naoki Kobayashi, Takeshi Nishikawa, Atsushi Igarashi, and Hiroshi
Unno. 2019. Temporal Verification of Programs via First-Order Fixpoint
Logic. Vol. 1. Springer International Publishing. 413–436 pages. https:
//doi.org/10.1007/978-3-030-32304-2_20

[13] Naoki Kobayashi and C.-H. Luke Ong. 2009. A Type System Equivalent
to the Modal Mu-Calculus Model Checking of Higher-Order Recursion
Schemes. In LICS. IEEE Computer Society, 179–188.

[14] Naoki Kobayashi, Takeshi Tsukada, and Keiichi Watanabe. 2017.
Higher-Order Program Verification via HFL Model Checking. (oct
2017). arXiv:1710.08614 http://arxiv.org/abs/1710.08614

[15] Naoki Kobayashi, Takeshi Tsukada, and Keiichi Watanabe. 2018.
Higher-Order Program Verification via HFL Model Checking. In
ESOP, Vol. 1381. Springer International Publishing, 711–738. https:
//doi.org/10.1007/978-3-319-89884-1_25

[16] Dexter Kozen. 2006. Theory of Computation. Springer London. https:
//doi.org/10.1007/1-84628-477-5

[17] Robert S. Lubarsky. 1993. µ-definable sets of integers. The Journal of
Symbolic Logic 58, 01 (mar 1993), 291–313. https://doi.org/10.2307/
2275338

[18] Yoji Nanjo, Hiroshi Unno, Eric Koskinen, and Tachio Terauchi. 2018.
A Fixpoint Logic and Dependent Effects for Temporal Property Verifi-
cation. (2018), 759–768. https://doi.org/10.1145/3209108.3209204

[19] Hartley Rogers. 1987. Theory of Recursive Functions and Effective
Computability.

[20] Hiroshi Unno, Yuki Satake, and Tachio Terauchi. 2017. Relatively
complete refinement type system for verification of higher-order non-
deterministic programs. Proceedings of the ACM on Programming
Languages 2, POPL (2017), 1–29. https://doi.org/10.1145/3158100

[21] Moshe Y Vardi. 1991. Verification of concurrent programs: the
automata-theoretic framework. Annals of Pure and Applied Logic 51,
1-2 (mar 1991), 79–98. https://doi.org/10.1016/0168-0072(91)90066-U

[22] Mahesh Viswanathan and Ramesh Viswanathan. 2004. A Higher Order
Modal Fixed Point Logic. 512–528. https://doi.org/10.1007/978-3-540-
28644-8_33

[23] Igor Walukiewicz. 2019. Lambda Y-Calculus With Priorities. In 2019
34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
IEEE, 1–13. https://doi.org/10.1109/LICS.2019.8785674

[24] Keiichi Watanabe, Takeshi Tsukada, Hiroki Oshikawa, and Naoki
Kobayashi. 2019. Reduction from branching-time property verification
of higher-order programs to HFL validity checking. In Proceedings of
the 2019 ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation - PEPM 2019. ACM Press, New York, New York, USA,
22–34. https://doi.org/10.1145/3294032.3294077

14

https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1145/4904.4993
https://doi.org/10.2307/2273936
https://doi.org/10.2307/2273936
https://doi.org/10.1145/3009837.3009854
https://doi.org/10.1145/3009837.3009854
https://doi.org/10.1007/978-3-030-32304-2_20
https://doi.org/10.1007/978-3-030-32304-2_20
https://arxiv.org/abs/1710.08614
http://arxiv.org/abs/1710.08614
https://doi.org/10.1007/978-3-319-89884-1_25
https://doi.org/10.1007/978-3-319-89884-1_25
https://doi.org/10.1007/1-84628-477-5
https://doi.org/10.1007/1-84628-477-5
https://doi.org/10.2307/2275338
https://doi.org/10.2307/2275338
https://doi.org/10.1145/3209108.3209204
https://doi.org/10.1145/3158100
https://doi.org/10.1016/0168-0072(91)90066-U
https://doi.org/10.1007/978-3-540-28644-8_33
https://doi.org/10.1007/978-3-540-28644-8_33
https://doi.org/10.1109/LICS.2019.8785674
https://doi.org/10.1145/3294032.3294077

	Abstract
	1 Introduction
	1.1 First-order fixed-point arithmetic
	1.2 Higher-Order Fixed-Point Arithmetic
	1.3 Extensions of Constrained Horn Clauses
	1.4 Contributions
	1.5 Related Work

	2 Preliminaries
	2.1 Computable Functions and Reductions
	2.2 Second-Order Arithmetic
	2.3 Games

	3 Branching-Time Property Verification
	4 Higher-Order Fixed-Point Arithmetic
	4.1 Definition of Higher-Order Fixed-Point Arithmetic
	4.2 Operational Game Semantics
	4.3 Strictness of the Hierarchy

	5 Extensions of Constrained Horn Clauses
	5.1 Constrained Horn Clauses
	5.2 12-completeness of CHC[,wf]
	5.3 Hardness of Subproblems

	6 Conclusion
	Acknowledgments
	References

